无线式墙体传热系数现场检测

仪器信息网无线式墙体传热系数现场检测专题为您提供2024年最新无线式墙体传热系数现场检测价格报价、厂家品牌的相关信息, 包括无线式墙体传热系数现场检测参数、型号等,不管是国产,还是进口品牌的无线式墙体传热系数现场检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合无线式墙体传热系数现场检测相关的耗材配件、试剂标物,还有无线式墙体传热系数现场检测相关的最新资讯、资料,以及无线式墙体传热系数现场检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

无线式墙体传热系数现场检测相关的仪器

  • 墙体稳态传热系数测试装置(JP-AQT1500)适用标准:GB/T 12475-2008《绝热稳态传热性质的测定标定和防护热箱法》。技术参数:1.防护箱温度控制范围:15~50℃,连续可调,控制精度:±0.5℃;2.冷箱温度控制范围:-10~20℃,控制精度:±0.2℃; 3.测温传感器类型:美国DALLAS数字温度传感器,43支;测量温度范围:-30~85℃;测温分辨率:0.0625℃; 4.加热电功率测量范围:0~200W;精度:0.2级; 5.冷箱制冷功率:1.5KW; 6.仪器的测量精度:≤5%,重复度:≤1%; 7.额定电源功率:动力电,AC380V、五线三相制,3kvA;8.测试件尺寸:1000×1000×300mm、1200×1200×300mm;9.整机尺寸:2200×1600×1740mm。
    留言咨询
  • GPRS无线建筑热工性能检测仪(JP-AL20K)主要用途:检测建筑物围护结构传热系数是否达到设计要求。执行标准:GB/T23483《建筑物围护结构传热系数及采暖供热量检测方法》;JGJ / T132《居住建筑节能检标准)中“7国护结构1主体部位传热系数检测”;JGJ / T357《维护结构传热系数现场检测技术规程》。技术指标:1.温度测量(3路测试点)通道:6路;量程范围:-40℃—300℃;分辨率:0.01℃;准确度:≤0.2℃。用于建筑围护结构内外表面温度、热箱内外空气温度测量或其它温度测量;2.热流密度测量(3路测试点)通道:3路;量程范围:0—200mV;分辨率:0.001 mV;测量准确度:≤0.02 mV;传感器采用板式热流计。用于热流密度测量;3.采集仪根据所测温度、热流密度等数据自动计算实时显示出围护结构的热阻及传热系数;4.配有专用数据处理软件。具有显示历史数据及曲线、生成打印报告等功能;5.箱体1.2*0.6*0.3m;6.无线频率:433mhz;7.控制模式:RF-1-3控制采集模式+网络监测模式。
    留言咨询
  • TEL 1 8 9 7 6 9 4 4 5 4 7 检测项目 : 建筑玻璃半球辐射率、传热系数的检测。 适用标准: GB/T2680-2021《建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线透射以及有关窗玻璃参数的测定》;ISO9050-1990建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线透射以及有关窗玻璃参数的测定》;JGJ/T151-2008《建筑门窗玻璃幕墙热工计算规程》 技术参数 : 光谱范围:4000~400cm-1分辨率:<1.5cm-1性噪比:15000:1进口检测器:高灵敏度DTGS检测器分束器:多层镀膜溴化钾扫描速度:微机控制和选择不同的扫描速度,档次连续可调,图谱自动比对。进口光源:长寿命高强度空气冷却红外光源噪音:噪音:<4.3*10ˉ5A电源:AC220V,50Hz外形尺寸:48.3cm * 35.6cm * 43.2cm重量:16Kg 设备配置清单:序号设备名称规格/型号数量1傅立叶变换红外光谱仪HKLD-AFL251台2红外傅立叶半球辐射率、传热系数U值测定系统配合HKLD-AFL251个3半球辐射率反射附件1套4透射附件1套5延保1年服务费1份6电子防潮箱1台7标准薄膜1片产品概述:可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。公司介绍:众仪(海南)科学仪器成立于海口,主要经营:智慧工地服务、教学专用设备、科学分析仪器等。公司拥有专业的技术团队和服务团队,服务网络遍及海南全岛,可以及时地为每一位客户提供完善的售前售中、售后服务。公司以质量为求生存,以服务求发展,始终以重合同、守信用为宗旨,“专注品质、尽心服务”是每一个“众仪人”的职业要求。公司秉承以质量和技术赢发展的理念,尽心全力地把最新的技术和设备提供客户。
    留言咨询

无线式墙体传热系数现场检测相关的方案

无线式墙体传热系数现场检测相关的论坛

  • 热流传感器在评估建筑物墙体保温性能的检测应用

    热流传感器在评估建筑物墙体保温性能的检测应用

    随着建筑能耗占社会总能耗的比例不断增加,建筑节能工作的开展显得越来越迫切。建筑围护结构的节能承担着建筑节能很大的比例,是建筑节能的重点。传热系数是建筑围护结构的一个重要的热工参数,准确测量建筑围护结构传热系数既是准确分析围护结构保温隔热性能的前提,又是正确评价建筑节能效果和节能改造的基础。[img=,579,334]https://ng1.17img.cn/bbsfiles/images/2018/11/201811200951181804_1814_3332482_3.jpg!w579x334.jpg[/img]分析建筑传热的原理和研究方法的基础上釆用热流计法现场检测一办公建筑外墙传热系数,将墙体的传热系数理论计算值与实测值进行对比分析,分析两者之间的差异以及产生差异的原因:使用算术平均法和动态分析法对实测数据进行处理,分析两者的适用性:研究测点位置、测试温差对墙体传热系数的影响,得出以下结论:(1)测点位置距热桥的距离为2个墙体壁厚吋,墙体的导热处于维稳态或准稳态传热状态(2)当墙体传热系数较大时,可以适当降低检测温差,其检测结果仍具有较好的吻合度。通过实测不同风速下的墙体热流密度、壁面温度及空气温度计算实测条件下墙体外表面的对流换热系数,有利于墙体传热系数的准确。目前墙体传热系数的检测方法主要有热流计法、热箱法、和控温箱-热流计法,即,另外常功率平面热源法和红外热像仪法作为检测领域的先进手段也常用于建筑墙体传热系数的检测。这些检测方法都具有各自的特点,但同时也存在一定的问题和弊端。本文详细介绍其中的热流计法现场检测传热系数的常用方法。我国的现行检测标准《居住建筑节能检测标准》(JGJ132-209)推荐热流计法为现场检测围护结构传热系数的首选检测方法,经过国内外几十年的应用,热流计法已经被广泛接受。热流计法是利用墙体内外表面的温差与通过墙体的热流量之间的对应关系进行传热系数的测定,其基本的理论是建立在傅里叶定律的基础上,认为墙体是各向同性、连续的介质并处于一维稳态传热过程。测量通过被测墙体的电压E,同时测出墙体内壁面温度72及外壁面温度T,即可根据公式(2-1) (2-2)计算出被测墙体的导热热阻和传热系数。单面热流计法:单面热流计法即常规的热流计法,其具体操作方法为:在被测部位内壁表面布置热流传感器,在热流传感器周围布置温度传感器,在外壁表面对应的位置上布置温度传感器,将热流传感器和温度传感器同时连接到数据采集仪上进行数据采集,对数据处理即可得到所测位置的热阻值和传热系数。双面热流计法:双面热流计法是一种改进的热流计法,是由王珍吾等人提出的。一方面, 墙体实际的传热过程为非稳态传热,由于温度波的延迟效应,在同一时刻所测得的热流值和温度值在时间上是不吻合的,另一方面,由于墙体的蓄热作用,同一时刻由内表面进入墙体内部的热流值与墙体内部流出外表面的热流是不一致的。采用双面热流计法可以有效降低这两个因素对检测的影响1不同于单面热流计法仅在墙体内表面测量热流量,双面热流计法是在墙体内外表面相应的位置均布置热流传感器,同时测定墙体内外表面的热流,并用所测得的内外表面的热流的加权平均值作为通过墙体的热流值。[img=,394,383]https://ng1.17img.cn/bbsfiles/images/2018/11/201811200951331614_9206_3332482_3.jpg!w394x383.jpg[/img]最后就由工采网小编给大家介绍两款进口热流传感器,那就是从日本进口的热流传感器 - MF180和热流传感器 - MF180M这两款质量突出的热流传感器。这两款热流传感器适合材料内部的热流的直接测,也适合制冷剂的辐射流的测量 。测试原理 有三种热传导模式:热传导,热辐射和热流。如果热流传感器安置在材料的表面,它将测试这三种模式热 的总和。如果传感器安置在材料的内部,它直接测试由热传导产生的热传输。用热电偶测试温度的不同,穿过的热流能被直接测。

  • 真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    真空隔热材料:真空玻璃和真空绝热板(VIPs)传热系数在线检测技术

    [b][color=#cc0000]摘要[/color][/b]:常用的真空隔热材料主要包括真空玻璃和真空绝热板(VIP),针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上提出了一种新型的动态热流法测试技术,介绍了一种便携式探头结构的快速在线检测技术方案。[color=#cc0000][b]关键词[/b][/color]:真空玻璃、真空绝热板、传热系数、导热系数、U值、在线检测[hr/][b][color=#cc0000]1. 引言[/color][/b] 隔热材料(或保温材料)的热传递主要有对流换热、接触导热和辐射传热三种途径,前两种途径都需要传热介质。在真空环境下,由于气压的降低,气体密度随之降低,气体分子平均自由程将增大,气体分子间和气体分子与真空容器壁的碰撞频率和强度相对减弱,从而使得真空环境阻止了对流和接触这两种传热形式的发生,由此达到隔热效果。如果在真空环境的内壁上涂覆低辐射系数涂层,还可以阻止辐射传热实现绝热效果。 在传统隔热材料中,热辐射占热传递中的20~30%,接触材料占热传递中的5~10%,而隔热材料中气体的对流换热则占剩余的约65~75%。因而,隔热材料中减少这些热传递途径中最重要的一环就是空气传递热量,即通过将隔热系统抽成真空来减少热量传递,目前这种真空型隔热材料比较成熟的产品主要有真空玻璃和真空绝热板两类: (1)真空玻璃(Vacuum Glazing)是一种玻璃深加工产品,是基于保温瓶原理制作而成。真空玻璃的结构与中空玻璃相似,其不同之处在于真空玻璃空腔内的气体非常稀薄,几乎接近0.1 Pa的真空。真空玻璃是将两片平板玻璃四周密闭起来,将其间隙抽成真空并密封排气孔,两片玻璃之间的间隙为0.1~0.2 mm,真空玻璃的两片一般至少有一片是涂覆低辐射系数涂层的低辐射玻璃(Low-E玻璃),由此可将通过真空玻璃的导热、对流和辐射方式散失的热量降到最低。 (2)真空绝热板(Vacuum Insulation Panel——VIP)是由轻质芯材与专用复合阻气膜通过抽真空封装技术复合制成,其内部真空度约为10 Pa能有效地避免气体对流引起的热传递,可大幅度提高绝热效果。 真空隔热材料可广泛应用于建筑节能墙体和门窗、冷链冷藏设备、温室、太阳能和空调型运输工具等领域。在业内评价真空隔热材料一般采用两个技术参数,一个是传热系数(Wm-2K-1),另一个是导热系数(Wm-1K-1),业内也会将传热系数用K值或U值来定义。通常对于真空玻璃采用传热系数K值来评估,对于真空绝热板采用导热系数进行评估。 传热系数和导热系数测试技术是真空隔热材料的关键技术之一,相应的测试技术至少要实现两个功能,第一是需要检测证明真空隔热材料确实含有隔热功能的真空,第二是因为真空空间内存在支撑物和残留气体的导热传热以及辐射传热,有必要检测验证真空隔热材料的传热理论模型,并了解这些不同传热形式之间的相互作用方式。目前常规测试技术一般为成熟的稳态技术,主要包括保护热板法、保护热流计法和保护热箱法。尽管这三种常规方法可以从计量和质量层面可以对真空隔热材料进行准确的测试评价,但它们存在的明显劣势则是要求制作标准尺寸样品和测试周期漫长,无法用于大批量制造生产过程中逐件产品质量的在线检测,因此需要解决真空隔热材料的在线检测技术。 在线检测技术的目的是在真空隔热材料的生产制造过程中,实时验证每个真空隔热材料产品的质量都在规定范围内。在在线检测过程中,因为可以与标准合格产品或样品进行比较,在线检测并不一定需要绝对准确,重要的是生产过程中能保证检测工序可以快速进行,并且检测仪器具有很好的测量重复性。在线检测技术的另外一个目的是可以证明真空绝热材料产品在实际安装过程和使用条件下还能长期保持相应的真空度,即对处于生命周期内的真空隔热材料产品进行实时检测或监测。 针对真空隔热材料热性能的在线检测技术,本文综述了国内外的研究现状,讨论了各种在线检测技术的特点和存在问题,并在国内外现有技术基础上介绍了一种便携式快速的新型在线检测技术方案。[b][color=#cc0000]2. 在线检测真空隔热材料热性能的技术挑战[/color][/b] 真空隔热材料的最大特点就是具有超低的传热系数和导热系数,如果再考虑实现在线检测,这就给测量真空隔热材料热性能带来了以下几方面的严峻挑战: (1)所谓在线检测,就是要求采用很小面积尺寸的探头对板状真空隔热材料进行实时检测,同时又因为真空隔热材料的传热系数和导热系数极低,致使只有很少热流能够流经隔热材料。这就意味着在线检测只能检测很小面积的真空隔热材料,而且检测探头还需具有非常高的探测分辨率才能检测到此小面积上的热流变化(毫瓦量级)。 (2)真空隔热材料并非是均质材料,真空隔热部分一般被外部高导热材料(如玻璃或复合铝膜等)夹持在中间,真空隔热部分和外部高导热材料的导热系数相差五个数量级以上,因此在检测过程中非常容易产生沿隔热材料板材表面流动的寄生热损,在检测表面上形成面内温度梯度,这就对小面积在线监测提出了非常高的技术要求。 (3)既然是在线检测,就要求在线检测作为一道流水作业工序,能在真空隔热材料生产线上对每件产品进行实时快速检测,单件产品检测时间小于1分钟,最好能实现10~30秒这样的快速检测能力。 由此可见,真空隔热材料热性能测试对在线检测提出了两个层面的要求,一个层面是具备快速在线检测和判断产品质量是否合格的能力,这就要求在线检测仪器既要具有高分辨率和快速检测能力,还需具备很好的测量重复性。另一个层面是要实现高准确度的测量,准确测量出产品的传热系数和导热系数,与防护热箱法等标准方法测试结果相比要在允许偏差范围内。[b][color=#cc0000]3. 国内外测试方法研究[/color][/b] 面对上述真空隔热材料热性能在线检测的技术挑战,国内外开展了大量研究和探索。下面将对国内外的研究报道进行汇总,并对各种检测方法的优缺点进行讨论。[color=#cc0000]3.1. 稳态法:小面积保护热板法3.1.1. 澳大利亚Collins团队的研究工作[/color] 保护热板法是一种经典的板式样品材料热阻和导热系数稳态测试方法,对被测样品有严格的尺寸要求,样品尺寸一般都大于300×300 mm2的测试面积,而且测试周期至少4个小时以上,同时隔热性能越好则测试时间越长。但由于保护热板法是一种绝对测量方法,测试准确度高,因此常被用来作为标准测试仪器和计量溯源测试仪器,计量机构和检测认证机构通常都会配备这种保护热板法仪器以及相同原理的更大样品尺寸的保护热箱法设备来对真空玻璃和真空绝热板进行质量评估。 澳大利亚Collins团队基于经典的保护热板法开发了一种小面积尺寸的保护热板法用于真空玻璃热性能的测试和研究,其测量原理如图3-1所示。一个小的热导体,这里称为测量块,被放置在被测样品一侧并具有良好的热接触,测量块的所有其它侧面被一个保持恒定温度的等温防护装置包围,该热防护装置也与被测样品保持良好的热接触,由此使测量块上的热量只能在样品方向上传递而周围的热损近乎为零。被测样品的另一侧保持在恒定的低温下,热流从热防护装置流经样品到对面的冷板,热量也从热防护装置流到测量块,测量块热流通过样品流到冷板。 [align=center][img=,600,369]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191121404416_7563_3384_3.png!w600x369.jpg[/img] [/align][align=center][color=#cc0000]图3-1 小面积防护热板法测量装置结构示意图[/color][/align] 测量块与热保护装置之间的温差由嵌在这些元件中的温度传感器进行检测。测量块中的热量由内部电加热器产生并同时升高测量块温度,当测量块温度正好等于热保护装置温度时,这两个部件之间不会发生热流,在这个零温差条件下测量块中所产生的所有能量都流经样品形成所谓的一维热流。按照稳态一维热流傅立叶传热定律,利用测量块的已知面积,最终可以得到样品传热系数的绝对测量值。 澳大利亚Collins团队专门开发了小面积形式的保护热板法测试仪器用于测量真空玻璃中不同的热流传递过程,这些仪器可用来识别真空空间中由于辐射和气体传导而对热传递的单独贡献,其中就包括通过支撑柱进行的热传导。为了做到这一点,测量块所选择的尺寸很小,测量块截面积约为1 cm2,周围保护装置的面积约为100 cm2。由于测量是小面积和真空绝热样品,此仪器必须能够检测非常小的热量变化。 与保护热板法测量装置一样,小面积保护热板法测试仪器研制过程中的关键技术是最大限度减少测量块热损到可忽略的水平,并证明这种热损确实被有效消除。为了验证此测试仪器的热损确实被有效消除,需要测量的微小热量需要检测测量块和热保护装置之间极小温差。分别采用了两种真空玻璃进行了测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),图3-2显示了小面积保护热板法测试仪器所获得的典型实验数据。[align=center][img=,600,514]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124054860_7131_3384_3.png!w600x514.jpg[/img][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-2 小型保护热板法测试仪器获得的典型数据[/color][/align] 为了进行精确的绝对测量,必须使用已知传热系数的样品来校准测量块的有效面积。两片未涂覆玻璃片之间的真空空间为这种校准测量提供了非常方便的样品,因为这种玻璃表面之间的辐射传热速率可以从这种玻璃已知的红外光学中计算得到非常高的准确度。 有限元模型分析可以用于确定玻璃薄板等温外表面上每个支撑柱所引起的热流横向扩散程度,这些数据可用于确定与单个支撑柱相关联的热流比例,这时的测量块的中心线与支撑柱轴线距离不远,而且支撑柱与测量块的圆形区域相交。如果要忽略掉流经支撑柱热流的影响,从这些结果可以计算出与测量块相交的支撑柱需要远离测量块的距离。对于正常尺寸的支撑柱阵列(支撑柱间距约20~30 mm),如果测量块位于支撑柱阵列单元的中心位置,那么支撑柱对热流的测量仍然有一个很小但明显的贡献。为了使得测量忽略掉支撑柱热流的影响,悉尼大学在真空玻璃研究项目中采用了一些缺少一个支撑柱或无支撑柱区域直径约50 mm的真空玻璃样品,用这些样品做的测量为通过真空玻璃的辐射和气体热传递提供了非常准确的信息。 流经单个支撑柱的热流扩散建模分析结果也可以用来计算当测量块直接位于支撑柱上方时此热流在测量值中所占比例,通过减少辐射和气体传导引起的已知热流,可以确定流经支撑柱本身的热流速率,这些测量都已经被用来验证流经单个支撑柱的热流理论模型。在某些情况下在真空玻璃中使用了粗糙表面的支撑柱,这时的测量也可以用来提供关于这些支撑柱热流减少的定量信息,因为支撑柱表面和玻璃板之间的热接触不完整。 综上所述,澳大利亚Collins团队详细研究了在采用保护热板法仪器测量流经真空玻璃热流量,并对小面积保护热板法仪器操作和标定有影响的几个小效应进行了深入研究,由此证明小面积保护热板法装置是一个非常强大的工具来验证通过真空玻璃的热辐射和通过支撑柱热传导的理论模型,该仪器也被用来证明这两个热流过程之间的相互作用足够小而可以被忽略。同时,这种小面积尺寸的保护热板法也可以用于研究真空玻璃内部真空的稳定性及对真空玻璃寿命周期内的性能进行评价。 然而,因为这种小面积保护热板法通常需要大约1小时来进行一次完整测量,此外由于有必要保持热保护装置的温度在一个非常精确的恒定值,并且在室温或室温附近只能使用这个装置来测量样品,这种保护热板法测试仪器的使用实际上仅限于实验室研究用,无法应用于真空玻璃的在线监测。[color=#cc0000]3.1.2. 北京新立基公司研究工作[/color] 北京新立基公司的唐健正老师曾是澳大利亚Collins团队的成员之一,回国后针对真空玻璃的传热系数测试开展了大量研究,基于上述小面积尺寸保护热板法原理研制了精密热导仪和快速热导仪两种热导仪,建立了建材行业“真空玻璃”的传热系数测试标准方法。其中精密热导仪的量程为0~10 Wm-2K-1,标称精度高达0.1 Wm-2K-1,测量时间为30 min,体积小,重量小于15 Kg。快速热导仪量程为0~25 Wm-2K-1,标称精度为0.2 Wm-2K-1,测量时间小于5 min,同样具有体积小、重量轻的特点。与精密热导仪不同的是,其测量精度略低,但测量时间短。 精密热导仪的特点是精度高,能够鉴别出真空度是否达标,但必须有足够的热测量时间。而快速热导测量仪则放宽了精度要求,把测量时间缩短6 倍。这样,在线监测时,后者先把关,把真空度肯定达标的和肯定不达标的筛选出来,把剩下少量的难以判断的由前者作精密判断,这样构成在线热导检测线。 通过对北京新立基公司相关报道的研究,北京新立基公司所研制的热导仪还存在以下不足: (1)随着科学的发展,真空玻璃的传热系数已经小到0.3 Wm-2K-1,如此小的数值就需要精度更高的热导仪才能够测量,这就需要进一步提高热导仪的精度。 (2)热导仪能够测量真空玻璃整体的热导,是支撑物热导、辐射热导和内部真空度共同作用的结果,目前新立基公司研制的热导仪还不能够将这三种热导分别测量。如果能够分别测量出支撑物热导、辐射热导和内部真空度,就可以有目的的改善支撑物材质、改善玻璃表面辐射率或者提高内部真空度。 [color=#cc0000]3.2. 非稳态法3.2.1. 瞬态法[/color] 为了提高真空玻璃在线测试能力,澳大利亚Collins团队提出了一种瞬态测试方法,其测量原理如图3-3所示。温度传感器附着在真空玻璃样品的一侧,通常位于支撑柱阵列单元的中心位置,在真空玻璃板的另一侧放置一个与玻璃板热接触良好内部镶有电加热器和温度传感器的小面积(约10 cm2)导热板。[align=center] [img=,600,287]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124330000_7261_3384_3.png!w600x287.jpg[/img][/align][align=center][color=#cc0000]图3-3[/color][color=#cc0000] 真空玻璃瞬态法测试原理图[/color][/align] 整个样品的初始温度恒定和均匀,并且记录几分钟温度传感器的输出以证实温度确实恒定。然后将已知数量的电功率加载到电加热器上,使电加热器快速升温,升温幅度通常为20~30℃。玻璃板的内表面产生的温差导致热量流经真空夹层,与电加热器相对的样品一侧温度会缓慢增加,该温度的初始速率测量结合真空玻璃热容(由玻璃厚度、比热和密度的乘积给出)和台阶温度升高的幅度,可以得出温度传感器周围区域样品的传热系数。 同样采用了两种真空玻璃进行了瞬态法测量,一种是由两片没有内部涂层的浮法玻璃板(float glass)制成(FL-FL),另一种是由一片内表面热分解沉积低发射率涂层玻璃片和一个未涂覆的浮法玻璃片制成(FL-LE),所有玻璃片厚度都为3 mm,图3-4显示了用瞬态技术获得的典型实验数据。[align=center][img=,600,499]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191124513950_3062_3384_3.png!w600x499.jpg[/img] [/align][align=center][color=#cc0000]图3-4[/color][color=#cc0000] 用瞬态技术获得的典型数据[/color][/align] 如果真空玻璃样品冷面上的温度传感器位于支撑柱阵列单元的中心点,则在台阶式升温后的最初几分钟内,几乎所测的温度缓慢变化都是由于真空夹层内的热辐射和气体传导所造成,流经附近支撑柱上的热量需要很长时间才能到达温度传感器,因为它必须沿试样的冷面横向扩散到玻璃片上。这就使得这项技术可以用来测量玻璃的辐射和气体传热系数,并认为热流通过支撑柱的贡献微不足道,即使是标准支撑柱阵列(支撑柱间距约20~30 mm)的真空玻璃也是如此。 瞬态技术也可用于测量高温下真空玻璃样品的传热系数,因此这种技术在真空玻璃长期存储在室温以上时可能导致真空降解的机制研究方面被证明非常有用,该技术已被用来检测真空玻璃在高温老化过程中会释放出大量气体,而当冷却到室温后玻璃表面会发生气体再吸收现象。质谱仪实验表明,在这样的条件下释放出来的气体几乎完全是水蒸气。已证明在制造过程的抽真空阶段充分烘烤真空玻璃可以消除这些真空玻璃数十年使用寿命中的任何显著热释气现象。 瞬态技术不是真空玻璃传热系数的绝对测量方法,所获得的数据必须与样品冷面上的玻璃片热容以及步进温度的增加幅度相结合才能给出热流流经真空玻璃的传热系数。理想情况下,在这个计算中应使用随时间变化的有限元模型分析过程,因为导热板热量需要大量时间通过玻璃板热面来扩散,这就会使得冷面温度的上升初期具有相应的延迟。当采用有限元分析瞬态法时,测量玻璃板冷面温度随时间变化给出了与其他方法吻合很好的传热系数数据。这样,通过测量已知传热系数的相同几何尺寸样品来对瞬态法进行校准就非常简单,即在瞬态法测试过程中,在经历指定时间后(如2分钟)可将被测玻璃冷面温度的总变化与已知样品中获得的相似数据进行比较。 用瞬态法所检测得到的数据具有很好的重复性,此外该技术易于使用、可自动化和可校准,实际测量时间相当短——一般为几分钟。因此,该方法非常适合于真空玻璃批生产中的质量保证测试。瞬态法的缺点是样品温度在测量开始之前必须非常稳定,因此有必要在测量前将样品储存在稳定环境条件下一段时间。[color=#cc0000]3.2.2. 动态冷却法[/color] 为了进一步提高真空玻璃在线测试能力,澳大利亚Collins团队还提出了一种高温动态冷却测试方法,其测量原理如图3-5所示。在冷却法中被测真空玻璃整个样品最初处于高温,然后在被测样品的一侧放置并接触第二块已知传热系数的真空玻璃标准样品形成绝热边界条件,这个标准样品的起始温度可能是高温或是室温,将直径约0.1 mm的细丝热电偶放置在这两个真空玻璃样品的接触面之间。该组件中两块真空玻璃接触面之间的小间隙确保它们有良好的热接触,从而使她们的温度相当迅速的趋于均衡,室温空气在此组件中的两块真空玻璃外表面吹过。与这种强制对流所对应的传热系数相当高,因此两个样品的外玻璃片温度很快就会相对接近室温。从真空玻璃内部玻璃板流出的热量会以两个独立的流动方向分别流经两个样品的绝热真空空间到外部玻璃片,然后再经外部玻璃片流到空气中,因此内玻璃片温度会随着被试样品和标准样品的传热系数以相应速度而缓慢降低。[align=center][img=,600,322]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191125181660_9521_3384_3.png!w600x322.jpg[/img] [/align][align=center][color=#cc0000]图3-5[/color][color=#cc0000] 瞬态法测试中所采用的仪器示意图[/color][/align] 由于标准样品的传热系数已知,因此可以计算被测样品的传热系数。对于由3 mm厚玻璃片制成真空玻璃被测样品和标准样品,图3-6显示了用冷却法获得的真空玻璃中心处的测试结果。对于这些数据,两个样品在测量开始之前都处于高温。外玻璃片温度的初始降低速率可用于确定与这些玻璃板材外表面传热有关的传热系数与流动空气的关系,接触内玻璃板的热量损失率受此外部传热系数的影响,但相对于样品本身的玻璃-玻璃传热系数这个影响程度较小,在较长时间内两个外玻璃板之间的温差与流经各样品的不同热流速率有关。[align=center][img=,600,526]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126140880_4604_3384_3.png!w600x526.jpg[/img] [/align][align=center][color=#cc0000]图3-6[/color][color=#cc0000] 动态冷却法测试得到的典型数据[/color][/align] 与瞬态法一样,冷却法不是测量通过真空玻璃热流值的绝对方法,然而该方法的校准可以使用瞬态法中所用到的任何一种技术——通过依赖时间的有限元模型分析,或者更简单地通过对具有已知传热系数的相同几何尺寸标准样品进行测量。由于两块真空玻璃组件中与内部玻璃板指数冷却形式相关的时间常数可能相当大,通常约为60分钟,这种相对缓慢的冷却速率可确保通过支撑柱的热流足够来沿着玻璃板进行扩散,而内部玻璃板的温度横向变化则是相当小。因此,冷却法能形成真空玻璃总传热系数(辐射+气体+支撑柱)的测量。 由此可见,冷却法可能会用于真空玻璃生产线上,特别是刚刚完成了抽真空过程,在那里它们经受高温下的脱气处理,此时的真空玻璃制品通常处于高温状态。与采用其他在线测试技术相比,将冷却法监测集成到真空玻璃生产线的末端可节省大量的时间和劳动力。[color=#cc0000]3.3. 国内外相关在线测试仪器3.3.1. 德国耐驰公司便携式复合玻璃 Ug 值测量仪[/color] 德国耐驰公司基于改进的动态热源法开发了一种瞬态在线测试技术和相应的便携式复合玻璃传热系数测试仪Uglass,如图3-7所示。此测试仪器通过两个带加热功能的温度传感器,根据一维传热差分模型和软件来测量真空玻璃的传热系数。这种测试技术是一种相对比较法,配备了中空玻璃标准样品。由于测试技术的探测器相对较小,可用于实验室检测,也可用于现场评估,对于普通真空玻璃整个测试过程约为10~15分钟,每次测量之间的时间间隔约 10 分钟。 [align=center][img=,600,643]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191126433070_5719_3384_3.jpg!w600x643.jpg[/img][/align][align=center][color=#cc0000]图3-7 耐驰公司便携式复合玻璃传热系数测量仪[/color][/align] 如图3-8所示,测试过程中通过抽气泵将探测器真空吸附在被测玻璃两侧。安装完成后,将其中的一侧探测器加热到高于另一侧探测器温度7~8℃范围,并同时检测另一侧探测器温度的变化ΔT。[align=center][img=,600,263]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127021708_286_3384_3.jpg!w600x263.jpg[/img] [/align][align=center][color=#cc0000]图3-8[/color][color=#cc0000] 传热系测量仪安装布置和测量示意图[/color][/align] 通过分析短暂的不同温度变化过程,可测定真空玻璃的传热系数,其中传热系数测量范围为0.5~40 Wm-2K-1,操作温度范围为-10~60℃,探测器加热温度范围为室温~150℃。 采用Uglass测量仪Kim等人在常温常压下对内部不同间隔的中空玻璃进行了测量,如图3-9所示,分别得到了中空玻璃内部和外部的传热系数随间距的变化结果。[align=center][img=,600,357]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127235359_4034_3384_3.jpg!w600x357.jpg[/img] [/align][align=center][color=#cc0000]图3-9 中空玻璃内部和外部传热系数随中空间距的变化测量结果[/color][/align] 从图3-9所示的测试结果可以看出,随着间隔宽度的增加,内部和外部的双层中空玻璃板的传热系数呈线性减小而无视真空玻璃的内部还是外部。由此可见,双层中空玻璃的传热系数不受周围环境的影响,也就是说,没有边框的双层中空玻璃绝热性能,即使在不同环境下也可以解释为具有相同的绝热性能。 除了普通中空玻璃之外,Kim等人还对中空玻璃内部表面涂覆Low-E涂层对绝热性能的影响进行了对比测量,测量结果如图3-10所示。[align=center] [img=,600,386]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191127453461_8401_3384_3.jpg!w600x386.jpg[/img][/align][align=center][color=#cc0000]图3-10 带Low-E涂层和无Low-E涂层中空玻璃传热系数随中空间距的变化对比[/color][/align] 从图3-10所示的测试结果可以看出,随着间隔宽度的增加,涂覆了Low-E涂层的中空玻璃传热系数随间距增大而更加快速的减小,随间距减小的斜率为-150.4 ×103 Wm-3K-1,要比无Low-E涂层时随间距减小的斜率-68.8 ×103 Wm-3K-1快了将近2倍多,当中空玻璃内部间距为15 mm左右时,增加Low-E涂层后的传热系数减小了将近一半,由此证明Low-E涂层在中空玻璃和真空玻璃中所起的重要作用。 从耐驰公司的相关报道可以看出,耐驰公式这款传热系数测试仪器整体尺寸偏大,测量覆盖面积将近400×400 mm2,可以满足中空玻璃的传热系数测试。尽管仪器测量精度标称可以达到±0.1 Wm-2K-1,但并没有看到对小于1 Wm-2K-1的真空玻璃传热系数的测试报道,也没有看到对真空绝热材料(VIP)的导热系数测量结果报道。同时十几分钟的测试时间,以及被测样品两侧夹持测试方法根本无法满足真空绝热材料生产过程中的在线质量监测要求。[color=#cc0000]3.3.2. 日本EKO公司导热仪[/color] 为了真正实现真空隔热材料的在线监测,日本EKO公司开发了HC-10快速导热系数测试仪,如图3-11所示。考虑到在线测试,测试仪采用了单端探头这种最佳的探测模式,只需将探测头放在各种被测材料上,可在1分钟内得到导热系数测量结果。[align=center][img=,600,450]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128042740_1715_3384_3.jpg!w600x450.jpg[/img] [/align][align=center][color=#cc0000]图3-11 日本EKO公司HC-10型快速导热系数测试仪[/color][/align] 这种快速导热系数测试仪的测量原理如图3-12所示,首先将探头加热到高于室温的一恒定温度,同时使被测样品处于室温条件下并达到热平衡。然后将探头放置在被测样品表面,如果样品导热系数低,探头上的热量Q将会缓慢的流经样品而散失,相应的探头表面温度快速上升;如果样品导热系数较高,探头上的热量Q将会快速流经样品而散失,相应的探头表面温度缓慢上升。[align=center][color=#cc0000] [img=,600,484]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128201186_3226_3384_3.png!w600x484.jpg[/img][/color][/align][align=center][color=#cc0000]图3-12 HC-10型快速导热系数测试仪基本原理[/color][/align] 由此可见,这种快速导热系数测试仪中探头加热器的热损失大小与样品的导热系数有关,如果使用已知导热系数的标准样品进行校准,则可以实现样品导热系数的自动测量。日本EKO公司开发的HC-10快速导热系数测试仪已用于各种材料的导热系数测量,其中包括真空绝热板(VIP)的导热系数测量,测试仪的主要技术指标为: (1)导热系数测量范围:1~5000 mW/mK (2)测量精度:+/- 5 % (3)样品尺寸:边长150 ~760 mm,厚度5~50 mm (4)测试时间:60秒 专门针对真空绝热板(VIP),基于HC-10快速导热系数测试仪日本EKO公司还开发了多探头形式的在线HC-121 VIP监测仪,如图3-13所示。 HC-121 VIP监测仪主要用于在线监测真空绝热板质量是否合格,即在1分钟内实时检测真空绝热板(VIP)导热系数是否小于规定数值,通过一个主机可以同时连接最多5个探头进行在线监测。[align=center][color=#cc0000] [img=,600,199]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128367430_3462_3384_3.jpg!w600x199.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图3-13 日本EKO公司HC-121 VIP监测仪[/color][/align] 与HC-10快速导热系数测试仪不同,HC-121 VIP监测仪只能进行相对测量,探测头需要用户自己进行单独校准,用户需要根据VIP材料生产的实际特征来进行使用。HC-121 VIP监测仪的技术指标与HC-10快速导热系数测试仪基本相同,只是导热系数测试范围基本只针对真空绝热板材料,为1~15 mW/mK。 有关日本EKO公司开发的这两种在线监测仪器,我们并没有看到实际应用方面的报道和测试数据,更没有看到在真空玻璃上的测试应用。从测试原理上来看,这两种仪器完全适合均质材料的超低导热系数测试,但对于真空隔热材料这类非均质复合结构材料而言,可能存在以下问题: (1)真空绝热板(VIP)表面一般都包裹一层高导热金属保护热,测试过程的初期探头上的热量会通过表面金属膜快速散失,所得到的温度变化曲线并不一定能完全代表真实的低导热材料测试过程中的温度变化。类似的情况也会发生在使用了真空绝热板的冰箱生产线上的在线质量监测,因为冰箱的隔热结构也是金属材料包裹真空绝热板。 (2)同样,对于真空玻璃而言,也是高导热系数玻璃板与真空绝热层的复合结构,玻璃的导热系数接近1 W/mK,也是远大于真空隔热层的导热系数,测试过程中也会发生类似的问题。[color=#cc0000]3.3.3. 内部真空度测试仪器[/color] 真空隔热材料的一种重要特点就是材料内部是真空,因此在线测试技术中实时监测真空度的变化也是一种在线监测技术手段。 从目前的各种真空隔热材料内部真空度检测技术的发展来看,大多数是谐振式真空传感器,即将事先标定好的MEMS结构的LC微型传感器植入真空隔热材料中,通过外部探测仪器对谐振传感器进行外部激励得到谐振频率与内部真空度的关系数据。 内部真空度测试技术的最大优势是可以在几秒钟内实现对真空隔热材料内部真空度的检测,但最大的问题是要将标定好的传感器植入产品中。[b][color=#cc0000]4. 现有技术总结[/color][/b] 目前国内外常用于表征真空型隔热材料的标准方法,如保护热箱法和大面积保护热板法,主要是用来测量通过真空型隔热材料的热流速率,这两种测试技术都提供了有关真空型隔热材料的整体热流过程的信息。然而它们在测试过程中相对较慢,同时无法对真空隔热材料中不同传热机理而引起的热流分量进行单独评估。 为了对真空型隔热材料局部热流进行测量,以及适应工业生产和工程应用的需要,目前国内外提出了几种特别设计的测试方法: (1)小面积保护热板法测试装置提供了非常精确的流经真空玻璃的局部热流测量,该装置可用于验证由于辐射、气体热传导和通过支撑柱热传导而引起的不同热流过程的理论模型,也证明了该小面积保护热板法测试装置在考核真空玻璃内部长时间真空稳定性方面非常有用,同样这种方法也可以应用于真空绝热板的热性能测试和评估。小面积保护热板法是目前测试精度最高的方法,但这种方法是一种被测样品双面探测结构,测试时间最快也要好几分钟,比较适合实验室研究使用,但还是不能很好的满足在线测试需求。 (2)瞬态法提供了一种测量真空绝热材料传热系数和导热系数的快速方法,该方法可通过测量已知传热系数和导热系数的标准样品对测试装置进行标定。该方法快捷、易于使用并具有很高的测量重复性,并可在较高温度条件下对真空玻璃的气释过程研究中的作用非常明显。目前国外相关测试仪器基本都是基于这种方法,可见这种方法得到了基本认可。尽管采用这种方法有德国耐驰公司的中空玻璃双面测试结构的便携式测试仪器,也有日本EKO公司的真空绝热板单面探头结构的便携式测试仪器,但目的都是为了满足真空绝热材料传热系数和导热系数的在线测试需求,而我们认为单面探头结构更适用于在线测试,这将是今后这方面测试仪器的一个发展方向。 (3)冷却法提供了真空玻璃整体传热系数的测量。虽然这种方法在实践中不一定实用,但在将来可能将其集成到真空玻璃生产过程中,与其他方法相比,冷却法的成本和时间可能会有很大节省。[color=#cc0000][b]5. 上海依阳公司在线快速检测技术[/b][/color] 上海依阳实业有限公司基于瞬态法,提出了一种新型快速测试方法——动态热流法。动态热流法与日本EKO公司导热仪的测量原理类似,也是采用单面探头结构形式,但不同于日本EKO公司导热仪是测量加热器表面的温度变化,新型测试方法测量的是比温度变化更灵敏的热流密度变化,如图5-1所示为分别测量正常和非正常真空绝热板时的热流密度随时间变化曲线对比。 在动态热流法测量的初期,单面测量探头处于以恒定温度,探头未接触被测样品(真空玻璃或真空绝热板)之前,热流密度测量值较低。但将探头与被测样品表面接触后,探头上的热量经真空绝热材料表面(玻璃或金属保护膜)而迅速散失,材料表面的高导热材料表面的作用而产生较大的热流密度,即使得测量的初期热流密度测量值迅速升高。[align=center][color=#cc0000] [img=,600,433]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191128571173_5310_3384_3.png!w600x433.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-1 正常和非正常真空绝热材料热流密度随时间变化测量曲线[/color][/align] 随着探头与样品表面接触时间的增大,流经表面材料的热流受到内部绝热层的阻隔,测量的热流密度会逐渐降低,从而反映出绝热层的低导热特性。由此可知,热流密度曲线降低的速率可以作为衡量样品绝热性能的测量指标,即如果被测样品处于正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“正常绝热状态”那样,向较低的热流密度值进行收敛;如果被测样品处于非正常真空绝热状态,热流密度下降变化曲线就如图5-1中的“非正常绝热状态”那样,向较高的热流密度值进行收敛。 通过上述热流密度变化曲线可以看出,这种动态热流法可以很好的解决真空绝热材料表面高导热层对测试所带来的影响,解决了日本EKO公司在线监测仪器所存在的不足,绝热材料表面的高导热层只会使得初期的热流密度升到很大幅度,并不真正影响热流密度下降速率随内部绝热性能的变化。 动态热流法的整个测试时间主要取决于绝热材料表面的材质和厚度而定,对于普通真空绝热板的测试,测试时间一般为10~15秒;对于普通真空玻璃测试,测试时间一般为20~30秒,这样的测试速度已经完全可以满足在线测试需求。 动态热流法测试得到的热流密度并不能直接用来得到被测样品的导热系数,但因为导热系数与热流密度是线性关系,可以通过测量多个已知导热系数的标准样品来建立导热系数与热流密度的校准曲线,如图5-2所示。此校准曲线存储在测试仪器内,由此根据这种关系曲线通过热流密度测量值可以得到相应的导热系数和传热系数。[align=center][color=#cc0000] [img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/05/201805191129342020_253_3384_3.png!w600x363.jpg[/img][/color][/align][color=#cc0000][/color][align=center][color=#cc0000]图5-2 校准测试曲线[/color][/align] 校准用标准样品的制作基于真空绝热材料内部真空度与传热系数和导热系数的关系,标准样品可以是固定厚度的真空绝热材料,通过精确控制材料内部真空度并采用保护热板法或保护热箱法等仪器进行测量,得到标准样品不同真空度下所对应的传热系数和导热系数关系曲线,这样在采用标准样品进行动态热流法探头校准时,只要调节真空度就可以得到不同的传热系数和导热系数。 动态热流法作为一种高灵敏测试方法,可以用来快速的在线检测和判断真空绝热材料是否具有正常范围内的传热系数和导热系数,可以在30秒时间内检查真空绝热材料是否正常工作。另外,由于动态热流法测量装置是小型单面探头结构,实际测量操作时只需将探头与被测绝热材料表面接触,测试完毕后探头脱离绝热材料,通过机械结构很容易实现自动化测试,完全可以应用到真空绝热材料生产流水线上进行自动化实时监测。同时,动态热流法的检测探头非常小巧,可以实现一台主机配备多个探头对多个绝热材料的同时监测,而且还可以实现不同方向和位置上的测量,如探头放置在冰箱的顶部和侧面监测冰箱内部不同部位真空绝热板是否工作正常,监测窗体上已直立安装的真空玻璃是否工作正常。由于标准绝热材料样品由真空度的精确控制来确定,从而保证了动态热流法探头可以非常方便的进行定期校准。[b][color=#cc0000]6. 参考文献[/color][/b](1)Collins R E,Davis C A,Dey C J,et al. Measurement of local heat flow in flat evacuated glazing. International Journal of Heat & Mass Transfer,1993, 36(10):2553-2563.(2)Simko T M, Elmahdy A H, Collins R E. Determination of the overall heat transmission coefficient (U value) of vacuum glazing. Ashrae Transactions, 1999.(3)张金维, 王立国. 真空玻璃在线测量技术// 2013全国玻璃科学技术年会论文集. 2013.(4)唐健正. 真空玻璃传热系数的计算// 2006中国玻璃行业年会暨技术研讨会. 2006.(5)唐健正, 朱亚勇, 卫正纯. 真空玻璃传热系数相关参数的测量// 2007'中国玻璃行业年会暨技术研讨会(6)中华人民共和国建材行业标准,JC/T 1079-2008,真空玻璃(7) Turner G M, Collins R E. Measurement of heat flow through vacuum glazing at elevated temperature. International Journal of Heat & Mass Transfer, 1997, 40(6):1437-1446.(8) Ng N, Collins R E, So L. Thermal conductance measurement on vacuum glazing. International Journal of Heat and Mass Transfer 49 (2006) 4877-4885.(9) Kim I, Frenzl A, Kim T, et al. Determination of Thermal Transmittance of Insulated Double Low-E Glazing Panel Using Portable Uglass, Measuring Technique. International Journal of Thermophysics, 2018, 39(1):19.

  • 【求助】请教:物质的传热系数

    偶现在做一封装料,要求导热性极佳,绝缘性也非常好,所以石墨之类材料是不能用的,打算用金属氧化物,现请教各位,各种金属氧化物的传热系数哪里找?而且材料不能太贵,偶看了好几本传热学,但是里面介绍的东西都一样,排不上用场。偶需要比如氧化铝啊,氧化镁啊,氧化锌啊,氧化铜啊,之类的传热系数,谢谢

无线式墙体传热系数现场检测相关的耗材

  • RAEWatch 射线检测器(室外无线版)
    RAEWatch 射线检测器(室外无线版)探测器由超高灵敏度的碘化铯闪烁晶体及掺杂砣(TI)和能量补偿半导体组成,使仪器具有的快速搜寻和应急响应功能探测器自带直流供电系统多种通讯模式安装方便快捷能与多种系统融合工业放射源安全监控辐射区域监测医院核医学工作场所的监测放射源库区域监测重大活动场所的安全监测检测器 由碘化铯(CsI)闪烁晶体及掺杂砣(TI)和能量补偿半导体两个检测器组成 能量响应 40KeV~3.0MeV剂量率 0.01&mu Sv/hr~100&mu Sv/hr线性误差 15%响应时间 2s本底背景 开机自动检测背景数据或手动校正用户标定 通常情况下,不需要标定报警阈值 报警阀值基于不同环境的背景值而定安全模式 用户可以按照剂量率设置高低限报警工作温度 -20℃~50℃IP等级 IP 65通讯方式 无线数据传输、网络数据传输、RS-485工业总线数据传输位移传感器 被动式红外传感 角度:110° 灵敏度:7° (4℃)震动传感器 可选电源类型 AC220V、DC24V、DC12V等多种供电方式
  • HL191消防产品现场检测箱
    消防产品现场检测类装备HL191消防产品现场检测箱,消防器材判定箱HL191消防产品现场检测箱依据《GA588-2012消防产品现场检查判定规则》研制,用于现场检查消防产品,市场准入检查,产品一致性检查和现场产品性能检测的检查项目,技术要求判定等,为消防产品现场检查判定提供了技术依据。北京朋利驰科技有限公司朋利驰品牌消防检测箱成套系列YW10火灾报警系统功能检测箱自动喷水系统、消火栓系统功系统功能检测AH-S11C/D/E学校消防检查箱VC11C1/D1/E1公安派出所消防监督检查箱VC11F防火涂料检测箱VC12建筑消防设施检测箱VC12J消防工程检测箱JXJ12,HL-601、JXJ12J建筑消防设施检测箱EA12建筑消防设施检测系统VC13A(JKY-III)防火检查与火灾勘查仪器箱VC13B(HJY-III)防火检测仪器箱VC13C(HKY-III)火灾勘查仪器箱VC13D(HKG-III)火灾现场勘查工具箱VC13E(XJY-III)消防工程验收仪器箱VC14机场消防检测仪器箱VC15A、VC15B消防电气检测箱VC15C建筑电气防火检测箱VC16消防产品现场检测箱VC16A消防产品现场检测箱VC17火场侦毒箱VC18系列消防监督技术装备箱VC19F地铁消防检测箱消防电气检测/建筑消防设施检测仪器;火灾自动报警系统检测设备、自动喷水灭火系统喷头安装专用工具、消火栓和防烟排烟系统检查测试设备和质量检验设备。序号产品名称参数数量1点型感烟探测器功能试验器检测杆高度不小于2.5米,加配聚烟罩,内置电源线,连续时间不低于2h12点型感温探测器功能试验器检测杆高度不小于2.5米,内置电源线,连续时间不低于2h13线性光束感烟探测器滤光片减光值分别为0.9db和10.0db各一片14试验气体甲烷的浓度为50%LEL;丙烷的浓度为50%LEL;氢气的浓度为50%LEL;一氧化碳的浓度为500×10-6(体积分数)15数字风速计范围:0m/s-45m/s,精度:±3%,具有LCD背光及数据保持功能16数字照度计测量范围不小于2000lx,准确度:±5%,具有数据保持和读数锁定功能17数字万用表可测量交直流电压、直流电流、电阻、电容18超声波流量计TDS-100H测量管径:0mm-700mm,精度:±1%19电子称最小分辨率:10g;量程不小于30kg110破拆工具可破拆木质和钢质防火门111衡器最小分辨率:0.5kg;量程不小于100kg112塞尺尺寸:1mm113测力计最小分辨率:2N;量程小于100N114测厚仪最小分辨率:1mm;量程:50mm115磁性测厚仪磁涡流式,测量厚度:0mm-15mm116专用燃气喷枪火焰温度≥1350℃;燃气,丁烷,持续使用时间:200min117金属网1
  • RAEWatch 射线检测器(室外无线版) RAEWatch RAEWatch
    RAEWatch 射线检测器(室外无线版)探测器由超高灵敏度的碘化铯闪烁晶体及掺杂砣(TI)和能量补偿半导体组成,使仪器具有的快速搜寻和应急响应功能探测器自带直流供电系统多种通讯模式安装方便快捷能与多种系统融合工业放射源安全监控辐射区域监测医院核医学工作场所的监测放射源库区域监测重大活动场所的安全监测检测器 由碘化铯(CsI)闪烁晶体及掺杂砣(TI)和能量补偿半导体两个检测器组成 能量响应 40KeV~3.0MeV剂量率 0.01&mu Sv/hr~100&mu Sv/hr线性误差 15%响应时间 2s本底背景 开机自动检测背景数据或手动校正用户标定 通常情况下,不需要标定报警阈值 报警阀值基于不同环境的背景值而定安全模式 用户可以按照剂量率设置高低限报警工作温度 -20℃~50℃IP等级 IP 65通讯方式 无线数据传输、网络数据传输、RS-485工业总线数据传输位移传感器 被动式红外传感 角度:110° 灵敏度:7° (4℃)震动传感器 可选电源类型 AC220V、DC24V、DC12V等多种供电方式

无线式墙体传热系数现场检测相关的资料

无线式墙体传热系数现场检测相关的资讯

  • 传热传质过程之传热篇--传热系数Kv的重要性,影响因素及检测方法
    冻干过程中决定产品*质量的一个很关键的因素是产品温度,产品温度必须维持在关键温度以下避免结构塌陷,产品塌陷会影响到:产品外观、残余水分,复水时间,产品稳定性等;产品温度可以用来指示冻干终点,包括一次干燥和二次干燥的终点,当冻干过程参数发生偏移时,产品温度的测量用于证明产品质量,避免没必要的报废,然而在冻干过程中,产品温度不能被直接控制,只能通过层板温度和腔体压力来进行调整,受整个传热传质过程中层板能量的输入(Kv),冰升华界面的冷却(dm/dt)以及干燥层阻力(Rp)的影响。如下图,Kv值是影响传热过程的一个重要因素,Rp干燥层升华阻力是影响传质过程的一个重要因素,共同决定*的升华速率及产品的温度。 今天这里主要讨论传热系数Kv及其检测方法和主要影响因素,干燥层升华阻力Rp的影响因素和检测方法将会在后续的文章中跟大家分享和讨论。在整个冻干过程中,层板(为主)及周围环境提供热量,样品中的冰吸收热量后进行升华,从而将吸收的热量带走,进行一个理想状态下的稳态的传热传质过程。如果Kv值高,样品接受的热量超出了升华需要带走的热量,并且超过了样品的关键温度,样品就会具有融化及塌陷的风险,对*的样品质量造成影响。因此了解清楚冻干过程中的Kv值,对于整个冻干工艺设计及质量控制具有十分重要的意义。冻干过程的Kv值及来源从传热的方程式: 可以导出: 冻干过程中的传热有几种方式:直接热传导(Kc),气体传导(Kg)和热辐射(Kr),因此这里的Kv是这三种方式的总和,即Kv = Kc + Kg + Kr直接热传导(direct conduction)Kc&bull 不受压力影响,跟容器的形状、大小、材质及有关&bull 通过直接接触进行传热&bull 通过搁板和相邻西林瓶传热 气体传导(gas conduction)Kg&bull 受压力影响&bull Pc ↑ → 通过气体传导的热 ↑热辐射 (radiation)Kr&bull 不受压力影响,跟发射率e有关:取决于材料表面特质&bull 能量通过电磁波传播&bull 在不同温度的表面间&bull 很大程度上由冻干机的构造决定传热系数Kv主要取决于西林瓶的种类,大小及腔体的压力,可以用以下方程式表示: KC 是直接传热和热辐射传热系数的总和 是层板到西林瓶底部之间的气体传热系数P是腔体压力KD 是层板和西林瓶底部之间的平均距离与模制式西林瓶相比,管制式西林瓶具有较大的KC值以及较大的气体传热系数。比较有代表性的KC和KD值见下图(Pikal et al.) Av是西林瓶的外横截面积Ap是西林瓶的内横截面积KC的单位跟Kv相同KD的单位是Torr-1Kv值测定方法Kv值受各种因素的影响,那么如何测定Kv值呢? 根据传热传质方程式: 可得到 从Kv的方程式可以看出,只要获得dm/dt以及产品温度Tp就可以计算出Kv值。目前dm/dt 可通过重量法,MTM,TDLAS等方法获得;Tp可通过热电偶产品温度探头,MTM及TDLAS的方法获得,因此Kv值的测定方法目前主要有重量法,MTM方法,TDLAS方法等。重量方法(样品可以用水)具体方法:√ 将水灌装入西林瓶中√ 选取有代表性位置的西林瓶,称量每个西林瓶的重量并记录√ 运行冻干过程(在稳态过程持续几小时),设定层板温度Ts和腔体真空度Pc,用产品温度探头检测西林瓶底部的温度Tb√ 再对每个西林瓶进行称重,计算质量损失dm/dt√ 根据上述数据计算不同位置西林瓶的Kv值√ 计算Kv的平均值 重量方法可行但是比较繁琐,会花费很多的时间,一次实验只能得到一个压力值下的数据,可能会有人为因素带来的误差,一般检测的是单个样品的Kv值。MTM 方法(PAT工具)MTM(Manometric temperature measurement)技术是通过关闭产品腔和冷阱腔之间的隔离阀,通过压力升数据以及复杂的回归方程式,通过软件自动计算可以直接获得我们所需的Kv值。MTM方法可获得升华界面的产品温度Tp,更为准确。MTM方法检测的是批量样品的平均值。具体方法在此就不详细赘述,如需具体了解可点击填写表单咨询。 TDLAS方法(PAT工具)TDLAS (Tunable Diode Laser Absorption Spectroscopy)可调谐激光吸收光谱技术,在产品腔和冷阱腔的通道中安装相关的传感器对通道内水蒸气的浓度和流速进行直接监控,软件可得到实时的升华速率dm/dt数据,根据公式: 可以得到Kv值,并且可以通过一次实验得到不同压力条件下的Kv值,可用于不同规模的冻干机。TDLAS检测是批量样品的平均值,具体方法在此也不再详细赘述,如需具体了解可点击填写表单咨询。不同条件对Kv值的影响Kv 值会随着容器种类,容器大小,容器材质,冻干腔体形状,层板材质,冻干机差异,板层间距,环境条件等有所不同,同时也会随着冻干条件的改变而改变,这里着重分享几个重要的工艺条件对Kv值的影响。腔体真空度对Kv值的影响腔体中气体分子的热传导是Kv值的一部分来源,气体分子数越多,即腔体的真空数值越大,在一定程度上会增加Kv值,Pikal等人研究了3种不同类型的西林瓶,腔体压力和传热系数Kv值之间的关系,如下图,随着腔体压力的增加,Kv值呈非线性增加。(Pikal, M. J., M. L. Roy, and Saroj Shah. "Mass and heat transfer in vial freeze‐drying of pharmaceuticals: Role of the vial."Journal of pharmaceutical sciences 73.9 (1984): 1224‐1237. 层板温度和腔体压力对Kv值的影响Kuu,Wei Y等人研究了不同的层板温度,不同的真空度对Kv值的影响,实验中采用TDLAS快速检测样品的升华速率dm/dt。(Kuu, Wei Y., Steven L. Nail, and Gregory Sacha. "Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step‐changes in pressure set‐point during freeze‐drying." Journal of pharmaceutical sciences 98.3 (2009): 1136‐1154.)结果表明:腔体压力是影响Kv值的主要因素,层板温度对Kv值的影响较小,在低温条件下(-35℃到+5℃),中心样品的Kv <批次平均Kv <边缘样品Kv, 随着边缘Kv值的下降,边缘Kv和中心Kv的差距也逐渐缩小;然而在温度较高时(+20℃),中心Kv>边缘Kv。控制成核对Kv值的影响有实验表明当控制成核时,可以明显降低边缘样品的Kv值,并且当层板温度较高或较低时,能明显缩小边缘Kv和中心Kv的差距,使得整批样品的Kv值更均一。另外成核控制也能够时样品内部的结构更均一,孔径较大,缩短冻干时间的同时,使得批次间样品的质量更均一。总结传热系数Kv值在冻干过程中是决定产品温度的一个关键因素,对于前期的冻干工艺设计,优化以及*的商业放大化具有重要的作用,因此采用合理的方法能够快速检测和掌控Kv值并了解其影响因素,能够确保*产品的质量,降低报废率,*限度地节约成本。
  • 掌握传热奥秘:综合传热实验装置助力化工专业学子揭开实践之谜
    综合传热实验装置是化工类专业必备的实验设备之一。本文将详细介绍这款实验装置的产品特点,并探讨其在实习实践教学中的实际应用及成果。通过综合传热实验装置的使用,化工专业学子能够更加全面地掌握实用技能,为未来的就业和职业发展打下坚实基础。 一、综合传热实验装置的产品特点 综合传热实验装置采用套管换热器设计,其中内套管、光滑管和螺纹管均采用紫铜材质。装置由列管换热器、旋涡气泵、蒸汽发生器、流量计、冷却器、安全水封和电控系统组成。该装置具备以下特点: 1. 多功能设计:综合传热实验装置可通过测定管外蒸气冷凝给热系数αo与总传热系数Ko,与管内给热系数αi比较,以掌握不同传热模式的实验方法。此外,还能验证圆形直管内强化对流给热的经验关联式,并确定关联式Nu=ARemPr0.4中常数A和m的值。装置还能观察不同换热管管外蒸气冷凝状况,以区别滴状冷凝和膜状冷凝。 2. 实用的知识点教学:通过综合传热实验装置,学生可以掌握对流传热系数αi的测定方法,并加深对其理论和影响因素的理解。装置还可用于线性回归分析方法的应用,确定传热关联式Nu=ARemPr0.4中常数A和m的值。此外,通过对螺纹管和光滑管的数据对比,学生可以加深对强化传热基本理论的理解。学生还能了解列管换热器的结构,并学习测定列管换热器传热系数和平均推动力的方法。 3. 先进的技术支持:综合传热实验装置采用欧标铝型材框架,具有耐用性和稳定性。流量计壳体和安全水封采用透明可视设计,让实验现象更加直观。装置还配套智能学习系统,通过预习视频、3D仿真和在线考评测试,培养学生的自主学习意识,激发学生的学习兴趣,并减轻教师的教学压力。此外,综合传热实验装置提供6年质保,解决用户的后顾之忧。 二、综合传热实验装置在实习实践教学中的实际应用及成果 1. 提升实验操作能力:综合传热实验装置的多功能设计使学生能够在不同实验模块中进行实践操作,掌握各种传热实验方法。通过反复的实验操作,学生可以熟练掌握实验技巧,并增加实验操作的自信心。 2. 培养团队合作意识:综合传热实验装置支持多组同时进行实验,每组实验都需要学生之间的紧密合作。在实验过程中,学生需要共同商讨实验方案,分工合作进行实验操作,并通过团队合作解决实验中的问题。这样的实践过程可以培养学生的团队合作意识和团队协作能力。 3. 加强实验数据分析能力:综合传热实验装置配备先进的数据采集与分析系统,学生可以通过软件查看实验结果,并进行数据处理与分析。学生需要对实验数据进行合理的处理与解读,从而提高实验数据分析能力,为后续的实验研究打下坚实基础。 4. 提升实用技能:综合传热实验装置的模块化设计使学生可以根据自身需求选择不同的实验模块进行学习。学生可以根据自身专业方向选择相应的实验模块,提升自己在该领域的实用技能,为将来的就业和职业发展打下基础。 总结:综合传热实验装置是化工专业不可或缺的实验设备,通过它的应用与实践,化工专业学子能够更好地掌握实践技能,为将来的职业发展奠定坚实的基础。该装置的先进性和多功能性使得学生能够全面了解传热原理和实验方法,并提高实验操作能力、团队合作意识、实验数据分析能力以及实用技能。综合传热实验装置的应用将助力化工专业学子在职场中脱颖而出。
  • 工程热物理所在分布式阵列射流冲击结合微结构表面强化沸腾传热技术研究方面取得进展
    作者:李勋锋 程子阳 来源:传热传质研究中心随着电子芯片朝着高性能化和微小型化的快速发展,其热流密度不断增加,部分高性能芯片的热流密度已超过500W/cm2,传统的风冷、液冷以及被动式冷却技术已经不能满足要求,热失效成为电子设备失效的主要形式;发展先进高效散热技术是解决芯片热失效的有效对策。射流冲击结合微结构表面强化沸腾传热技术作为一种新型主动散热技术,具有结构紧凑、传热系数高、有效消除局部热点等优点,可作为解决上述问题的有效措施。分布式阵列射流结构由于射流入口与流体排出口间隔排布(如图1所示),不存在传统射流冲击的出口横流干扰,具有系统压降小,汽液流体易排出等优点。传热传质研究中心以分布式射流冲击强化沸腾传热技术为研究对象,建立相关试验测试平台,研究了微肋柱阵列表面、多孔丝网结构表面以及Cu-Al2O3多孔沉积表面强化射流冲击沸腾传热特性,获得了不同微结构表面对应的传热系数变化规律(如图2所示,为HFE-7100电子氟化液工质测试结果),结合可视化观测和表面微结构形貌分析揭示了微结构表面强化射流沸腾传热机制,结果表明多孔丝网结构表面具有较好的强化射流冲击沸腾传热特性,其传热系数与光滑表面的传热系数相比可提高50%以上。采用水作为冷却工质,且加热壁面温度控制在85℃以下时,试验测试结果表明,分布式阵列射流冲击结合微结构表面强化沸腾传热技术的冷却能力可达到800W/cm2以上,且具有较小的泵功输入,对应的单位泵功冷却能力大于16kW(热量)/W(泵功),该先进高效主动冷却技术的研发可为高性能芯片技术的快速发展提供有效热管理手段。基于以上研究已申请1项发明专利。图1 分布式阵列射流冲击进出口分布图2 不同微结构表面传热系数分布特性

无线式墙体传热系数现场检测相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制