差示扫描量热仪的工作原理

仪器信息网差示扫描量热仪的工作原理专题为您提供2024年最新差示扫描量热仪的工作原理价格报价、厂家品牌的相关信息, 包括差示扫描量热仪的工作原理参数、型号等,不管是国产,还是进口品牌的差示扫描量热仪的工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合差示扫描量热仪的工作原理相关的耗材配件、试剂标物,还有差示扫描量热仪的工作原理相关的最新资讯、资料,以及差示扫描量热仪的工作原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

差示扫描量热仪的工作原理相关的仪器

  • 到梅特勒托利多公司官网详细了解 Flash DSC 2+闪速差示扫描量热仪Flash DSC 2+ 是完全创新型的超高速扫描量热仪(中文名称为闪速DSC),是对传统 DSC 的完美补充,是目前世界上扫描速率最快的商品化DSC扫描量热仪,升温速率达到2,400,000K/min,降温速率达到240,000K/min。该仪器能分析之前无法测量的结构重组过程。极快的降温速率可制备明确定义的结构性能的材料,例如在注塑过程中快速冷却时出现的结构;极快的升温速率可缩短测量时间从而防止结构改变。Flash DSC扫描量热仪也是研究结晶过程动力学的理想工具,不同的降温速率的应用可影响试样的结晶行为和结构。Flash DSC2+扫描量热仪的心脏是基于MEMS(Micro-Electro-Mechanical Systems微机电系统)技术的芯片传感器(UFS1)。MEMS芯片传感器安置于稳固的有电路连接端口的陶瓷基座上。全量程UFS1传感器有16对热电偶,试样面和参比面各8对。Flash DSC扫描量热仪基于功率补偿测试原理,专利注册的动态功率补偿电路可使超高升降温速率下的测试噪声最小化。传感器的试样和参比面各有热阻加热块,一起生成需要的温度程序。加热块由动态功率补偿控制。热流由排列于样品面和参比面的热电偶测量。 Flash DSC 2+扫描量热仪为快速扫描 DSC 带来了变化。 该仪器可分析以前无法测量的结构重组过程。 Flash DSC 2+ 扫描量热仪是对传统 DSC 的完美补充。 现在,升温速率范围已超过 7 个数量级。它的升温与降温速率极高,为研究热物理转变(如聚合物的结晶与结构重组)和化学过程提供全新的视角。超高降温速率 &mdash 可以制备特定结构的的材料超高升温速率 缩短测量时间、抑制重排过程温度范围宽 可在 -95 至 1000℃ 的范围内测量 扫描量热仪技术参数:温度范围: -95~1000℃升温速率:30~2,400,000℃/min降温速率:6~240,000℃/min最大热流信号: 20mW热流信号噪声: 0. 5&mu W扫描量热仪主要特点:极快的降温速率&ndash 可制备明确定义的结构性能的材料超高的升温速率&ndash 缩短测量时间、防止结构改变极速响应的传感器&ndash 可研究极快反应或结晶过程的动力学超高灵敏度&ndash 可使用低升温速率,测量范围与常规DSC交迭温度范围宽&ndash &ndash 95至450 ° C友好的人体工程学设计和功能&ndash 试样制备快速、容易扫描量热仪应用领域:聚合物等物质的结构形成过程的详细分析、测量快速结晶过程、测定快速反应的反应动力学、研究接近生产条件下的添加剂机理等。扫描量热仪主要型号:Flash DSC 2+到梅特勒托利多公司官网详细了解 Flash DSC 2+闪速差示扫描量热仪查看更多信息 咨询电话:4008-878-788
    留言咨询
  • 1、仪器简介差示扫描量热法(DSC)这项技术一直被广泛应用。差示扫描量热仪既是一种例行的质量测试工具,也是一个研究工具。测量的是与材料内部热转变相关的温度、热流的关系。我公司的仪器为热流型差示扫描量热仪,具有重复性好、准确度高的特点,特别适合用于比热的精确测量。该设备易于校准,使用难度低,快速可靠,应用范围非常广,特别是在材料的研发、性能检测与质量控制上。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。我公司有多种类型差示扫描量热仪,客户根据实验参数以及实验需求选择不同的型号。差示扫描量热仪应用范围有: 高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度等。不同型号的仪器,测试不同的指标。将试样和参比物分别放入坩埚,置于炉中进行程序加热,改变试样和参比物的温度。若参比物和试样的热容相同,试样又无热效应时,则二者的温差近乎为“零”,此时得到一条平滑的曲线。随着温度的增加,试样产生了热效应,而参比物未产生热效应,二者之间就产生了温差,在DSC曲线中表现为峰,温差越大,峰也越大,温差变化次数越多,峰的数目也越多。峰顶向上的峰称为放热峰,峰顶向下的峰称为吸热峰。下图为典型的DSC曲线,图中表现出四种类型的转变:Ⅰ为二级转变,是水平基线的改变Ⅱ为吸热峰,是由试样的熔融或熔化转变引起的Ⅲ为吸热峰,是由试样的分解或裂解反应引起的Ⅳ为放热峰,这是试样结晶相变的结果 2、仪器原理物质在物理变化和化学变化过程中往往会伴随着热效应,放热和吸热现象反映了物质热焓的变化。差示扫描量热仪就是测定在同一受热条件下,测量试样与参比物之间温差对温度或时间的函数关系。差示扫描量热法,是在程序控制温度的情况下,测量输出物质与参比物的功率差与温度关系的一种技术。我公司仪器为热流型差示扫描量热仪,纵坐标是试样与参比物的热流差,单位为mw。横坐标是时间(t)或者温度(T),自左向右为增长(不符合此规定应注明)。试样与参比物放入坩埚后,按一定的速率升温,如果参比物和试样热容大致相同,就能得到理想的扫描量热分析图。 图中T是由插在参比物上的热电偶所反映的温度曲线。AH线反应试样与参比物间的温差曲线。如果试样无热效应发生,那么试样与参比物间△T=0,则出现如曲线上AB、DE、GH那样平滑的基线。当有热效应发生而使试样的温度低于参比物,则出现如BCD顶峰向下的吸热峰。反之,则出现顶峰向上的EFG放热峰。图中峰的数目多少、位置、峰面积、方向、高度、宽度、对称性反映了试样在所测温度范围内所发生的物理变化和化学变化的次数、发生转变的温度范围、热效应的大小和正负。峰的高度、宽度、对称性除与测试条件有关外还与样品变化过程中的动学因素有关,所测得的结果比理想曲线复杂得多。3、仪器特点3.1 全新的炉体结构,更好的解析度和分辨率以及基线稳定性;3.2 仪器下位机数据实时传输,界面友好,操作简便。DSCDSC-214DSC-204DSC-404DSC-214HDSC-404HDSC量程0~±600mW温度范围RT~600℃-40℃~-600℃-150℃~-600℃RT~600℃(带降温扫描)-150℃~600℃(带降温扫描)升温速率0.1~100℃/min温度精度0.001℃温度波动±0.01℃温度重复性±0.1℃DSC精确度0.001mWDSC解析度0.01uW工作电源AC220V/50Hz或定制控温方式升温、恒温、降温(全程序自动控制)程序控制可实现六段升温恒温控制,特殊参数可定制曲线扫描升温扫描、降温扫描气氛控制两路自动切换(仪器自动切换)气体流量0-300mL/min(可定制其它量程)气体压力≤0.55MPa显示方式24bit色7寸LCD触摸屏显示数据接口标准USB接口参数标准配有标准物质(锡),用户可自行矫正温度和热焓软 件带有温度多点校正功能备 注所有技术指标可根据用户需求调整4、仪器界面4.1“初始状态”键,用来查看环境温度、样品温度等信息。4.2“参数设置”键,用来设置实验参数,一般在软件上设置。4.3 “设备信息”键,显示设备信息。管理员通道内部人员校准温度用的。4.4“开始运行”键,在电脑软件上操作开始后,显示当前数据信息。
    留言咨询
  • 品牌:久滨型号:JB-DSC-800名称:差示扫描量热仪一、产品概述:  差示扫描量热仪应用范围: 高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度等。注:氧化诱导期热稳定性实验适用于国标GB/T17391-1998、GB/T19466-2009等。二、技术特点:1、工业级别的宽屏触摸结构,显示信息丰富,包括设定温度,样品温度,氧气流量,氮气流量,差热信号,各种开关状态。2、USB通讯接口,通用性强,信号可靠不中断,支持自恢复连接功能。3、自动切换两路气氛流量,切换速度快,稳定时间短。同时增加一路保护气体输入。4、全新陶瓷炉体结构,基线更好,精度更高。加热采用间接传导方式,均匀性及稳定性高,减少脉冲辐射,优于传统的加热模式。5、双温度探头,保证样品温度测量的高度重复性。6、数字式气体质量流量计,精què控制吹扫气体流量,数据直接记录在数据库中。7、标配标准样品,方便客户校正温度系数。8、仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便9、软件自适应各分辨率电脑屏幕;支持笔记本,台式机,支持WIN2000、XP、WIN7、WIN8、WIN10等操作系统。三、技术参数:1、DSC量程  0~±600mW自动切换2、温度范围  常用工作温度:室温~1050℃升温速率:0.1~100℃/min  温度重复性:±0.1℃温度波动:±0.01℃  温度分辨率:0.01℃  DSC精度:0.01mW  DSC灵敏度:0.001mW  控温方式:升温、恒温、降温(PID全自动程序控制)  曲线扫描:升温扫描&降温扫描3、气氛  气体:氮气、氧气(仪器自动切换)  气体流量:0~200ml/min(可定制其他量程)  气体压力:≤0.5Mpa  气氛控制:数字式气体质量流量计4、仪器正常工作条件  室温:20~25℃  相对湿度:55~75%  电源:220V、50HZ5、参数标准:配有标准校准物质(锡),带一键校准功能,用户可自行对温度进行校准和热焓6、输出方式:计算机和打印机7、显示方式:24bit色,7寸大屏幕液晶显示  放置仪器的工作台应坚固可靠,周围不得有影响仪器精度和寿命的强震动、强电、强磁场干扰和腐蚀性气体的存在。
    留言咨询

差示扫描量热仪的工作原理相关的方案

差示扫描量热仪的工作原理相关的论坛

  • dsc差示扫描量热仪测试原理和优势

    dsc差示扫描量热仪测试原理和优势

    你们有[b]dsc差示扫描量热仪[/b]吗?dsc测什么?这些问题常常被客户问起,作为dsc差示扫描量热仪的生产厂家,针对客户的常见问题,来详细了解一下。  dsc差示扫描量热仪测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。  dsc差示扫描量热仪选择一种对热稳定的物质作为参比物,将其与样品一起置于DSC可按设定速率升温的电炉中,分别记录参比物的温度以及样品与参比物间的温度差△T,以温差△T对温度T作图就可以得到一条差热分析曲线,这种热分析曲线称为差热谱图,从差热谱图中可分析出试样的比热容和玻璃化转变温度Tg值。[align=center][img=,690,463]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291358573976_8892_3513183_3.jpg!w690x463.jpg[/img][/align]  dsc差示扫描量热仪具备哪些优势?以DSC300差示扫描量热仪为例,介绍其具备性能优势。  1、智能控温系统。可通过软件多段温度设置,实现升温、恒温、降温等,操作方便快捷。  2、全新的炉体结构设计,保温性能好,灵敏度高。  3、仪器的灵敏度可达到0.001mW,测量的准确率大大提升。  4、双向控制系统,可通过仪器界面和软件同时操作,提高了工作效率。  5、7寸彩色触摸屏显示,显示的清晰度高,信息齐全。  6、采用进口芯片,采集电路屏蔽抗干扰处理。

  • DSC差示扫描量热仪的基本原理是什么?

    [font=宋体][size=16px]物质在物理变化和化学变化过程中往往会伴随着热效应,放热和吸热现象反映了物质热焓的变化。差示扫描量热仪就是测定在同一受热条件下,测量试样与 参比物之间温差对温度或时间的函数关系。 [/size][/font][align=center][img]https://img63.chem17.com/9/20220513/637880361804243318698.png[/img][/align][font=宋体][size=16px]差示扫描量热法,是在程序控制温度的情况下,测量输出物质与参比物的功率差与温度关系的一种技术。英徕铂差示扫描量热仪为热流型,纵坐标是试样与参比物的热流差,单位为 [/size][/font][font=宋体][size=19px]mw[/size][/font][font=宋体][size=16px]。横坐标是时间(t)或者温度(T),自左向右 为增长(不符合此规定应注明)。 [/size][/font][font=宋体][size=16px]试样与参比物放入坩埚后,按一定的速率升温,如果参比物和试样热容大致相同,就能得到理想的扫描量热分析图。 [/size][/font][font=宋体][size=16px] [img]https://img63.chem17.com/9/20220513/637880361801435300415.png[/img][/size][/font][font=宋体][size=16px]图中 T 是由插在参比物上的热电偶所反映的温度曲线。AH 线反应试样与参比物间的温差曲线。如果试样无热效应发生,那么试样与参比物间△T=0,则出现如曲线上 AB、DE、GH 那样平滑的基线。当有热效应发生而使试样的温度低于参比物,则出现如 BCD [color=red]顶峰[/color]向下的吸热峰。反之,则出现[color=red]顶峰[/color]向上的 EFG 放热峰。 [/size][/font][font=宋体][size=16px]图中峰的数目多少、位置、峰面积、方向、高度、宽度、对称性反映了试样在所测温度范围内所发生的物理变化和化学变化的次数、发生转变的温度范围、热效应的大小和正负。峰的高度、宽度、对称性除与测试条件有关外还与样品变化过程中的动学因素有关,所测得的结果比理想曲线复杂得多。[/size][/font]

差示扫描量热仪的工作原理相关的耗材

  • 薄层色谱扫描仪 配件
    薄层成像扫描仪 薄层色谱扫描仪 型号:HAD-2002薄层成像扫描仪是为了满足薄层色谱分析需要而设计的便携式新产品,它的处理速度快和分辨率高,而且具有噪音小、线性好的特性。仪器由光源、光学采样系统、薄层色谱色谱工作站三大部分组成,薄层色谱工作站是目前国内开发的最好软件,对仪器可全自动的控制同时还可对薄层色谱斑点进行定量处理.定量精度与进口产品相近,满足药厂\高校日常分析的需要,省时省力是您实验室的好助手。仪器参数1.扫描方式:线性扫描,双波长扫描,多通道扫描2.光源:254/365nm紫外光源、400-750可见光源。3.分辨率可达10um4.重现性:≥99%5. 检测方式:反射法、荧光法。6、算法:归一法,内标法,外标法(一点直线法,两点曲线法),符合药典要求。7.软件环境:WIN XP/2000/NT,仪器特点1. 有与单波长扫描,双波长扫描,多通道扫描功能,2.对TLC斑点进行准确定量,精确测量Rf值.3.对图像可任意角度旋转,可对色彩亮度、饱和度、对比度进行校正。4. 可打印出峰位、Rf值、峰面积、含量、图像的报告,符合分析要求5. 人性化中文软件操作界面,无限量图谱数据库管理,6.机内配有图文并茂的教学软件,简明方便,随时调看 两点曲线法定量 一点直线法定量 分析报告1 分析报告2
  • 微阵列芯片扫描仪配件
    微阵列芯片扫描仪配件专业为扫描基因芯片,蛋白质芯片等微阵列芯片而设计,是功能强大的高分辨率荧光扫描仪。适合所有微阵列芯片,如DNA芯片,蛋白质芯片和细胞和组织,并适用于各类型的应用研究,如基因表达,基因分型,aCGH,芯片分析片内,微RNA检测的SNP,蛋白质组学和微阵列的方式。微阵列芯片扫描仪配件是完全开放的系统,兼容任何标准的显微镜载玻片25x75mm(玻璃基板,塑料,透明和不透明),可以扫描生物芯片,有3 1.mu.m/像素的分辨率,同时保持高图像质量。能够同时扫描两个检测通道3.5分钟(10.mu.m/像素,最大扫描区域),InnoScan900是市场上最快的扫描器,扫描速率可调节,达10到35行每秒。微阵列芯片扫描仪配件共焦扫描仪配备有两个光电倍增管(PMT),非常敏感,整个工作范围(0至100%)线性完美,允许用户简单地改变PMT,调整2种颜色的荧光信号。使用这种独特的动态自动聚焦系统,提供的是不敏感的基板的变形,整个扫描表面上完美,均匀。微阵列芯片扫描仪有出色光度测定性能,特别是在灵敏度和信噪比方面。微阵列芯片扫描仪有一系列可满足您的应用程序,四扫描器(710,710 U,900 U和900)。该Innoscan® 900和900AL系列(磁带自动加载机)是专为现在和未来的高密度微阵列发展。
  • 双轴向基于检流器的光电扫描仪
    双轴向基于检流器的光电扫描仪先进的光学位置检测设计移动磁体驱动器技术体积小巧,很容易整合通用规格基底:Mirror: Fused Silica工作温度 (°C):0 to +50功率要求:±24 to ±28 VCurrent - Peak (A):Maximum: 20额定漂移,转子 (°):±20保险杠停止角度,初始接触 (°):±26Damage Threshold, CW:150 - 200 W/cm2电源:2 x#14-571or 1 x#59-026和紧凑型,对成本敏感的闭环电流计相比,该双轴向电流计光学扫描仪能提供更好的定位速度和精确度.该产品具有低惯性,结构紧凑,高速和高精度的特点,这使它们比较适合生物医学系统,光学相干断层扫描,激光投影,共聚焦显微镜和分析仪器等产品上使用。双轴伺服驱动器提供了最佳的重复性,线性度,稳定性和紧凑封装的成本。模拟指令输入高达±10伏直流电,可使机械扫描器旋转±5 度。伺服回路上的误差积分器可以达到微量级水平定位精度。内置系统条件、位置和速度状态监测使一体化的驱动板简便而精确的扫描系统。其中包括两个检流计、一个双轴集成伺服驱动放大器、两条互连电缆、一个XY检流计接口以及一个3mm或5mm(在产品描述中指定)的光圈XY反射镜组。适用于6215H的调节/信号监控接线板(编号#88-156),可以访问所有检流计和伺服信号,编号为#88-170的元件可提供易于使用的BNC输入电缆和压接端子型电线/接地线。注意:强烈建议操作过程中将散热器与伺服驱动器板连接。热油脂提高伺服驱动板和散热片(不包括)之间的热传导。运行驱动板需要一个正极的和负极电源(不包括)。请选择#14-571(需要2个)或#59-026(需要1个)。产品信息标题产品编码6215H 5mm反射镜XY振镜扫描器,镀银保护膜#86-8096220H 10mm Mirrors XY Galvanometer Scanner, Protected Silver#11-761技术数据

差示扫描量热仪的工作原理相关的资料

差示扫描量热仪的工作原理相关的资讯

  • 差示扫描量热仪原理简介
    p  差示扫描量热法是在程序控温和一定气氛下,测量流入流出试样和参比物的热流或输给试样和参比物的加热功率与温度或时间关系的一种技术,使用这种技术测量的仪器就是差示扫描量热仪(Differential scanning calorimeter-DSC)。/pp  扫描是指试样经历程序设定的温度过程。以一个在测试温度或时间范围内无任何热效应的惰性物质为参比,将试样的热流与参比比较而测定出其热行为,这就是差示的含义。测量试样与参比物的热流(或功率)差变化,比只测定试样的绝对热流变化要精确的多。/pp  差热分析法是测量试样在程序控温下与惰性参比物温差变化的技术,使用这种技术测量的仪器就是差热分析仪(Differential thermal analyzer-DTA)。DTA是将试样和参比物线性升温或降温,以试样与参比间的温差为测试信号。DTA曲线表示试样与参比的温差或热电压差与试样温度的关系。/pp  现在,DTA主要用于热重分析仪(TGA)等的同步测量,市场上已难觅单独的DTA仪器。/pp  DSC主要有两类:热通量式DSC和功率补偿式DSC。/ppspan style="color: rgb(255, 0, 0) "strong热通量式DSC/strong/span/pp  热通量式DSC是在程序控温和一定气氛下,测量与试样和参比物温差相关的热流与温度或时间关系的一种技术和仪器。热通量式DSC是通过试样与参比物的温差测量流入和流出试样的热流量。/pp  热通量式DSC的测量单元根据所采用的传感器的不同而有所区别。/pp  如下图所示为瑞士梅特勒-托利多公司采用金/金-钯热电偶堆传感器设计的DSC测量单元示意图。传感器下凹的试样面和参比面分别放置试样坩埚和参比坩埚(一般为空坩埚)。热电偶以星形方式排列,以串联方式连接,在坩埚位置下测量试样与参比的温差。试样面和参比面的热电偶分布完全对称。几十至上百对金/金-钯热电偶串联连接,可产生更高的测量灵敏度。传感器的下凹面提供必要的热阻,而坩埚下的热容量低,可获得较小的信号时间常数。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/f02e8309-d24c-4db9-9b02-ba4b239805a5.jpg" title="金_金-钯热电偶堆传感器热通量式DSC测量单元截面示意图.jpg" width="400" height="345" border="0" hspace="0" vspace="0" style="width: 400px height: 345px "//pp style="text-align: center "strong金/金-钯热电偶堆传感器热通量式DSC测量单元截面示意图/strong/pp  如下图所示为美国Waters公司采用的康铜传感器设计的DSC测量单元示意图。康铜是一种铜-镍合金(55%Cu-45%Ni)。康铜与铜、铁、镍/铬等组成热电偶时,灵敏度较高(μV/K较大)。与贵金属铂、金/金-钯等相比,康铜耐化学腐蚀性较差。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/be5eca73-9eb5-41bf-83a6-dd1c6a5325a1.jpg" title="康铜传感器热通量式DSC测试单元示意图.jpg" width="400" height="255" border="0" hspace="0" vspace="0" style="width: 400px height: 255px "//pp style="text-align: center "strong康铜传感器热通量式DSC测试单元示意图/strong/pp  传感器上凸的试样面和参比面分别放置试样坩埚和参比坩埚(一般为空坩埚)。两对热电偶分别测量试样温度和参比温度,测得温差。/pp  热通量式DSC的炉体一般都由纯银制造,加热体为电热板或电热丝。可选择不同的冷却方式(自然或空气、机械式或液氮冷却等)。/pp  热通量式DSC热流的测量/pp  以金/金-钯热电偶堆传感器设计的DSC为例,热流Φ以辐射状流过传感器的热阻 热阻以环状分布于两个坩埚位置下面。热阻间的温差由辐射状排列的热电偶测量。根据欧姆定律,可得到试样面的热流Φ1(由流到试样坩埚和试样的热流组成)为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/13d50f86-2166-44cc-93f7-4a0dfc48a0e2.jpg" title="DSC-1.jpg"//pp式中,Tsubs/sub和Tsubc/sub分别为试样温度和炉体温度 Rsubth/sub为热阻。/pp  同样可得到参比面的热流Φr(流到参比空坩埚的热流)为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/66a68742-b966-4f01-80ea-6940d21e12f9.jpg" title="DSC-2.jpg"//pp式中,Tsubr/sub为参比温度。/pp  DSC信号Φ即样品热流等于两个热流之差:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/8b903427-9007-493f-8229-23065fe62ac7.jpg" title="DSC-3.jpg"//pp  由于温差由热电偶测量,因此仍需定义热电偶灵敏度的方程S=V/ΔT。式中,V为热电压。于是得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/54c0c2b1-c913-449b-84db-541255ac821e.jpg" title="DSC-4.jpg"//pp式中,热电压V为传感器信号 Rsubth/subS的乘积称为传感器的量热灵敏度 Rsubth/sub和S与温度有关 令Rsubth/subS为E,E与温度的关系可用数学模型描述。/pp  在DSC曲线上,热流的单位为瓦/克(W/g)=焦耳/(秒· 克)[J/(s· g)],以峰面积为例,热流对时间(s)的积分等于试样的焓变ΔH,单位为焦耳/克(J/g)。/pp  热通量式DSC试样温度的测量/pp  炉体温度Tsubc/sub用Pt100传感器测量。Pt100基本上是由铂金丝制作的电阻。/pp  DSC测试所选择的的升温速率基于参比温度而不是试样温度,因为试样可能发生升温速率无法控制的一级相变。/pp  与热阻有关的温差ΔT对于热流从炉体流到参比坩埚是必需的。该温差通常是通过升高与ΔT等值的炉体温度实现的。炉体温度Tsubc/sub与参比温度Tsubr/sub的时间差等于时间常数τsublag/sub,与升温速率无关。/pp  在动态程序段中,计算得到的温度升高ΔT加在炉体温度设定值上,因而参比温度完全遵循温度程序。/pp  严格来说,试样内的温度与测得的试样坩埚的温度存在微小差别。通过在软件中正确选择热电偶的灵敏度,可补偿该差别。/pp  采用康铜传感器设计的DSC仪器,试样坩埚温度由热电偶直接测量。也需要通过软件中正确选择热电偶的灵敏度,通过修正来获得试样内的温度。/ppspan style="color: rgb(255, 0, 0) "strong功率补偿式DSC/strong/span/pp  功率补偿式DSC是在程序控温和一定气氛下,保持试样与参比物的温差不变,测量输给试样和参比物的功率(热流)与温度或时间关系的一种技术。与热通量(热流)式DSC采用单独炉体不同,功率补偿式DSC以两个独立炉体分别对试样和参比物进行加热,并各有独立的传感装置。炉体材料一般为铂铱合金,温度传感器为铂热电偶。/pp  如下图所示为美国珀金埃尔默公司功率补偿式DSC测量单元的示意图。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c459d34d-d427-453c-acdf-3a462e04e3e4.jpg" title="功率补偿式DSC测量单元示意图.jpg" width="400" height="263" border="0" hspace="0" vspace="0" style="width: 400px height: 263px "//pp style="text-align: center "strong功率补偿式DSC测量单元示意图/strong/pp  由于采用两个小炉体,与热通量式DSC相比,功率补偿式DSC可达到更高的升降温速率。/pp  功率补偿式DSC对两个炉体的对称性要求很高。在使用过程中,由于试样始终只放在试样炉中,两个炉体的内部环境会随时间而改变,因此容易发生DSC基线漂移。/pp  功率补偿式DSC热流的测量/pp  功率补偿式DSC仪器有两个控制电路,测量时,一个控制升降温,另一个用于补偿由于试样热效应引起的试样与参比物的温差变化。当试样发生放热或吸热效应时,电热丝将针对其中一个炉体施加功率以补偿试样中发生的能量变化,保持试样与参比物的温差不变。DSC直接测定补偿功率ΔW,即流入或流出试样的热流,无需通过热流方程式换算。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/4b2384fe-4770-4f1b-af33-e5d731956a4c.jpg" title="DSC-5.jpg"//pp式中,QsubS/sub为输给试样的热量 QsubR/sub为输给参比物的热量 dH/dt为单位时间的焓变,即热流,单位为J/s。/pp  由于试样加热器的电阻RS与参比物加热器的电阻RsubR/sub相等,即RsubS/sub=RsubR/sub,因此当试样不发生热效应时,/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/13c863c9-be1e-4808-942f-e0765844b444.jpg" title="DSC-6.jpg"//pp式中,IsubS/sub和IsubR/sub分别为试样加热器和参比加热器的电流。/pp  如果试样发生热效应,则输给试样的补偿功率为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1fa7ba2d-3a0b-4911-a86b-801d2336f395.jpg" title="DSC-7.jpg"//pp设RsubS/sub=RsubR/sub=R,得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/83f06029-71c9-4e13-bf3e-d2c6b64eed1a.jpg" title="DSC-8.jpg"//pp因总电流IsubT/sub=IsubS/sub+IsubR/sub,所以/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/35825b17-b30d-4aa7-9bc8-a8a1ae877397.jpg" title="DSC-9.jpg"//pp式中,ΔV为两个炉体加热器的电压差。/pp  如果总电流IsubT/sub不变,则补偿功率即热流ΔW与ΔV成正比。/ppbr//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strongDSC仪器性能评价的重要参数/strong/span/ppstrongDSC仪器的灵敏度和噪声/strong/pp  每个传感器都具有一定的灵敏度。灵敏度是指单位测量值的电信号大小,用每度热电压(V/K)表示。例如,室温时的铜-康铜热电偶的灵敏度约为42μV/K,金-金钯热电偶约为9μV/K,铂-铂铑(10%铑,S型)热电偶约为6.4μV/K。/pp  信号的噪声比灵敏度更加重要,因为现代电子装置能将极其微弱的信号放大,但同时也会将噪声放大。噪声主要有三个来源:量的实际随机波动(如温度的微小波动) 传感器产生的噪声(统计测量误差) 放大器和模-数转换器的噪声。/pp  噪声与叠加在信号上的不同频率的交流电压相一致。因此,对于交流电压,噪声可用均方根值(rms)或峰-峰值(pp)表示。rms值得计算式为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/8355adf9-cd1e-46b0-9538-67ac7bd524e4.jpg" title="DSC-10.jpg"//pp式中,n为信号值个数 xsubi/sub为单个信号值 x为平均信号值。/pp  对于正弦振动,pp/rms比为2 (2.83左右) 对于随机噪声,比值为4~5。/pp  灵敏度与检测极限是不同的。检测极限(常误称为“灵敏度”)指可检出的测试信号的最小变化量。检测极限比背景噪声明显要大,如10倍与rms值(或pp值的2倍)。信号和噪声水平决定最终的检测极限。/pp  值得指出的是,通过数学光滑方法可容易地获得低噪声水平,但这样会同时“修剪”掉微弱却真实的试样效应,所以噪声水平低并不一定表示灵敏度高。/pp  TAWN灵敏度最初是由荷兰热分析学会提出的方法,用来比较不同的DSC仪器。TAWN灵敏度测试法测量一个已知弱效应的试样,用峰高除以峰至峰噪声得到的信/噪比来表征DSC仪器的灵敏度。峰高/噪声的比值越高,DSC仪器的灵敏度越好。/ppstrongDSC仪器的分辨率与时间常数/strong/pp  在很小温度区间内发生的物理转变的分辨率(分离能力)是DSC仪器的重要性能特征。分辨率好的仪器给出高而窄的熔融峰,换言之,峰宽应小而峰高应大。/pp  分辨率的表征方法有多种,常用的有铟熔融峰峰高与峰宽比、TAWN分辨率和信号时间常数等。/pp  由铟熔融峰测定的分辨率=峰高/半峰宽,数值越高表明分辨率越好。TAWN分辨率为基线至两峰之间DSC曲线的最短距离与小峰高度之比,数值越低表明分辨率越好。信号时间常数τ定义为从峰顶降到后基线的1/e,即降63.2%的时间间隔。信号时间常数τ是热阻Rsubth/sub与试样、坩埚和坩埚下传感器部分的热容之和(C)的乘积,τ=Rsubth/subC。显然,较轻的铝坩埚可得到较小的信号时间常数。信号时间常数越小,DSC分辨率越好。/p
  • 差示扫描量热仪的扩展
    p  差示扫描量热仪除常规的热通量式DSC和功率补偿式DSC外,还有数种特殊的应用形式。/ppstrong超快速差示扫描量热仪/strong/pp  超快速DSC是最新发展起来的创新型快速差示扫描量热仪,采用动态功率补偿电路,属于功率补偿式DSC的一类。/pp  瑞士梅特勒-托利多公司于2010年9月推出了世界上首款商品化超快速差示扫描量热仪Flash DSC(中文名称:闪速DSC)。升温速率可达到2400000K/min,降温速率可达到240000K/min。/pp  闪速DSC的心脏是基于微机电系统(micro electro mechanical systems-MEMS)技术的芯片传感器,传感器置于有电路连接端口的陶瓷基座上。如图所示为闪速DSC芯片传感器和测量原理示意图。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/b5b7573d-a532-4a86-95d9-b7ec0e2ba93d.jpg" title="闪速DSC芯片传感器和测量原理示意图.jpg" width="400" height="325" border="0" hspace="0" vspace="0" style="width: 400px height: 325px "//pp style="text-align: center "strong闪速DSC芯片传感器和测量原理示意图/strong/pp style="text-align: center "1.陶瓷板 2.硅支架 3.金属连线 4.电阻加热块 5.铝薄涂层 6.热电偶/pp  试样面和参比面各有电阻加热块,加热块由动态功率补偿控制。补偿功率即热流由排列于样品面和参比面的各8对热电偶测量。热电偶呈星形对称排列,可获得平坦和重复性好的基线。样品面和参比面由涂有铝薄涂层的氮化硅和二氧化硅制成,可保证传感器上的温度分布均匀。传感器面厚约2.1μm,时间常数约为1ms,可保证快速升降温速率下的高分辨率。/pp  在常规DSC中,为了保护传感器,将试样放在坩埚内测试,坩埚的热容和导热性对测量有显著影响。典型的试样质量为10mg。在闪速DSC中,试样直接放在丢弃型芯片传感器上进行测试。试样量一般为几十纳克(ng)。由于试样量极小,必须借助显微镜制备试样。/pp  闪速DSC能分析之前无法测量的结构重组过程。极快的降温速率可制备明确定义的结构性能的材料,如在注塑过程中快速冷却时出现的结构 极快的升温速率可缩短测量时间从而防止结构改变。不同的降温速率可影响试样的结晶行为和结构,因此闪速DSC是研究结晶动力学的很好工具。闪速DSC在其升、降温低速段可与常规DSC交叠,如闪速DSC的最低升温速率为30K/min、最低降温速率为6K/min。因此,闪速DSC与常规DSC可互为补充,达到极宽的扫描速率范围。/ppstrong高压差示扫描量热仪/strong/pp  将DSC炉体集成于压力容器内,可制成高压差示扫描量热仪。高压DSC一般有3个气体接口,各由一个阀门来控制:快速进气口用来增压 炉腔吹扫气体入口用于进行测试过程中的气流控制 气体出口用于进行压力控制。测试炉内的实际压力由压力表显示。通过压力和气体流量控制器,可实现静态和动态程序气氛下的精确压力控制。/pp  加压将影响试样所有伴随发生体积改变的物理变化和化学反应。在材料测试、工艺过程开发或质量控制中,经常需要在压力下进行DSC测试。高压DSC仪器扩展了热分析的应用。/pp  压力下进行DSC测试可缩短分析时间,较高压力和温度将加速反应进程 可模拟实际反应环境,在工艺条件下测试 可抑制或延迟蒸发,将蒸发效应与其他重叠的物理效应及化学反应分开,从而改进对重叠效应的分析和解释 可提高气氛的浓度,加速与气体的多相反应速率 可在特定气氛下测量,如氧化、无氧条件或含有毒或可燃气体(如氢气) 可通过不同压力下的实验,更精确地测试吸附和解吸附行为。/ppstrong光量热差示扫描量热仪/strong/pp  光量热组件与DSC结合,可生成DSC光量热仪,测量材料在不同温度下用一定波长的光照射引发固化反应所产生的焓变。主要应用于材料的光固化领域,测试光引发的反应。可用于研究各种光敏材料的光效应,如光活性固化过程、光引发反应以及紫外线稳定剂影响、加速测试或老化研究中聚合物稳定性的光强度效应。/pp  如图所示为光量热DSC仪光学部分的示意图。光源一般为紫外线,也可为其他光源,如可见光。通过遮光器的开闭来控制光照时间,光强度由光源控制。光由光纤透过石英炉片(用作炉盖)照射到试样和参比坩埚上,由DSC传感器测量固化反应焓。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/2da48264-bd5e-4dc3-8c3f-1cea1d15ca90.jpg" title="光量热DSC系统的光学设计示意图.jpg" width="400" height="421" border="0" hspace="0" vspace="0" style="width: 400px height: 421px "//pp style="text-align: center "strong光量热DSC系统的光学设计示意图/strong/ppstrong差示扫描量热仪显微镜系统/strong/pp  DSC与装备有摄像技术的显微镜的结合可生成DSC显微镜系统,在DSC加热或冷却过程中可对试样进行光学观察,得到与DSC测试同步的图像信息。这种图像信息对于DSC测试到的现象作出精确的解释往往非常有用,而且显微镜能对极少或无焓变的过程摄录信息,达到极高的测试极限。/pp  典型的应用有粘合剂或固体涂料的流延性测试,薄膜或纤维收缩的光学观察,药物或化学品从溶液结晶、热致变色、汽化、升华及安全性研究,食物脂肪和食用油的氧化稳定性、与活性气体的反应,等等。/ppstrong温度调制式差示扫描量热法/strong/pp  DSC的传统温度程序是以恒定的速率将试样升温或降温。温度调制式差示扫描量热法的升温速率以更复杂的方式变化,是在线性温度程序上叠加一个很小的调制温度。/pp  典型的温度调制式DSC方法有等温步阶扫描法、调制DSC法和随机调制DSC法3种。/pp  等温步阶扫描法的温度程序由一系列等温周期步阶组成。调制DSC方法的温度程序为在线性温度变化上叠加一个周期性变化(通常为正弦)的调制,也可叠加其他调制函数(如锯齿形)。随机调制DSC为最先进的温度调制式技术,它的温度程序是在基础线性升温速率上叠加脉冲形式的随机温度变化。/pp  温度调制技术的优势在于可将热流分离为两个分量,一个对应于试样的比热容,另一个对应于所谓的动力学过程,如化学反应、结晶过程或蒸发过程等。/p
  • 鲁东大学选购我司差示扫描量热仪
    鲁东大学选购我司差示扫描量热仪,对于提高该校在科研和教学方面的水平具有重要意义。本文将详细介绍差示扫描量热仪的原理、特点和选购过程,以及其在鲁东大学的实际应用情况。鲁东大学差示扫描量热仪是一种广泛应用于材料科学、化学、生物学等领域的分析仪器。它通过监测样品在升温或降温过程中热量的变化,可以获得样品的热性能、相变温度、热稳定性等多方面信息。对于科研人员来说,差示扫描量热仪是一种极为重要的实验工具,可以帮助他们更好地研究材料的性质和行为。鲁东大学在选购差示扫描量热仪时,首先对市场上的品牌和型号进行了充分的调研。该校科研团队认真比对了不同设备的性能、价格、售后服务等多方面因素,最终选择了我司的差示扫描量热仪。选购过程中,鲁东大学与仪器供应商积极沟通,明确了实验需求和技术参数,并在我司技术人员的指导下完成了设备的安装和调试。上海和晟 HS系列 差示扫描量热仪差示扫描量热仪在鲁东大学的应用非常广泛。该校科研人员利用该设备,对多种材料的热性能和相变行为进行了深入研究。同时,该设备还被广泛应用于化学反应动力学、生物学领域的研究,为鲁东大学的科研工作提供了强有力的支持。用户可根据具体需求,选择不同的参数和应用模式,实现更加精准的实验结果。总之,差示扫描量热仪在鲁东大学的应用中发挥了重要作用,为该校的科研和教学工作提供了重要的帮助。通过选购我司的差示扫描量热仪,鲁东大学在材料科学、化学、生物学等领域的研究水平得到了提升。希望本文的介绍和分析,能够为更多读者了解差示扫描量热仪提供有益的参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制