太赫兹人体安检仪原理

仪器信息网太赫兹人体安检仪原理专题为您提供2024年最新太赫兹人体安检仪原理价格报价、厂家品牌的相关信息, 包括太赫兹人体安检仪原理参数、型号等,不管是国产,还是进口品牌的太赫兹人体安检仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合太赫兹人体安检仪原理相关的耗材配件、试剂标物,还有太赫兹人体安检仪原理相关的最新资讯、资料,以及太赫兹人体安检仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

太赫兹人体安检仪原理相关的仪器

  • 被动式太赫兹成像主机接收人体自身热辐射产生的太赫兹波,通过主机内部的准光系统将这些辐射收集到探测焦平面上,在焦平面上使用太赫兹探测器阵列完成对信号的采集。之后通过对信号的处理,可以形成人体辐射的太赫兹波强度图,由千人身携带的物品对太赫兹波的遮挡和吸收,在太赫兹强度图上物品所在位置就会显示出阴影轮廓。系统内部图像处理算法软件通过对太赫兹图像中物品轮廓的位置、形状、大小、数量等信息进行分析判断,不仅实现影像化的人体安检,同时实现了智能化的报警提示。
    留言咨询
  • 太赫兹相机-太赫兹成像相机THz camera 描述:Tera-256太赫兹相机是基于TeraSense公司开发的新一代太赫兹成像半导体探测器阵列技术研制而成的。该探测器在室温下工作,阵列可按像素的数量进行拓展。与其他工作在太赫兹范围(50GHz-0.7THz)的现有探测器相比,Terasense提供的探测器具有良好的响应性,但相比之下,它们成本低,具有均匀的像素对像素的灵敏度(像素对像素的偏差响应度小于20%),并且可以很容易地以二维阵列的形式大量生产,这得益于TeraSense技术与大规模半导体生产线的兼容性。这使得这些探测器适用于我们的太赫兹成像相机。 与其他品牌的太赫兹产品相比,Terasense太赫兹相机在其工作的波段范围内有高的稳定性和更均匀像素敏感性。与传统检测手段(X射线)相比,太赫兹检测系统有更低的辐射能量。不容易对生物和化学制剂的分子结构造成破坏,且对人体没有辐射危害。因此在无损检测和安全检查方面有巨大的应用潜力。目前,Terasense正在继续致力于为科学和工业开发灵活的太赫兹成像解决方案。 Terasense太赫兹相机是主动探测设备,需要外部太赫兹源。我们提供基于IMPATT技术的亚太赫兹波源。所有的TERA系列太赫兹成像相机都采用相同类型的探测器,具有相同的能力和空间分辨率。不同型号的太赫兹相机之间的区别在于它们的传感器阵列中的像素数量和它们的有效成像区域。除了标准太赫兹相机型号,我们提供定制的解决方案,以满足不同的配置和几何要求。工作原理: 探测器是Terasense使用传统光学光刻技术,在标准半导体周期内采用GaAs高迁移率异质结构制造成的。成像传感器是在单个晶片上制造的。这个过程确保了等离子探测器参数的高度同质性和再现性(像素到像素的偏差响应率在20%范围内)。每个探测器单元具有高达50kv/W的室温响应率,读出电路和噪声等效功率为1 nW/√HZ,频率范围为10GHz-1THz。探测机制是基于二维电子系统中等离子体振荡的激发和随后的整流。整流是在电子系统中产生的特殊缺陷上进行的。 产品特点:l 高达50KV/W的响应率l 对人体无害l 低辐射能量,实现无损检测l 支持视频模式l 可穿透大多数非金属材料l 友好的软件界面,快速上手l 可搭配原厂太赫兹源,安装简单l 结构紧凑,成本低l 配备专业的软件:Terasense Viewer ® 和 SDK 应用范围:l 安检系统l 医学成像l 食品/农产品检测l 非金属材料(塑料、陶瓷、木材等)检测l 艺术品/文物无损检测 技术参数: 总像素数:256像素(16*16)像素尺寸:1.5mm噪声等效功率:1nW工作频率:50 GHz - 0.7 THz视频帧率:50fps产品尺寸:11.5 x 11.5 x 4.2 cm
    留言咨询
  • 高速太赫兹扫描成像仪高速(5000帧/秒)、高分辨率(1.5mm)太赫兹成像扫描系统基于先进技术研制出一套高速(5000帧/秒)、高分辨率(1.5 mm)太赫兹成像扫描系统,主要用于工业检测领域应用。该系统主要包含线性太赫兹高速相机和太赫兹源(100GHz)设备,二者可同步协调工作成像速度高达5000帧每秒,紧凑的体积设计适于集成便于工业应用的需求。除此之外,该系统满足于绝大多数传送带的要求,扫描速度高达15m/s。系统里集成的超快线性传感传感器满足了大多数工业无损检测和质量控制等应用的需求。关键词:太赫兹高速相机,太赫兹源,太赫兹成像系统,高速太赫兹成像系统,太赫兹扫描系统u 该套设备的主要特点如下:成像速度高达5KHz扫描速度高达15m/s成像频率为100 GHz像素:256 x 1专用软件(TeraFast)可提供定制化方案u 该套系统涵盖的产品主要如下:A. 太赫兹高速相机(基于先进技术研制的半导体阵列芯片)参数如下:Number of pixels: 256 (256 x 1)Image acquisition rate: 5000 fps (5KHz)Piel size: 1.5 x 3 mm2Responsivity: 8000 v/wImaging area: 384 x 3 mm2Min detectable power/pixel: 100nw (at 5000 fps) 45nw (at 1000 fps) 14nw (at 100 fps) Dimensions of device: 450 x 160 x 44 mm3Sync out : TTL (+5 V)Included software: TeraFast ViewerInterface: mini-USBPower supply: 24V/20W太赫兹源(基于IMPATT 技术)参数信息:Type IType ⅡFrequency100 GHz100 GHzPower per pixel20 uw140 uwImaging system dynamic range24 d B30 d BOptical systemPTFE opticsReflection opticsTechnologyIMPATTSuper-Hero IMPATT 详情请见如下链接:Type I / Type II THz wave sources for High Speed Linear scanneru 该套高性价比的太赫兹成像扫描系统,应用领域广泛,主要覆盖药学、化妆品、木材加工、食品、快速消费品包装、建筑材料、汽车工业、农业、安检等众多领域。
    留言咨询

太赫兹人体安检仪原理相关的方案

太赫兹人体安检仪原理相关的论坛

  • 【Sunny看新闻】-2012.2.7:新安检技术,太赫兹

    昨晚的北京经历了过年最后的疯狂,烟花爆竹不断,仿佛回到了年三十。今天的天气依然不错,进入新闻短评,欢迎大家讨论!  从太赫兹安检技术延伸看安检技术  新闻链接:http://www.instrument.com.cn/news/20120206/073687.shtml  今天看到一条新闻“我国太赫兹安检技术研究取得进展”,新闻中提到“说该项技术样机将于年内面世,快速准确地检测出是否有人携带武器、毒品、爆炸物等违禁品,并且该技术对人体更加安全。”  对于太赫兹技术,我不是专家,没有发言权。但作为一名每天都要接受安检检测的普通人,我希望安检技术能够更简便,同时更快速,当然对人体安全是首要的。不知道这种太赫兹安检技术能否能满足我这样的需求。  目前,我们接触到最多的安检技术就是基于X射线技术的安检机,这种技术通过对包内物成像后,再由工作人员来进行判断。对我而言,我觉得他最大的缺点就是太慢了,太繁琐,特别在地铁口,导致很多人不愿意按规则接受安检。  其次是金属探测器,在飞机场安检时,手持的,在人体上移动的仪器就是金属探测器。这类仪器故名思议只能对金属危险品可以检测。对我而言,这个速度还是比较快的。  第三是Smiths Detection的基于离子迁移谱技术的毒品痕量检测仪,我在成都机场曾经接受过此检测。这项技术进行检测,是通过一个与仪器匹配的试纸现在行李上进行触碰,而后将试纸放入仪器中进行检测。我对这项安检技术体验较好,第一速度很快,第二受检者基本不需要有任何的配合。  第四是基于拉曼光谱的安检技术。前三种技术,我在生活中都切身体验过,而唯独这项技术我只在仪器展会上看到过演示。测量是通过探头对可疑的物品(如粉末或瓶装液体)的触碰,然后通过与数据库中的毒品物谱图相对比而进行判断,速度也比较快。  以上四种技术都有各自所专注的一方面,新的太赫兹技术据报道看可以满足现有技术的所有能满足的各种需求,不知道是否如此,欢迎大家讨论?另大家有没有亲身经历过别的或了解到别的技术?也欢迎提供。

  • 集成太赫兹收发器问世

    美国科研人员开发出了首个集成太赫兹(THz)固态收发器,新设备比目前使用的太赫兹波设备更小,功能更强大。相关研究成果发表在最新一期的《自然·光子学》杂志上。  太赫兹技术是近年来十分热门的一个研究领域,2004年被评为影响世界未来的十大科技之一。美国能源部桑迪亚国家实验室的研究人员将同一块芯片上的探测器和激光器结合在一起,制造出了该接收设备。在实验中,研究人员将一个小的肖特基二极管嵌入一个量子级联激光器(QCL)的脊峰波导空腔中,让能量能够从量子级联激光器内部的磁场直接到达二极管的阴极,而不需要光耦合通路。这样,研究人员就不需要再为制造这些收发器等设备所需要的光学“零件”如何定位而“抓耳挠腮”了。  新的固态系统利用了太赫兹波发出的频率。太赫兹波是指频率在0.1THz—10THz范围的电磁波,介于微波与红外之间,它能够穿透非金属材料,从而为安检、医学成像提供新的手段,在物体成像、医疗诊断、环境检测、通讯等方面具有广阔的应用前景。  量子级联激光器是产生太赫兹辐射的重要器件之一,科学家于2002年演示了半导体太赫兹量子级联激光器。太赫兹量子级联激光器的一个优势在于其能够同其他组件一起被整合在同一个芯片上。然而,此前要想装配出灵敏的相干收发器系统,研究人员需要将零散的、并且常常是巨大的组件组合到一起。而现在,研究人员只是将太赫兹量子级联激光器和二极管混频器整合在一个芯片上,就可以组成一个简单实用的微电子太赫兹收发器。  研究人员也证明,新的太赫兹集成设备能够执行以前组件零散的太赫兹系统的所有基本功能,例如传输相干载波、接受外部信号、锁频等。

太赫兹人体安检仪原理相关的耗材

  • 宽谱高功率太赫兹天线 无偏压太赫兹天线 太赫兹光电导天线
    产品特点 Eachwave推出的新型无偏压高功率宽谱THz发射器是fs激光泵浦的太赫兹源,可以用各种激光器来泵浦(如波长在700-1600nm的低功率振荡器、或者放大器)。它是理想的近场成像THz源,我们同时有太赫兹近场探针可选。当然我们的THz发射器也可以应用于远场光谱的研究以及其他THz应用。我们的THz发射器是基于一个专利技术(德国专利号:DE102012010926 A1),利用双金属光栅结构实现无偏压的光学泵浦THz辐射。THz发射器具有一个很大的可激发面积,激发光的功率可以从5mW高至1W,并不会引起转换效率饱和的现象。主要特点: ——高的转换效率(得益于其先进的纳米级双金属结构设计)——高的辐射功率(得益于其大的可激发面积)——非常适用于TeraSpike微探针的THz源——无与伦比的简单易用——可以被当做点光源来使用,亦或者阵列辐射器——辐射出光具有线偏性——非常的耐用因为没有偏压——没有暗电流辐射特性和工作原理: 近红外或红外的飞秒(建议150fs)脉冲激发TeraBlast太赫兹发射器,发射出的太赫兹脉冲辐射为线性偏振状态。下图是利用我们的太赫兹近场探针(TD-800-X-HRS),通过时域扫描的方法,探测出的太赫兹发射器表面电场。明亮的高频太赫兹振荡部分被局限在几个毫米的的区域,而低频GHz频率则在更广泛的区域被辐射出来。 辐射场的形貌可以根据调节入射激发光束来轻松地改变。太赫兹激发方案: 测试样例 (TeraBlast TD-1550-L-165): 远场自由空间太赫兹时域谱测试,N2环境,探测端为400um厚度的GaP晶体,基于异步采样时域光谱技术详细参数(a) 370mW激发,利用热电探测器测量(Spectrum Detector Inc. SPI-D-62-THz) ; (b) 可根据客户需求定制更大激发面的天线。
  • 太赫兹元件 太赫兹光栅 太赫兹衍射光栅
    Tydex生产的衍射光栅用于太赫兹频率范围的光谱测量。它们是凸面相位传输光栅。这种光栅的规则结构是通过在透明衬底上切割平行的破折号(凹槽)来实现的。衬底由太赫兹范围内透明的材料制成,如TPX(聚甲基戊烯)和ZEONEX(环烯烃聚合物)。光栅可用于:• 太赫兹光谱 • 太赫兹诊断仪器 • 光电设备 • 天文学和天体物理应用,包括天基 • 材料研究。光栅在0.3-3太赫兹范围内的以下传输频段有四个标准选项:0.28-0.55太赫兹 0.49 - -0.98太赫兹 0.87 - -1.75太赫兹 1.56 - -3.12太赫兹。其他频段0.3-3太赫兹范围内的光栅可根据客户要求生产。TPX和ZEONEX板在切割槽前的两侧抛光后的透射光谱如下图所示。 太赫兹光栅通常做成方形,一面35毫米到70毫米。其他形状和尺寸可根据需要提供。根据预期的应用,衍射光栅可以用于各种光学安排,有或没有聚光透镜。用夫琅禾费近似法计算了单色波的光栅参数、衍射波强度和一阶最大角。为了验证操作,并比较计算和实际参数,测量了光栅在不同太赫兹辐射源下的各种光学排列方式下的特性。使用了两个光源。第一种是远红外激光,这是一种亚毫米的甲醇蒸汽激光,由可调谐的CO2激光(Peter the Great St. Petersburg Polytechnic University)泵浦。第二个是自由电子激光器(FEL),一种自由电子激光器(Siberian Synchrotron and THz Radiation Center, Budker Institute of Nuclear Physics, RAS)。图3和图4描绘了使用FIR激光器作为辐射源时,间距d=250 μm的TPX和ZEONEX光栅的单色波强度(λ=118 μm)与衍射角的关系。图5和图6给出了单色波的强度(λ=141 μm)对衍射角的影响。在第二种情况下,一个会聚透镜被放置在光栅和辐射传感器之间。这些图的比较表明,在第一种情况下,零阶和一阶极大值比透镜排列更宽。这是由会聚透镜使平行光束聚焦的结果。用户在根据自己的意图设计实验时,必须考虑到这一点。当光栅用于研究辐射源的特性(功率、光束形状、能量分布等)时,透镜是多余的。但当光谱线需要分辨时,透镜就变得必不可少。对于使用瑞利准则确定特定透射带的衍射光栅,衍射单色波的强度与波长有关。它在山脉中部达到最大值,在边界附近下降。例如,数据3-6结果表明,对于间距为250 μm的TPX和ZEONEX衍射光栅(透射波段为1.56 ~ 3.12 THz或96 ~ 192 μm), λ=141 μm单色波的一阶最大光强是λ=118 μm单色波的几倍。(第一个在传输带的中间,而第二个更接近边缘。)它与用夫琅和费近似计算的单色波理论衍射波强度和一阶最大角相匹配。由于测试光栅时使用的辐射源和光学安排不同,下面的强度以任意单位给出。研究数据表明,该方法具有较高的光学效率和运算最大值的分辨率。因此,这种光栅可以有效地用于研究辐射源的光谱,包括低功率源,这是研究太赫兹频率范围的一个重要能力。
  • 太赫兹衍射光栅,太赫兹光栅,THz Diffraction Gratings
    产品简介:Tydex推出的新产品太赫兹衍射光栅用于太赫兹频率范围的光谱测量。它们是凸面相位透射型光栅。这种光栅的规则结构是通过在透明衬底上切割平行的凹槽来实现的。衬底由太赫兹波段的透明材料制成,如TPX(聚甲基戊烯)和ZEONEX(环烯烃聚合物)。太赫兹衍射光栅应用:• 太赫兹光谱 • 太赫兹诊断仪器 • 光电设备 • 天文学和天体物理应用,包括天基 • 材料研究。太赫兹衍射光栅性能特点:在0.3-3THz范围内,我们有四个太赫兹光栅的标准产品选项:0.28-0.55THz 0.49 - -0.98THz 0.87 - -1.75THz 1.56 - -3.12THz。其他频段0.3-3THz范围内的光栅可根据客户要求生产。TPX和ZEONEX板在切割槽前的两侧抛光后的透射光谱如下图所示。太赫兹光栅通常做成方形,变长一般为35mm到70mm。其他形状和尺寸可根据需要提供。根据预期的应用,太赫兹衍射光栅可以用于各种有或没有聚焦透镜的太赫兹光学实验。我们用夫琅禾费近似法计算了单色波的光栅参数、衍射波强度和一阶最大角。为了验证操作,并比较模拟计算和实际测量参数,我们测量了太赫兹光栅在不同太赫兹辐射源下de特性。使用了两个光源。第一种是远红外激光,这是一种亚毫米的甲醇蒸汽激光,由可调谐的CO2激光(Peter the Great St. Petersburg Polytechnic University)泵浦。第二个是自由电子激光器(FEL),一种自由电子激光器(Siberian Synchrotron and THz Radiation Center, Budker Institute of Nuclear Physics, RAS)。图3和图4描绘了使用FIR激光器作为辐射源时,间距d=250 μm的TPX和ZEONEX光栅的单色波强度(λ=118 μm)与衍射角的关系。图5和图6给出了单色波的强度(λ=141 μm)对衍射角的影响。在第二种情况下,一个会聚透镜被放置在光栅和辐射探测器之间。这些图的比较表明,在第一种情况下,零阶和一阶极最大值比有透镜的光路更宽。这是由会聚透镜使平行光束聚焦的结果。用户在根据自己的意图设计实验时,必须考虑到这一点。当光栅用于研究辐射源的特性(功率、光束形状、能量分布等)时,透镜是多余的。但当光谱线需要分辨时,透镜就变得必不可少。对于使用瑞利判据确定特定透射带的衍射光栅,衍射单色波的强度与波长有关。它在曲线中部达到最大值,在边界附近下降。例如,数据3-6结果表明,对于间距为250 μm的TPX和ZEONEX衍射光栅(透射波段为1.56 ~ 3.12 THz或96 ~ 192 μm), λ=141 μm单色波的一阶最大光强是λ=118 μm单色波的几倍。(第一个在传输带的中间,而第二个更接近边缘。)它与用夫琅和费近似计算的单色波理论衍射波强度和一阶最大角相匹配。由于测试光栅时使用的辐射源和光学实验配置不同,下面的强度以任意单位给出。研究数据表明,该方法具有较高的光学效率和运算最大值的分辨率。因此,这种光栅可以有效地用于研究辐射源的光谱,包括低功率源,这是研究太赫兹频率范围的一个重要能力。

太赫兹人体安检仪原理相关的资料

太赫兹人体安检仪原理相关的资讯

  • 零辐射太赫兹人体安检仪年内北京试运用
    前不久,成都双流机场“弱光子人体安检仪”引发轩然大波。经查,所谓“弱光子人体安检仪”实际采用的是X射线检测。因使用X射线人体安检设备对公众进行无差别安检扫描,不具备正当性,环保部于10月10日正式下文叫停使用该类安检设备。  据了解,今年年底春运期间,北京部分火车站或将试用一种没有辐射的太赫兹人体安检仪。  现状 人体安检有盲区 G20峰会启用人体安检仪  据了解,目前,我国公共场所的安检主要是针对行李物进行检测,采用的技术都是比较成熟的X射线检测技术 适用于人体的安检方式,除了人工手检外,就是金属探测门及手持探测器。而对金属之外的物品,并没有特别有效的检测技术。如何能兼顾人身安全与安检效率,成为公众关注的问题。实际上,国外已经出现了无辐射风险同时又能准确检测的新技术,即太赫兹人体安检技术。这类安检新技术,国内也已经从实验室走向应用。在今年的G20峰会上,就出现了我国自主研发生产的适用于人体安检的“被动式太赫兹人体安检仪”。  该类设备已经在国内多地完成场地实验。很快将会在一些火车站进行试点测试。安检仪样子  专家 新型太赫兹安检技术对人体无害  太赫兹波是什么?它对人体无害的科学原理是什么?未来它将如何影响世界?为此,记者采访了中科院院士、我国最早致力于太赫兹波研究的著名激光与非线性光学专家姚建铨。姚院士详细介绍了太赫兹波的特性及科学原理,以及未来的应用前景。  为了便于理解,姚院士还特意在纸上画了一张图,将目前人类已知的各种波段在上面标注。据他介绍,2004年,太赫兹技术首次被美国提出,并且美国政府将太赫兹技术评为 “改变未来世界的十大技术”之一 2005年,日本更是将其列为“国家支柱十大重点战略目标”之首,举全国之力进行研发。太赫兹,因此成为本世纪最为重要的新兴学科之一。  姚院士  “人类社会中存在声波、电磁波、震动波、伽马射线、X射线等各种各样的波。各种波频率有高低。声波的位置比较低,最高频的是伽马射线、X射线。太赫兹波在电子波段里不长不短,正好比光波要低一些,比声波和电磁波要高一些。”  姚院士解释说,太赫兹波之所以对人体无害,与其单光子能量低相关。太赫兹波在频谱图里的位置,位于微波和红外之间,其最大特点是单光子能量很低,仅仅相当于X射线单光子能量的1/124。姚院士说,由于它释放的能量很小,不会对人体产生有害的光致电离 而为什么伽马射线、X摄线对人体有一定的影响?因为它频率高,频率越高对人体的影响越大。所以说,安全性好,是太赫兹波的特性之一。也就是说,太赫兹波用于人体安检,无论主动式还是被动式,它对人体都是安全无害的。也正因为如此,世界上一些发达国家都在利用太赫兹技术在安检和安防领域。  其次,由于人体体温即可发射出太赫兹波,人体和物体之间的温度差,形成强弱不同的太赫兹波,机器接收后进行处理转换,最终实现探测成像 此外,太赫兹波对于某些电介质材料具有很强的穿透效果,除了可测量由材料吸收而反映的空间密度分布外,还可以通过相位测量得到折射率的空间分布,从而获得与材料相关的的更多信息。特别适合于可见光不能透过、而X射线成像的对比度又不够的场合。所以,利用太赫兹电磁波可检查机场通关的旅客与行李,检查邮件中是否藏有毒品、炭疽菌粉或炸弹等违禁物品。也就是说,利用太赫兹波不仅能检测成像,还可以检测物质成分,让毒品、爆炸物等无所遁形。可以预见,太赫兹技术未来将在反恐领域得到广泛应用。  另外,太赫兹和电磁波频谱中其它波段不一样,它几乎兼具通信、雷达和遥感测距等所有功能,而且每项应用的表现都比现有技术占优。因此,通信、军事、航天、生物诊断都是其大显身手的领域。  但是,姚院士也坦言,目前中国乃至全世界对于太赫兹波的了解还不是很深入,只是最近五年研究和应用的速度比较快。而民用方面,主要是在安全检测上。一些发达国家已经出现了太赫兹波人体安检仪,而我国也开始从实验室阶段进入到实际应用。今年,杭州举办的G20峰会期间,一种被称为“被动式太赫兹人体安检仪”的设备就已经投入测试使用。  进展 零辐射人体安检或春运期间北京试用  为了直观感受新型太赫兹人体安检设备的效果与效率,记者特意前往设立在北京亦庄锋创科技园的北京市科协院士专家工作站,现场观摩了在G20峰会期间使用过的被动式太赫兹人体安检仪的检测过程。  当随身携带金属刀、陶瓷刀、速溶奶茶、水、发胶等物品的被检人员,与没有携带物品的人员,依次从一台如银行ATM机般的机器前走过时,现场技术人员随即通过屏幕上人体图像的明暗对比,准确地排查出携带物品的可疑人员。 他介绍说,“今天演示的是双机对扫,人站在两台机器中间,这样就不用转身,大约3秒即可完成检测,非常便利。而且因为是非接触机器检查,避免了手检的尴尬和麻烦。”  据了解,检测是通过屏幕上明暗不同的成像效果来分辨人体是否携带异物。在演示现场,记者看到,一位携带陶瓷刀具的被检人员,其检测图像上能明显看出裤兜处阴影部分,技术人员说,阴影部分就是可疑物品,在实际安检中,这种情况会被要求做进一步人工安检   现场技术负责人赵光贞博士介绍,之所以该设备命名为“被动式太赫兹人体安检仪’,是相对于X射线和毫米波等主动式安检仪而言的。所谓主动式,都是由机器主动发射出光源穿透物体(或者反射回来),而被动式则是由机器被动接收人体发射出来的太赫兹波,本质上决定了“被动式太赫兹人体安检仪”是一种零辐射、零伤害的检测方式。“不同物品的温度不一样,利用温差,检测仪显示出不同颜色的呈像。”  另外,现场技术人员还告诉记者,被动式太赫兹人体安检仪还可实现动态检测,即对正在行进中的人进行扫描检测。据了解,动态扫描检测适用人流密集、安检级别高的场所,比如机场的旅客安检。但技术人员也告诉记者,这套设备虽然能实现动态检测,但是在动态模式下,成像的清晰度会受到一些影响。不过,让人期待的是,研发生产该仪器的航天十一院相关单位已经研发出第二代太赫兹人体安检设备,动态检测效果更佳。而且,新设备的示范应用点已经确定。将在今年春运期间完成测试应用。
  • 中国首台太赫兹人体安检仪投用 连蚂蚁都不放过
    鼠标轻点,仅需2.8秒即完成人体360度立体成像,实现无辐射、无接触安检通关“秒过”。国内首台具有完全自主知识产权的太赫兹人体安检仪在深圳问世,昨日起,全天候服务于深圳机场安检。  昨日中午12点50分,记者经许可来到出港安检11号通道。只见在过道一侧,摆放着一台银灰色立式圆形“怪物”。在安检人员引导下,一位乘客走进这台通透式物体,乘客站立不动,只需双手举过肩。随着工作人员轻点鼠标,仪器无声地开合一次。不足3秒钟,旅客即放行通过。而在显示仪器上,该旅客的360度人体影像被清晰地记录下来,并显示“右侧裤袋有一只手机”。因为该旅客已经通过常规安检,因此,可以放行。  记者在记录器上看到,被记录的有“左臂有纹身”、“上装领口有珍珠装饰物”、“左裤袋有一枚硬币”等等。  现场执勤的工作人员也好奇地围过来看新鲜。现场技术人员介绍说,乘客只需要站立约两三秒钟,身上携带的任何物品都会暴露无遗。  负责现场安检执勤的宝安国际机场安全检查站旅检二大队副大队长林春宣告诉记者,目前,这台仪器尚属于常规安检后的一个“保险”,从试运行效果看,完全可以识别肉眼无法直接“透视”的非金属携带物。“一旦民航局颁布统一标准,待仪器软件完善及人员培训完成后,将来可以完全取代常见的旅客安检门,且效率更高、准确性更强。”  据悉,这台太赫兹人体安检仪的问世,标志着我国在太赫兹安检领域已达到国际领先水平。据介绍,目前,基于标本库的不完整性,这台仪器只能自主识别出70%的携带物,随着数据库的充实,将来完全可以实现100%智能识别。  记者获悉,该检测仪的辐射剂量为日常使用手机的十分之一,可忽略不计 成像分辨率小于5毫米,即一个蚂蚁大小的物体都能被辨识。未来可广泛用于机场、海关、高铁、地铁等领域。目前,该仪器我们已在国内申请40余项发明专利,且正在向美国申请9项国际发明专利。  深圳机场有关人士介绍,根据民航局及省市相关要求,G20杭州峰会期间深圳机场安保升级,从9月4日至6日,每天5:30至23:30,这台太赫兹人体安检仪全天投入使用,从而间接为G20杭州峰会安保贡献一份力量。
  • 太赫兹安检+红外测温一体化系统助力战“疫”
    p   太赫兹波是介于毫米波与远红外线之间的电磁波,具有低能量、宽频谱、强穿透、瞬态性等优越特性。太赫兹技术因其在安防安检、国防军工、工业检测等众多领域具有的广泛研究与应用价值,被列为“改变未来世界的十大技术”。据多家媒体报道,日前已经有太赫兹安检+红外测温一体化仪器现身深圳、上海地铁,助力战“疫”。 br/ /p p   其中,博微太赫兹信息科技有限公司的“全过程无接触测温安检一体机”,在上海市公安局联合攻关支持下,已在上海地铁正式启用。 /p p   据介绍,“无接触”测温安检功能一体化的智能安检系统,以太赫兹人体安检仪为核心,将红外测温设备与太赫兹人体安检仪相结合,仅需被检人员正常步行通过安检区域,即可在无需停留的情况下,完成测温及安检,真正实现了“全过程无接触”模式,大大降低了安检人员与被检人员交叉感染的可能性。同时,无停留的快速通行效率,将原有的300人/小时增至1500人/小时,提升5倍,有效缓解了地铁人流聚集压力。 /p p   另外,重投华讯太赫兹集团研发的“太赫兹+红外”系列产品之一——太赫兹红外人体安检测温系统,已在福田交通枢纽测试,并已在深圳地铁集团推广使用。 /p p   据悉,该系统是深圳市发展改革委重点扶持的一批防控战疫重点项目之一。系统实现了“太赫兹技术+人工智能+红外测温”高度集成,创新使用非接触式的精准人体安检和测温功能,大幅提升安检工作效率,真正做到隔离式非接触安检测温。此次有针对性研发的太赫兹红外人体安全测温系统中加载的红外测温模块具有检测精度高、体温筛查快等显著特点,对体温超标目标实施实时拍照留存和及时自动报警。该系统投入使用,将大大降低安检人员与被检人员交叉感染的可能性,有效缓解人流密集场所安检压力。 /p

太赫兹人体安检仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制