热扩散系数测试仪原理

仪器信息网热扩散系数测试仪原理专题为您提供2024年最新热扩散系数测试仪原理价格报价、厂家品牌的相关信息, 包括热扩散系数测试仪原理参数、型号等,不管是国产,还是进口品牌的热扩散系数测试仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热扩散系数测试仪原理相关的耗材配件、试剂标物,还有热扩散系数测试仪原理相关的最新资讯、资料,以及热扩散系数测试仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热扩散系数测试仪原理相关的仪器

  • 材料的热物理性质及最终产品的导热优化性能在各工业应用领域中越来越重要。经过几十年的发展,闪射法已成为测量各种固体、粉末和液体热扩散系数和热导率常用的测量方法。 LINSEIS LFA500 是一种通用型热扩散/导热系数测试仪,可以同时测量多达18个样品的热扩散系数、导热系数和比热值。 LFA – 剖面图原理:将样品放置在炉体自动进样器内,并将炉体加热到程序设定的温度下。在该温度下样品底部受到能量脉冲(氙灯)照射 ,此能量脉冲在样品顶部产生一个均匀的温度上升过程。通过一个高速红外探测器测量样品上表面所产生的温升,热扩散系数可以根据温度上升与时间的关系数据计算得到。高温配置 Light Flash系列 — LFA 500可根据需求选择不同的炉体(-50至500°C,RT至500/1000°C/1250°C,1450°C带增压)。自动进样器LINSEIS LFA 500均配备自动进样器,拥有优异样品处理能力。LFA 500–500/1000可同时测量18个样品,LFA 500/1250可同时测量5个样本。 “DOUZA”软件组合模型全球唯 一采用闪射法同时进行热损失和有限脉冲修正的综合解决方案,适用于所有型号。 DOUZA – 适用于半透明样品的组合模式鉴于半透明样品的特性,DOUZA 模型确保了良好的测量结果。高速红外检测器或微型加热炉快速冷却及加热带来强大的测样处理能力;低质量炉拥有良好的控温能力,确保样品温度波动不引起测量误差。型号LFA 500温度范围-50 °C至 500 °CRT 至 500 °C / 1000 °C / 1250 °C (1450 °C with boost)脉冲源氙灯脉冲能量15 J/Pulse脉冲能量可调是热扩散系数测量范围0.01 至 2000 mm2/s热导率测量范围0.1 至 4000 W/(m?K)Cp重复性 ±3% (多数材料)热扩散系数重复性±1.9% (多数材料)Cp准确度±5% (多数材料)热扩散系数准确度±2.4% (多数材料)脉冲间隔可调软件控制样品固体,液体,粉末,糊状物,薄膜或其他材料样品尺寸 φ3, 6, 10, 12.7 , 25.4 mm方形样品 10×10 或 20×20 mm传感器类型InSb, LN2 cooled样品厚度薄膜 至 6 mm厚样品数量自动进样器最多可同时测量18个样品样品支架石墨, SiC, Al2O3, 金属 (其他需求可定制)气氛惰性,真空,氧化,还原电子装备集成式数据采集速率2 MHz接口USB
    留言咨询
  • 材料的热物理性质以及最终产品的导热优化在各种工业应用领域变得越来越重要。经过几十年的发展,在测量各种固体、粉末和液体热导率和热扩散系数中闪射法已经成为常用的测量方法。 Linseis LFA 1000激光导热系数测试仪采用模块化设计的精密的热扩散系数,热导率和比热的测量仪器。可同时测量6个样品。可通过更换炉体使测量温度范围从-125—2800 °C。 可以选用多种不同的样品架,适用于固体,液体,熔体和炉渣。紧凑的设计使得硬件和电子元件分离,安装一个外罩后可以适应于核应用。 型号 LFA 1000/2000样品规格Φ3,6,10,12.7/25.4 mm,厚0.1-6 mm方型:10*10 mm或20*20mm可测样品量3,6,18样品(自动进样器)温度区间-125/-100至500℃;RT至1250/1600℃;RT至2000/2400/2800℃真空10 E-5 mbar气氛真空、惰性、氧化、还原热扩散量程0.01 -- 1000 mm2/s热导率量程0.1 -- 2000 W/mK脉冲源Nd:YAG Laser脉冲能量25J/次脉冲能量可调是脉冲间隔可调 软件设定可调传感器Insb/MCT,液氮冷却*可更换炉体*价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请拨打电话咨询。我们定会将竭尽全力为您制定完善的解决方案。
    留言咨询
  • 薄膜扩散系数测试仪 400-860-5168转3405
    薄膜扩散系数测试仪应用范围适用于各种塑料薄膜、复合膜、分离膜、交换膜、橡胶、聚合物材料等产品在各种温度条件下气体透过率、扩散系数、溶解度系数、渗透系数的测定。主要特点1. 真空压差法测试原理2. 三腔独立测试3. 三腔循环介质控温,各自独立温度传感器实时监控4. 智能模式,试验过程全自动,一键式操作5. 真空泵自动启停,无需人工开关 6. 气体透过率、扩散系数、溶解度系数、渗透系数测试7. 多种试验模式可选择,可满足各种标准、非标试验8. 数据审计追踪、溯源;系统日志记录9. 5 级用户权限管理10. 温度曲线、湿度曲线、压差曲线、曲线独立显示、曲线叠加11. 可支持 DSM 实验室数据管理系统,能实现生产监控、数据统一管理 (另购)技术指标测试范围:0.01~180,000 cm3/m224h0.1MPa(标准配置)分辨 率:0.001 cm3/m224h0.1MPa试样件数:3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃(循环介质控温)控温精度:±0.1℃控湿范围:0%RH,2%RH~98.5%RH(湿度发生装置另购)控湿精度:±1%RH试样厚度:≤3mm试样尺寸:≥150 mm × 94mm 或圆形试样试样面积:48cm 2试验气体:氧气、氮气、二氧化碳、空气、氦气等气体(气源用户自备)试验压力:-0.1 MPa~+0.1 MPa(标准)气源压力:0.3 MPa~1.0 MPa气源尺寸:Ф8 mm外形尺寸:730 mm(L)×510mm(B)×350 mm(H)电源:AC 220V 50Hz净重:63 kg执行标准GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003产品配置标准配置:主机、计算机、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气减压阀、取样器、取样刀、真空密封脂、真空泵、快速定量滤纸选 购 件:湿度发生装置、标准膜、真空脂、快速定量滤纸、取样刀、DSM 实验室数据管理系统。
    留言咨询

热扩散系数测试仪原理相关的方案

热扩散系数测试仪原理相关的论坛

  • 激光热扩散/导热系数测试仪-德国linseis

    全球最先进的激光导热系数分析仪模块化设计—随时升级,体积更小大功率能量源—测量更准确6样品自动分析—节约宝贵时间高真空设计—测量更精确应用多晶石墨石墨非常适合评估激光法热导仪的性能优劣。对多晶石墨进行的测试曲线显示材料在室温附近导热系数达到最大,热扩散系数随温度增加递减。材料比热可通过参比法测得,测试显示比热与热扩散系数增减趋势相反。铜、铝分别测量了纯铜和纯铝的热扩散系数,测试结果如下图,热扩散系数的测量值与文献值之间的偏差小于 2%。体现了Linseis仪器性能的卓越。石墨(Isotropic)用LFA1000测量了蛤同性石墨的热扩散系数,与日本AIST机构的数据比较,偏差小于2%。德国林赛斯 (LINSEIS Messgeräte GmbH) 林赛斯总部位于德国巴伐利亚州泽尔布(Selb),是一家有超过50年丰富专业经验的世界领先(热)分析仪器设备生产商,公司专门致力于研究、开发、生产热分析科学仪器,其产品的技术和质量方面一直处于业界领先地位。

  • 激光闪光法标准测试规范:不同脉冲加热能量下热扩散系数测试的外推法

    激光闪光法标准测试规范:不同脉冲加热能量下热扩散系数测试的外推法

    [color=#cc0000]摘要:本文介绍了一种闪光法热扩散系数测试规范——闪光能量外推法,即在样品恒温阶段采用一系列不同大小的闪光脉冲加热能量进行测试,然后将相应的热扩散系数测试结果外推至零加热能量,由此准确得到与试验参数(样品厚度和加热能量)无关的热扩散系数准确值。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#cc0000]1.问题的提出[/color] 在采用闪光法测量材料热扩散系数过程中,诸如样品厚度和闪光脉冲加热能量这些试验参数的选择,使得测试人员最常面临的困惑就是试验参数选择合理性和测试结果的准确性,这种现象在实际测试中主要表现在以下几个方面: (1)对于相同材料和厚度的样品,设置不同闪光脉冲加热能量,往往会得到不同测试结果,无法判断加热能量参数选择的合理性和测试结果的准确性。 (2)对于未知材料,无法确定合理的样品厚度,往往造成不同样品厚度测试的热扩散系数有明显偏差。 (3)对于相同材料和厚度的样品,不同实验室采用不同型号闪光法仪器,经常会得出不同的测试结果,有时相互之间的偏差还很大。 (4)对于相同材料和厚度的样品,不同实验室采用相同型号闪光法仪器,也常会得出不同的测试结果。 总之,由于存在以上困惑,这就需要开发出一种闪光法测试规范来准确测量热扩散系数,而最终得到的热扩散系数与闪光法仪器的试验参数无关。也就是说,希望采用任何正常的闪光法设备和任意试验参数,都可以测量得到准确的热扩散系数。 本文将介绍一种闪光法热扩散系数测试规范——闪光能量外推法,即在样品恒温阶段采用一系列不同大小的闪光脉冲加热能量进行测试,然后将相应的热扩散系数测试结果外推至零加热能量,由此准确得到与试验参数(样品厚度和加热能量)无关的热扩散系数准确值。[color=#cc0000]2.外推法的基本原理[/color] 众所周知,闪光法测试中,根据温升曲线计算得到的热扩散系数取决于测试条件,如脉冲加热能量和样品厚度。图 2-1显示了温升曲线和热扩散系数随温度的变化曲线。[align=center][img=,690,341]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201616538529_4916_3384_3.png!w690x341.jpg[/img][/align][align=center][color=#cc0000]图 2-1 (a)温升曲线和(b)在Tbase附近温度对热扩散系数的依赖关系[/color][/align] 当在规定温度Tbase(脉冲加热前保持恒定)下进行激光测量时,样品温度会升高Tmax。热扩散系数是一种依赖于温度的物理性能,因此,样品背面温升曲线反映了测量过程中起始温度Tbase和最高温度Tmax之间热扩散系数的温度相关性,即闪光法热扩散系数测量结果是样品温度升高后的等效热扩散系数,而不是起始温度Tbase时样品的固有热扩散系数,由此所带来的误差就是等效热扩散系数与固有热扩散系数之间的差值,此差值就是常见闪光法热扩散系数测量误差的主要来源。 从图 2-1可以看出,当样品背面温升ΔT较大时,如果材料样品的热扩散系数对温度非常敏感,则等效热扩散系数与固有热扩散系数之间的差值将会较大。另外,较大ΔT可能会样品背温红外辐射器信号带来非线性影响,也会增大测量值偏差。 由此可见,由于背面温升ΔT的存在,对于某一样品厚度和加热能量下测试得到是等效热扩散系数,此等效热扩散系数取决于样品厚度、脉冲加热能量、脉冲光吸收率和样品体积热容。从理论上讲,背面温升ΔT越小,所测试的等效热扩散系数就越接近于固有热扩散系数。但在实际测试过程中,往往会选择较大的脉冲加热能量来获得漂亮的背面温升曲线,以提高背温信号的信噪比。由此可见,脉冲加热能量的大小与热扩散系数准确测量是一对矛盾。 为了解决上述试验参数对测量结果带来的影响,日本国家计量研究所(NMIJ)的Akoshima等人开发了一种外推法热扩散系数测试规范[1]。外推法的基本原理是在恒定温度Tbase下,假设样品厚度、脉冲光吸收率和样品体积热容不随温度发生改变,通过改变脉冲加热能量(即改变背面温升ΔT大小)测试得到一系列相应的等效热扩散系数。如图 2-2所示,以背面温升ΔT为横坐标、等效热扩散系数测量值为纵坐标,建立起等效热扩散系数与背面温升的线性函数关系,最终用此线性函数外推得到脉冲加热能量为零时的等效热扩散系数,由此认为此外推得到的热扩散系数即为样品材料在温度Tbase时的固有热扩散系数。[align=center][img=,690,402]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617142109_5211_3384_3.png!w690x402.jpg[/img][/align][align=center][color=#cc0000]图 2-2 不同加热能量时的等效热扩散系数测量结果和外推法示意图[/color][/align] 由此可见,通过外推法可以得到样品材料固有的热扩散系数,而且所得到的热扩散系数与样品厚度和脉冲加热能量无关,这样就可以在实际测试中消除了测试参数对热扩散系数测量结果的影响。[color=#cc0000]3.外推法的验证[/color] 为了全面验证外推法在闪光法热扩散系数测试中的有效性,日本国家计量研究所(NMIJ)和法国国家计量和测试实验室(LNE)开展了专门的比对测试研究[2],并计划将外推法补充到闪光法热扩散系数标准测试方法中。 对比测试选择了四种材料,分别是IG-110各项同性石墨、Armco铁、YSZ陶瓷和氮化硅,如图 3-1所示。这四种材料基本覆盖了10E-4~10E-6㎡/s范围的热扩散系数,并在脉冲光和探测光的透过性上非常有代表性,从而也代表了不同样品表面吸热涂层和遮光涂层的处理方式。[align=center][img=,690,161]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617320094_8341_3384_3.png!w690x161.jpg[/img][/align][align=center][color=#cc0000]图 3-1 外推法对比测试样品:从左到右的IG-110石墨、Armco铁、3YSZ和氮化硅 [/color][/align] 两个实验室分别在室温下分别对不同样品厚度的上述四种材料进行了测试,每种厚度样品采用不同脉冲加热能量测试表观热扩散系数,结果如图 3-2~图 3-5所示。然后针对每种厚度样品的表观热扩散系数测试结果计算获得零脉冲能量外推值。每个样品的外推值以及每个实验室的平均值和标准偏差如表 3-1所示。[align=center][color=#cc0000][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201617457894_7515_3384_3.png!w690x255.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-2 两实验室分别在室温下对不同厚度IG-110石墨样品采用不同脉冲加热能量测试得到的测试值和外推值,符号表示测试值,线条表示线性回归函数[/color][/align][align=center][color=#cc0000][img=,690,256]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618077493_2590_3384_3.png!w690x256.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-3 两实验室分别在室温下对不同厚度Armco铁样品采用不同脉冲加热能量测试得到的测试值和外推值,符号表示测试值,线条表示线性回归函数[/color][/align][align=center][color=#cc0000][img=,690,253]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618183304_8193_3384_3.png!w690x253.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-4 两实验室分别在室温下对不同厚度3YSZ样品采用不同脉冲加热能量测试得到的测试值和外推值,样品表面带金和/或石墨涂层[/color][/align][align=center][color=#cc0000][img=,690,260]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618287874_3031_3384_3.png!w690x260.jpg[/img][/color][/align][align=center][color=#cc0000]图 3-5 两实验室分别在室温下对不同厚度Si3N4样品采用不同脉冲加热能量测试得到的测试值和外推值,样品表面带金和/或石墨涂层 [/color][/align][align=center][color=#cc0000]表 3-1 两实验室对比测试四种材料的固有热扩散系数,根据室温下不同厚度样品测量的表观热扩散系数值的平均值进行估算(LNE 296K,NMIJ 298K)[/color][/align][align=center][img=,690,793]https://ng1.17img.cn/bbsfiles/images/2020/02/202002201618432974_4190_3384_3.png!w690x793.jpg[/img][/align] 在各向同性石墨的情况下(其显示出室温附近热扩散系数的强温度依赖性),从具有最大温升的温升曲线计算的表观热扩散系数比使用外推法估计的固有值小3%。由于NMIJ和LNE估计热扩散系数测量的典型不确定度约为2~3%,因此这种误差就非常明显。结果表明,外推法有助于获得固有热扩散系数,同时避免测量过程中由于样品温度变化造成的偏差。通过对两种半透明性材料(3YSZ和Si3N4)的测试对比,也证明了外推法有助于检测热扩散系数的估计值是否正确,并具有识别材料任何潜在半透明效应的功能。 通过上述NMIJ和LNE这两个国家计量机构对四种固体材料进行的热扩散系数测量,验证了外推法测试技术的有效性和准确性。尽管两实验室使用了不同的测试设备和不同的温升曲线分析方法,但两实验室测量的热扩散系数依然显示出很好的一致性。由此可以确认,结合了外推法的闪光法热扩散系数测量,在10E-4~10E-6㎡/s范围内的热扩散系数测试可以不受测量条件、仪器、分析方法和实验室的影响。[color=#cc0000]4.总结[/color] 热扩散系数是材料固有的特性,据此,热扩散率不取决于测量条件、形状和尺寸。然而众所周知,闪光法热扩散系数测试经常受到这些因素的影响,因此外推法的出现为解决上述问题提出了一个很好的解决方案。 自2005年外推法提出以来,在国际度量衡委员会(CIPM)温度测量咨询委员会第9工作组(CCT-WG9)组织的实验室间热扩散系数对比框架内,一直采用外推法这一试验规程进行所有的对比测试[3]。经过多年的验证试验和实际测试,证明了外推法主要有以下特点和优势: (1)外推法是一种通用性方法。在采用外推法测试材料热扩散系数过程中,尽管不同实验室和不同测试设备采用不同脉冲加热能量和不同数据处理方法会得到不同的外推斜率,反映了与测量仪器和所用评估方法相关的测量条件,但对应于固有热扩散系数的截距值与斜率无关。 (2)外推法对热扩散系数随温度变化敏感的材料更有效。从上述石墨与金属材料的对比测试可以看出,Armco铁的外推斜率要小于IG-110石墨外推斜率,石墨材料热扩散系数在对温度变化敏感的范围内,外推法对于更能显著提高测量的准确性。 (3)有助于识别潜在的材料半透明效应。采用外推法测量时,如果材料完全不透明则会得到与样品厚度无关的相同的外推值,反之则会看出明显的厚度变化所带来的半透明效应。这种功能在识别未知材料的潜在半透明性中非常有用。 (4)由于使用外推法只需在不同脉冲加热能量下进行测量,与样品厚度和数据处理方法无关,加上目前闪光法测试设备自动化程度很高,可以自动按照设定程序改变脉冲加热能量进行连续测量,因此只需选定一种厚度样品就可以快速准确的测定热扩散系数,既能保证测量准确性又能提高测试效率。另外,通过外推法还可以在大的信噪比下进行测量,解决了信噪比与测量精度的矛盾。[color=#cc0000]5.参考文献[/color][align=left](1) M. Akoshima, T. Baba, in Proceedings of Thermal Conductivity 28/Thermal Expansion 16, ed. by R.B. Dinwiddie, M.A. White, L. McElroy (DEStech Publications, Lancaster, 2006), p. 497–506[/align][align=left](2)Akoshima M, Hay B, Neda M, et al. Experimental verification to obtain intrinsic thermal diffusivity by laser-flash method[J]. International Journal of Thermophysics, 2013, 34(5): 778-791.[/align][align=left](3)Akoshima M, Hay B, Zhang J, et al. International comparison on thermal-diffusivity measurements for iron and isotropic graphite using the laser flash method in CCT-WG9[J]. International Journal of Thermophysics, 2013, 34(5): 763-777.[/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

热扩散系数测试仪原理相关的耗材

  • 食品工程原理实验仿真软件FES
    流程简述: “食品工程原理仿真实验”,就是利用动态数学模型实时模拟真实实验现象和过程,通过对仿真3D实验装置进行互动操作,产生和真实实验一致的结果。从而达到每个学生都能够一对一地亲自动手做实验,观察实验现象,验证公式、原理定理的目的。可以通过网络,使教师站上运行的监控程序与管理程序能方便地对下位机的学员站上运行实验仿真软件进行监控与管理,同时配有标准的实验思考题生成器,开放接口。培训工艺:1.1、流体粘度测定实验1.2、柏努利方程实验 1.3、雷诺实验 1.4、流体阻力实验 1.5、离心泵性能实验 1.6、过滤实验 1.7、传热实验 1.8、洞道干燥实验 1.9、流化床干燥实验 1.10、精馏实验 1.11、气体扩散系数测定实验1.12、液体扩散系数测定实验运行环境要求建议配置:学员站:CPU:奔腾E2140或更强的CPU(或AMD Athlon X2 4000)内存:1G以上显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows XP SP2/SP3教师站:CPU:奔腾E5200或更强的CPU(或AMD Athlon X2 5000)内存:1G以上(推荐2G以上)显卡和显示器:分辨率1024x768以上硬盘空间:至少1G剩余空间操作系统:Windows Server 2003 SP2网络要求:网络必须稳定通畅(统一式激活)
  • 爱谱斯 气体扩散电极变温测试池(燃料电池) 电解池
    气体扩散电极变温测试池(燃料电池)适用于气体扩散电极测试,如氢氧燃料电池,直接甲醇燃料电池等。电解池可以控制温度,控制实验过程中气体的流速,参比电极默认为可逆氢参比电极,工作电极可选择不同类型的气体扩展电极。另外该电解池也适合于腐蚀测试,CO2还原测试等。气体扩散电极变温测试池(燃料电池)特点:电解池集成了工作电极和对电极(惰性铂)平行布置,形成平行的电流线;参比电极位于单独的储液罐中,因此电流曲线不受干扰;工作电极可根据需要通气测试;Flex Cell电解池可通过集成加热系统将口昂之温度85°C(PP)或160°C(PTFE);Flex Cell电解池适用于电解液的pH值为-2至16;Flex Cell电解池的最小电解液体积为40ml;
  • 还原管扩散器
    还原管扩散器, PE2400 N141-1333, 铜质, 带法兰 pk1还原管扩散器, PE2400 N141-1335 , 铜质, 不带法兰 pk1 天津欧捷科技有限公司---进口元素分析耗材供应商 保证质量天津欧捷科技是一家高科技企业,公司集贸易、科研、服务一体化。公司从精密仪器设备及配件、耗材、试剂、标准对照品、实验室常用耗材的销售,到仪器调试、维护、样品的分析测试。- 实验室耗材 元素分析耗材 色谱分析耗材 质谱耗材样品容器 Labco顶空进样瓶 色谱瓶 石英棉 石英燃烧管 进样隔垫 催化剂 标准品 试剂 玻璃碳产品 仪器配件这些耗材可用在Thermo、Elementar、Agilent、Analytikjena、Sercon、Shimadzu、leco、Varian、Perkin Elmer、waters 、Euro Vector等仪器。 天津欧捷科技有限公司

热扩散系数测试仪原理相关的资料

热扩散系数测试仪原理相关的资讯

  • 北京市理化分析测试中心关于开展“闪光法测定高温合金热扩散系数”实验室间比对的通知
    p    strong 仪器信息网讯 /strong 北京市理化分析测试中心将于2019年10月中旬组织开展“闪光法测定高温合金热扩散系数”实验室间比对。本次实验室间比对秉持自愿申报的原则,暂不收取任何费用,欢迎各相关单位踊跃参加。报名截止日期:2019年9月20日。 /p p   实验室间比对是判断和监控实验室能力的有效手段之一。目前,国内外还未开展闪光法测定材料热扩散系数的能力验证活动。2018年,北京市理化分析测试中心在小范围内成功组织了闪光法测定合金样品的热扩散系数实验室间比对。 /p p   此次实验室间比对由北京市理化分析测试中心联合热分析专业委员会组织开展。详情见文末附件。 /p p br/ /p p style=" text-align: left "   联系人: 邹涛 /p p style=" text-align: left "   电话: 010-68723180 /p p style=" text-align: left "   E-mail: a7670@126.com /p p style=" text-align: left "   地址: 北京市海淀区西三环北路27号理化实验楼410房间 /p p style=" text-align: left " br/ /p p style=" line-height: 16px text-align: left " 附件:& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" line-height: 16px " a style=" color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href=" https://img1.17img.cn/17img/files/201907/attachment/e9027b5d-9940-46a4-9027-a49cd69eb871.pdf" title=" 关于开展“闪光法测定高温合金热扩散系数”实验室间比对的通知.pdf" span style=" font-size: 16px " 关于开展“闪光法测定高温合金热扩散系数”实验室间比对的通知.pdf /span /a /p p style=" line-height: 16px " a style=" color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href=" https://img1.17img.cn/17img/files/201907/attachment/0b965b1b-912b-4926-95c2-b16348fbc9b1.doc" title=" 闪光法测定高温合金热扩散系数实验室间比对报名表.doc" span style=" font-size: 16px " 闪光法测定高温合金热扩散系数实验室间比对报名表.doc /span /a /p p   & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp br/ /p p br/ /p
  • 发布热阻测试、热流法导热系数测试仪新品
    DRL-III导热系数测试仪(热流法)一、产品概述 该导热系数仪采用热流法测量不同类型材料的热导率、热扩散率以及热熔。测量参照标准 MIL-I-49456A高分子材料,陶瓷,绝缘材料,复合材料,非金属材料,玻璃,橡胶,及其它的具有低、中等导热系数的材料。仅需要比较小的样品。薄膜可以使用多层技术准确的得到测量。二、主要技术参数:1:热极温控: 室温~200℃, 测温分辨率0.01℃2:冷极温控:0~99.99℃,分辨率0.01℃3:样品直径:Ф30mm,厚度0.02-20mm;4:热阻范围:0.000005 ~ 0.05 m2K/W5:导热系数测试范围: 0.010-50W/mK, 6:精度 ≤±3%7:压力测量范围:0~1000N8: 位移测量范围:0~30.00mm9:实验方式:a、试样不同压力下热阻测试。b、材料导热系数测试。c、接触热阻测试。d、老化可靠性测试。10:配有完整的测试系统及软件平台。11:操作采用全自动热分析测试软件,快速准确对样品进行试验过程参数分析和报告打印输出。三、仪器配置:1.测试主机 1台, 2.恒温水槽 1台, 3.测试软件 1套,4.胶体粉体样品框1个,*4.计算机(打印机)用户自备典型测试材料:1、金属材料、不锈钢。2、导热硅脂。3、导热硅胶垫。4、导热工程塑料。5、导热胶带(样品很薄很黏,难以制作规则的单个样品,一边用透明塑料另外一边用纸固定)。 6、铝基板、覆铜板。 7、石英玻璃、复合陶瓷。8、泡沫铜、石墨纸、石墨片等新型材料。创新点:样品夹在两个热流传感器中间测试,温度梯度固定或可调。使用内嵌的控制器或外部电脑测得样品的导热系数与热阻。自动上板移动与样品厚度测量,所有测试参数与校正数据可存于电脑内。对校正测试与样品测试进行温度程序编制、数据查看与储存。
  • 赛成发布压差法薄膜透气性能测试仪新品
    GPT-01压差法气体渗透仪基于压差法的测试原理,是一款专业用于薄膜试样的气体透过率测试仪,适用于塑料薄膜、复合膜、高阻隔材料、片材、金属箔片、橡胶、轮胎气密性、渗透膜等在各种温度下的气体透过率、溶解度系数、扩散系数、渗透系数的测定。产品应用薄膜 复合膜 共挤膜 镀铝膜 铝箔 PP片材 PVC片材 PVDC片材GPT-01压差法气体渗透仪 技术特征:u 可同时测定试样的气体透过率、溶解度系数、以及扩散系数u 宽范围、高精度温湿度控制,满足各种试验条件下的测试u 提供比例和模糊双重试验过程判断模式u 测试量程可根据需要进行扩展,满足大透过率测试的要求u 可进行任意温度下的数据拟合,轻松获得极端条件下的试验结果u 支持有毒气体及易燃易爆气体的测试(需改制)u 系统采用计算机控制,整个试验过程自动完成u 提供标准膜进行快速校准,保证检测数据的准确性和通用性u 配备USB通用数据接口,方便数据传递测试原理GPT-01采用压差法测试原理,将预先处理好的试样放置在上下测试腔之间,夹紧。首先对低压腔(下腔)进行真空处理,然后对整个系统抽真空;当达到规定的真空度后,关闭测试下腔,向高压腔(上腔)充入一定压力的试验气体,并保证在试样两侧形成一个恒定的压差(可调);这样气体会在压差梯度的作用下,由高压侧向低压侧渗透,通过对低压侧内压强的监测处理,从而得出所测试样的各项阻隔性参数。标准该仪器满足多种国家和国际标准:ISO 15105-1、ISO 2556、GB/T 1038-2000、ASTM D1434、JIS K7126-1、YBB 00082003技术指标指标薄膜测试测试范围0.1~100,000 cm3/m224h0.1MPa(常规)上限不小于600,000 cm3/m224h0.1MPa(扩展体积)试样件数1 件真空分辨率0.1 Pa测试腔真空度<20 Pa控温范围室温~50℃控温精度±0.1℃控湿范围0%RH、2%RH~98.5%RH、***RH(湿度发生装置另购)控湿精度±1%RH试样尺寸Φ97 mm透过面积38.48 cm2试验气体O2、 N2、CO2等气体(气源用户自备)试验压力-0.1 MPa~+0.1 MPa(常规)气源压力0.4 MPa~0.6 MPa接口尺寸Ф6 mm 聚氨酯管外形尺寸460 mm (L) × 475 mm (W) × 450 mm (H)电源AC 220V 50Hz净重75 kg 标准配置:主机、 恒温控制器、计算机、专业软件、专用取样器、真空脂、快速定量滤纸、真空泵(进口) 选购件:取样刀片、真空脂、真空泵油、快速定量滤纸、湿度发生装置创新点:GPT-01采用压差法测试原理,将预先处理好的试样放置在上下测试腔之间,夹紧。首先对低压腔(下腔)进行真空处理,然后对整个系统抽真空;当达到规定的真空度后,关闭测试下腔,向高压腔(上腔)充入一定压力的试验气体,并保证在试样两侧形成一个恒定的压差(可调);这样气体会在压差梯度的作用下,由高压侧向低压侧渗透,通过对低压侧内压强的监测处理,从而得出所测试样的各项阻隔性参数。

热扩散系数测试仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制