淬火变形相变仪

仪器信息网淬火变形相变仪专题为您提供2024年最新淬火变形相变仪价格报价、厂家品牌的相关信息, 包括淬火变形相变仪参数、型号等,不管是国产,还是进口品牌的淬火变形相变仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合淬火变形相变仪相关的耗材配件、试剂标物,还有淬火变形相变仪相关的最新资讯、资料,以及淬火变形相变仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

淬火变形相变仪相关的厂商

  • 联系方式:13669892619 东莞捷承净化设备有限公司是一家专业生产滤油机、滤芯、过滤器、过滤设备、检测设备及液压元件的企业公司。从事专业的润滑油如液压油、拉伸油、锻造油、淬火油、切削油、冷却油、热传导油、汽轮机润滑油等低温流体非燃烧类油品的净化再生设备的研发、生产、销售、润滑油净化及润滑系统的维护服务。实力雄厚,生产设备先进,工艺技术和检测设施完善。我们现在已经拥有了自己的研发团队,专门从事品牌产品的研发和生产,为我国过滤行业的繁荣昌盛做出了自己的贡献 公司还拥有完善的网络销售体系,专业热情的销售团队,为国内外客户提供完善优质的服务,受到了客户们的一致好评,树立了业务精湛、管理高效、服务至上、成果优良的企业形象。   捷承净化生产的多样化产品,以及其良好的品质和服务称为众多经销商与终端客户的首选。捷承净化将努力实现工业油品管理技术的更大突破,力争为客户提供更安全、更环保、更高效的油品管理方案与设备,为更多的客户创造更大的经济效益与环保价值。
    留言咨询
  • 上海黔通仪器科技有限公司是上海高新技术企业,国家创新型企业,专业从事实验室设备和生产设备的研制。公司以引进国外先进技术,自主研发生产可提供上百款不同规格尺寸的产品,特别是在热处理 领域都处于国内同行业领先水平,其中包括:实验气氛炉、真空气氛炉、管式气氛炉,升降炉、钟罩炉、高温电阻炉,微波加热炉、差热分析仪、真空充氮干燥箱,鼓风恒温干燥箱、高温烘箱、工业炉等产品。 产品广泛用于陶瓷高温的烧结、纳米材料的烧结、金属零件淬火、玻璃的精密退火与微晶化、晶体的精密退火、陶瓷釉料制备、粉末冶金、电子电器及一切做高温实验和生产的热处理。公司产品在科研单位、高等院校、航空航天、IT产业、工矿...
    留言咨询
  • 济南吉蒂艾思仪器设备有限公司成立于2018年,公司为小规模企业在职人数为8人,集生产、销售、服务于一体,生产加工电子万能试验机、液压万能试验机、摩擦磨损试验机、扭转试验机、冲击试验机;岩石力学试验机;动态疲劳试验机;精密压装机;工艺试验机:杯突试验机、弯曲试验机、胀环试验机;端面淬火试验台,人造板、管材等其它专业试验机等。我们秉持"品质成就价值,服务成就品牌;始于用户所需,终于用户满意;以客户为关注焦点并超越客户的期望"的质量经营理念。
    留言咨询

淬火变形相变仪相关的仪器

  • L78 RITA 热膨胀变形/相变测试仪是特别适用于TTT、CHT和CCT曲线的测定。特殊感应炉体使加热和冷却速度超过2500 °C/s。该系统符合美国ASTM A1033标准 。概述: 操作的基本原理:钢材在加热和冷却过程中尺寸发生变化,热膨胀由温度变化和相变两个因素产生。测试过程中,灵敏的高速淬火膨胀仪设备用于检测和测量热循环中尺寸随时间和温度函数的变化。所产生的数据被转换为热循环中特定时间和温度下离散的应变值。应变作为时间或温度,或两者的函数,由此可以确定一个或多个相变的开始和结束。L78 RITA L78 RITA 热膨胀变形/相变测试仪的主要优势:该仪器可在真空条件下,惰性、氧化、还原气氛中进行测量,温度范围从150 ℃(低温)到1000 ℃,或室温到1600℃。独特的加热和冷却装置能够快速的控制加热和冷却,速度可达2500℃ /秒。通过可选的基座可以分析非金属样品。这种特殊的淬火/热膨胀相变仪是专为连续冷却/加热的CHT、CCT图以及等温线TTT-图的绘制设计。 所有关键参数,如加热和冷却速度、气体控制和安全功能由软件控制。32位Linseis TA- WIN软件可独立在Microsoft© 操作系统上运行。所有的程序(生成CHT / CCT / TTT图)和特殊应用是通过其自带的软件包实现。当然,可以导出ASCII码格式以及输出图形。 在加热过程中,钢材晶体发生铁素体,珠光体,贝氏体,马氏体或这些成分的组合变为奥氏体的相变。在冷却过程中,从奥氏体转变为铁素体,珠光体,贝氏体,马氏体或它们的组合。该L78 RITA淬火/热膨胀相变仪是专门设计用来测量这些苛刻的迅速膨胀。高速数据采集和控制单元,独特的气淬装置和高精度的温度测量装置该仪器的突出特点。型号L78 Rita/Q 淬冷L78 Rita/D 形变炉体电磁炉电磁炉温度范围 -150°C —— 1600°C-150°C —— 1600°CRT —— 1000°CRT —— 1000°CRT —— 1600°CRT —— 1600°C样品支架 熔融石英, Al2O3熔融石英, Al2O3样品尺寸实心/空心样品 实心样品直径约4 mm 约 5 mm长度约10 mm 约10 mm 加热速率≤2500 K/s ≤ 400 K/s 冷却速率≤ 2500 K/s ≤ 400 K/s 数据采集速率≤1000 次/秒≤1000次/秒形变力 -25 kN形变速率-0.01 - 125 mm/s数据采集间隔-60 ms气氛 惰性、氧化性、还原性、真空惰性、氧化性、还原性、真空 电源要求230VAC, 16A, 50..60Hz230VAC, 16A, 50..60Hz选项低温冷却 (≤150°C) 低温冷却 (≤150°C) *价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请拨打电话咨询。我们定会将竭尽全力为您制定完善的解决方案。
    留言咨询
  • 仪器简介:在金属合金的热处理中,加热速率、淬火速率和等温停留时间是重要的参数,决定了最终的结晶结构和所得的物理性质。这些微观结构的变化,可以通过对尺寸变化进行过程模拟与实时监控观察到。合金成分的测量可以用来创建时间 - 温度 - 转变图(TTT)和连续冷却转变图(CCT),这在加工设计和优化中是至关重要的。DIL805系列的淬火膨胀仪提供在最广的加热、冷却和变形条件范围内的最精确的测量,实现最复杂的金属加工表征和优化。技术参数:DIL 805 附件:805L 淬火热膨胀相变仪DIL805L是一台高度自动化的淬火相变热膨胀仪,可以在极端的可控的升温以及冷却条件下检测尺寸变化。空心或者实心的样本感应加热到一定的温度,然后以用户自定义的线性或指数的速率进行冷却。所测得的长度的变化表示发生在连续冷却过程或者等温条件下相变。一组冷却和等温曲线分别表示连续冷却转变CCT图和等温转变 TTT图。转变的开始和结束就是合金的相界,例如铁素体、碳化物、石墨、珠光体、贝氏体,马氏体和其他的共析相。测试实验很灵活,可以模拟任何长度和复杂度的过程。805A 淬火热膨胀相变仪805A淬火热膨胀仪是测定需要最严格的温度控制的钢合金尺寸变化和相变的新基准技术。可以在温度 -160℃〜 1500℃、加热速率高达4000K/s、冷却速度超过2500K/s的条件下,进行用于生产或热处理过程的材料反应的模拟。它可以与多种不同的附加模块配合使用,包括805D变形适配器,805T拉伸适配器和DTA / DSC测量头。在测定钢制造和热处理工艺中的临界参数方面,该仪器功能强大、使用灵活。805D 变形热膨胀相变仪钢的加工,如热轧或冷轧,需要详细了变形后的时间-温度-相变图( DTTT图)。使用变形模块,805A淬火膨胀仪扩展为控制变形。采用多种变形过程(如线性、以恒定的变形力或速度多层次)对固体样品进行压缩,实现高达25 kN或速率高达200毫米/秒的可控制力。可以执行无限数量的变形步骤,步骤之间只需40毫秒的暂停。这种独特的技术实现了对冷却和变形过程的控制, 用于创建DTTT图。 805D也可以用来检查蠕变和弛豫过程。805T 拉伸/压缩适配器805T拉伸装置,使仪器的功能进一步扩展到交变拉伸和压缩载荷。样品的膨胀测定在加热或冷却中实现,模拟了轧制加工。一旦达到所要求的温度,开始等温,进行所需的机械循环。力控制或应变控制周期可分别高达8kN或20毫米/秒。此外,拉伸负载至断裂提供了材料最终性能的其他信息。这些数据被用来生成真实应力与真实应变或应力/应变循环曲线。
    留言咨询
  • 淬火热膨胀仪型号:DIL 805DIL 805系列共包括四种型号:DIL 805,DIL 805A属于淬火热膨胀仪,DIL 805 A/D是具有压缩样品变形能力的淬火热膨胀仪,DIL 805 A/D/T还可扩展为拉伸模式。所有者四种仪器都是完全自动化的、独立的操作单元,用于测量在极端条件下控制加热和冷却的尺寸变化。在淬火模式下,空心或者实心的样品感应加热到一定的温度,然后以用户自定义的线性或直属的速率进行冷却。所测得的长度的变化表示在联系冷却过程或者等温条件下相变。一组冷却和等温曲线分别表示连续冷却转变CCT图和等温转变TTT图。DIL 805A淬火热膨胀仪是测定需要最严格的温度控制的钢合金尺寸变化和相变的新基准技术。可以在温度-160℃~1500℃、加热速率高达4000K/s、冷却速率超过2500K/s的条件下,进行用于生产或热处理的材料反应的模拟。DIL 805 A/D采用顶部淬火模式,按照0.01到 200 mm/s的控制变形率下样品变形的能力来区分。用于优化钢铁如热轧或冷轧过程,DIL 805 A/D可以形成变形后DTTT图,也可以用来检查蠕变和弛豫过程。DIL 805 A/D/T拉伸装置使仪器的功能进一步扩展到交变拉伸和压缩载荷。拉伸负载至断裂提供了材料最终性能的其他信息。这些数据被用来生成真实应力与真实应变或应力/应变循环曲线。
    留言咨询

淬火变形相变仪相关的资讯

  • 国内首台淬火/变形相变仪将落户上海大学
    德国巴赫热分析公司的世界领先产品--DIL805淬火/变形热膨胀仪(相变仪)拥有世界上众多的金属研究的用户。由于价格昂贵,在中国一直没有此领域的使用者。日前,上海大学材料学院经过反复的调研论证,已经和巴赫公司的中国总代理-北京仪尊时代科技有限公司签署了购买合同。所以,上海大学将成为国内首台高级相变仪的使用者,希望它将成为该校金属学研究的得力帮手。同时,仪尊时代感谢上海大学的信任和支持,将继续为推动此产品的市场而做出努力!有关此产品的介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。
  • 北京首台淬火/变形相变仪将落户北京科技大学
    继2006年上海大学后,北京科技大学与北京仪尊时代科技有限公司正式签约,购买德国巴赫热分析公司生产的世界领先产品--DIL805淬火/变形热膨胀仪(相变仪)。成为该设备在中国的第二个使用者。目前,德国巴赫公司在该领域的欧美市场占有率几乎百分之百。近年来,很多中国的金属、尤其是钢铁方面研究人员对该设备表现出了浓厚的兴趣,显示出中国钢铁行业在特种钢和优质钢方面长足进步,也是缩小我们与欧美国家在钢铁领域差距的一个缩影。相信该设备将成为该校金属学研究的得力帮手。 有关此产品的介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。screen.width-300)this.width=screen.width-300"
  • 淬火/变形膨胀仪(相变仪)在上海大学正式投入使用
    世界最先进的相变仪产品—德国巴赫公司的DIL805淬火/变形膨胀仪,已于2006年11月23日在上海大学顺利验收,并正式投入使用。DIL805相变仪外观雍容华贵、工艺制作精美、性能先进可靠、操作及其方便,处处绽放着顶尖级仪器的品位,备受用户的青睐。我们相信该仪器必将成为我国钢铁及合金研究领域最得力的助手。 有关此产品的详细介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。

淬火变形相变仪相关的方案

淬火变形相变仪相关的资料

淬火变形相变仪相关的试剂

淬火变形相变仪相关的论坛

  • 定形相变复合材料热性能标准测试方法及其改进

    定形相变复合材料热性能标准测试方法及其改进

    [table][tr][td][color=#cc0000]摘要:本文针对测试定形相变材料热性能的 ASTM C1784 动态热流计法(DHFM),从另外一个角度介绍了这种测试方法的具体实施过程,使得 ASTM C1784 更容易被理解、掌握和推广应用。同时,本文分析了 DHFM 方法在工程应用中存在的问题,并提出了具体技术改进措施,以便进一步研究工作的开展和真正解决各种大尺寸相变复合材料热性能的准确、可靠和快速测试问题,以便建立更具有工程应用实际意义的新标准测试方法。[/color][/td][/tr][/table][align=center][img=,690,389]http://ng1.17img.cn/bbsfiles/images/2017/12/201712172114_9883_3384_3.png!w690x389.jpg[/img][/align][color=#cc0000]1. 引言[/color] 相变材料(PCM)利用其熔融潜热以达到热存储或对环境或系统进行温度调控目的,在建筑结构中越来越多的发现PCM的应用可以降低建筑能耗和调节室内温度。其基本原理是白天 PCM 吸收部分建筑热载荷并产生熔化,而在较低温度的夜间PCM冻结释放出热量,由此来稳定控制建筑物室内空间内温度。 数值研究和现场试验表明,随着PCM 在建筑物围护结构中的应用,负荷峰值小时得以减少,峰值需求时间得到移动,可节省高达25%的制冷能源消耗,并明显提高生活舒适度。 过去的三十多年中,建筑法规越来越强调节能和能效,这导致建筑中普遍使用各种隔热技术。另一方面,PCM 技术在建筑领域中几乎没有什么实质性应用主要是因为它的初始成本要高于隔热技术,以及性能方面的问题,如易燃性和相变性能老化严重等。在过去的几年中,随着PCM材料研究、封装技术、相稳定方法和阻燃剂等方面的发展已经解决了阻碍PCM 应用的大部分问题。最近的研究表明,对于现存的隔热材料改造项目,更换或添加常规隔热材料可能并不总是改善建筑围护结构热能性能最划算的解决方案。 由于 PCM 性能和成本竞争力的提高,近年来市场上推出了多种集成 PCM 的建筑产品,如 PCM 墙体、PCM 增强隔热材料等。这些 PCM 集成部件的动态特性或相变特性,主要包括相变温度区间、潜热性能、过冷和滞后性能以及隔热性能,这些性能的准确测试对预测PCM 产品在整个系统尺度范围内的蓄热和节能潜力至关重要。在早期应用中,具有纯的和均匀的PCM 集成入建筑部件中,如大型PCM壁芯、PCM 壁管。因此,利用单纯 PCM 的动态特性对 PCM 集成产品进行能量或热性能分析已成为一种普遍做法。传统上采用差分扫描量热仪(DSC)测量 PCM 产品中的纯 PCM 成分的动态特性,然而 DSC 方法适用于典型毫米尺度和毫克质量量级的样品,DSC 法还要求样品在成分上要相对均匀。 目前最先进的 PCM 产品与早期 PCM 应用完全不同,目前的 PCM 多是以毫米尺度包裹在结构件内部,例如 PCM 增强石膏板、形状稳定(Shape Stabilized)的定形 PCM 板和 PCM 纤维增强隔热材料等。这些 PCM 集成部件的动态热性能取决于几个关键指标,如构件内 PCM 的质量分数、构件的热容量和导热系数,以及存在的添加剂(火阻燃剂、导电抑制剂、粘合剂)。此外 PCM 本身的动态特性可能会因为周围材料和外来材料的引入而产生变化,因此PCM 集成构件的动态特性与纯 PCM 的动态特性相比有显著差异。 先进的 PCM 产品在尺寸和质量上都会变得更大更重,而且在组合中往往非常不均匀而无法作为 DSC 测试中样品。此外,大量的研究表明采用 DSC 测试系统所进行的单纯 PCM热性能测试在可靠性和测试结果方面大多存在严重问题,需按照特定的操作规程执行才能得到准确结果,由此通过DSC 得到的数据用于蓄热和节能模型计算时普遍造成性能评价的不精确性。 数值计算和实验研究表明,在建筑围护结构中加入 PCM 会显著提高建筑能耗性能,但需要对 PCM的动态特性进行准确测量才能完成整个建筑的能耗模拟。此外,准确的动态测试数据对于优化建筑物内PCM 的分布和位置、最大限度实现节能至关重要。 针对大尺寸 PCM 集成部件和产品的动态热性能的准确可靠测试,实际上面临着严峻的挑战。过去仅有的成熟的热性能测试评价方法一般是利用DSC 进行测试,有时采用 T-history 法测量有限数量的材料。不幸的是DSC 方法需要较小且相对均质的测试样品,在许多PCM 增强结构产品中这一要求不切实际,因为这些材料不是均质材料,在PCM 基混合物或复合材料情况下小样品不具有代表性。 为了解决大尺寸 PCM 集成部件和产品动态热性能的准确可靠测试问题,近些年来研究了一种实验室级别的测试方法,这是一种基于传统稳态热流计法隔热性能测试技术(HFM)的动态测试技术,称之为动态热流计法(DHFM)。HFM 已经被广泛用于材料的稳态导热系数测量,DHFM 方法则是将HFM法进行了升级,这些升级通过对现有 HFM 设备的最小化改造和廉价硬件升级来实现对 PCM 复合材料热性能的准确测量。基于 DHFM 技术,美国 ASTM 在2013年制定了一个新的测试标准:ASTM C1784-13“采用热流计装置测量相变材料及其产品储热特性的标准测试方法”,并在2014年颁布的修订版。尽管DHFM 方法在工程实践中还存在一些不足,但至少使得在科学和工程领域对相变复合材料和相变材料增强产品获得了一个可靠和准确的测量工具,解决了一个标准测试方法有无问题。 上海依阳实业有限公司是从事材料的热物理性能测试技术研究和测试仪器生产的专业性机构,对传统稳态热流计法(HFM)测试技术有过深入的研究和深刻的理解,同时也生产这种测试仪器。通过对相变材料热性能测试方法(DHFM)的研究,证明了这种方法确实是一种现阶段比较有效的实验室级别的测试技术,对标准尺寸的相变复合材料样品的热性能可以做出准确的测量,但也在工程实践中发现了大量存在的具体问题。 本文针对测试定形相变材料热性能的 ASTMC1784 动态热流计法(DHFM),从另外一个角度介绍了这种测试方法的具体实施过程,使得 ASTMC1784 更容易被理解、掌握和推广应用。同时,本文分析了 DHFM 方法在工程应用中存在的问题,并提出了具体技术改进措施,以便进一步研究工作的开展和真正解决各种大尺寸相变复合材料热性能的准确、可靠和快速测试问题,以便建立更具有工程应用实际意义的新标准测试方法。[b][color=#ff0000]由于本文篇幅较大并涉及大量公式,不便在帖子上进行编辑,全文内容已做为附件呈上,请多原谅。附件全文为适合手机浏览的PDF格式文件。[/color][/b]

  • 淬火工艺、淬火介质及冷却方法

    淬火工艺是将钢加热到AC3或AC1点以上某一温度,保持一定时间,然后以适当速度冷却获得马氏体和(或)贝氏体组织的热处理工艺。 淬火的目的是提高硬度、强度、耐磨性以满足零件的使用性能。淬火工艺应用最为广泛,如工具、量具、模具、轴承、弹簧和汽车、拖拉机、柴油机、切削加工机床、气动工具、钻探机械、农机具、石油机械、化工机械、纺织机械、飞机等零件都在使用淬火工艺。(1) 淬火加热温度 淬火加热温度根据钢的成分、组织和不同的性能要求来确定。亚共析钢是AC3+(30~50℃);共析钢和过共析钢是AC1+(30~50℃)。 亚共析钢淬火加热温度若选用低于AC3的温度,则此时钢尚未完全奥氏体化,存在有部分未转变的铁素体,淬火后铁素体仍保留在淬火组织中。铁素体的硬度较低,从而使淬火后的硬度达不到要求,同时也会影响其他力学性能。若将亚共析钢加热到远高于AC3温度淬火,则奥氏体晶粒回显著粗大,而破坏淬火后的性能。所以亚共析钢淬火加热温度选用AC3+(30~50℃),这样既保证充分奥氏体化,又保持奥氏体晶粒的细小。 过共析钢的淬火加热温度一般推荐为AC1+(30~50℃)。在实际生产中还根据情况适当提高20℃左右。在此温度范围内加热,其组织为细小晶粒的奥氏体和部分细小均匀分布的未溶碳化物。淬火后除极少数残余奥氏体外,其组织为片状马氏体基体上均匀分布的细小的碳化物质点。这样的组织硬度高、耐磨性号,并且脆性相对较少。 过共析钢的淬火加热温度不能低于AC1,因为此时钢材尚未奥氏体化。若加热到略高于AC1温度时,珠光体完全转变承奥氏体,并又少量的渗碳体溶入奥氏体。此时奥氏体晶粒细小,且其碳的质量分数已稍高与共析成分。如果继续升高温度,则二次渗碳体不断溶入奥氏体,致使奥氏体晶粒不断长大,其碳浓度不断升高,会导致淬火变形倾向增大、淬火组织显微裂纹增多及脆性增大。同时由于奥氏体含碳量过高,使淬火后残余奥氏体数量增多,降低工件的硬度和耐磨性。因此过共析钢的淬火加热温度高于AC1太多是不合适的,加热到完全奥氏体化的ACm或以上温度就更不合适。 在生产实践中选择工件的淬火加热温度时,除了遵守上述一般原则外,还要考虑工件的化学成分、技术要求、尺寸形状、原始组织以及加热设备、冷却介质等诸多因素的影响,对加热温度予以适当调整。如合金钢零件,通常取上限,对于形状复杂零件取下限。 强韧化新工艺选用的淬火加热温度与常用淬火温度有所区别。如亚温淬火是亚共析钢在略低于AC3的温度奥氏体化后淬火,这样可提高韧性,降低脆性转折温度,并可消除回火脆性。如45、40Cr、60Si2等材料制成的工件亚温淬火加热温度为AC3-(5~10℃)。 采用高温淬火可获得较多的板条状马氏体或使全部板条马氏体提高强度和韧性。如16Mn钢在940℃淬火,5CrMnMo钢在890℃淬火,20CrMnMo钢在920℃淬火,效果较好。 高碳钢低温、快速、短时加热淬火,适当降低高碳钢的淬火加热温度,或采用快速加热及缩短保温时间的办法,可减少奥氏体的碳含量,提高钢的韧性。(2) 保温时间 为了使工件内外各部分均完成组织转变、碳化物溶解及奥氏体的成分均匀化,就必须在淬火加热温度保温一定时间,既保温时间。(3) 淬火介质 工件进行淬火冷却所使用的介质称为淬火冷却介质(或淬火介质)。理想的淬火介质应具备的条件是使工件既能淬成马氏体,又不致引起太大的淬火应力。这就要求在C曲线的“鼻子”以上温度缓冷,以减小急冷所产生的热应力;在“鼻子”处冷却速度要大于临界冷却速度,以保证过冷奥氏体不发生非马氏体转变;在“鼻子”下方,特别使Ms点一下温度时,冷却速度应尽量小,以减小组织转变的应力。

  • 热处理工艺-淬火工艺

    热处理工艺-淬火工艺 淬火工艺是将钢加热到AC3或AC1点以上某一温度,保持一定时间,然后以适当速度冷却获得马氏体和(或)贝氏体组织的热处理工艺。 淬火的目的是提高硬度、强度、耐磨性以满足零件的使用性能。淬火工艺应用最为广泛,如工具、量具、模具、轴承、弹簧和汽车、拖拉机、柴油机、切削加工机床、气动工具、钻探机械、农机具、石油机械、化工机械、纺织机械、飞机等零件都在使用淬火工艺。(1) 淬火加热温度 淬火加热温度根据钢的成分、组织和不同的性能要求来确定。亚共析钢是AC3+(30~50℃);共析钢和过共析钢是AC1+(30~50℃)。 亚共析钢淬火加热温度若选用低于AC3的温度,则此时钢尚未完全奥氏体化,存在有部分未转变的铁素体,淬火后铁素体仍保留在淬火组织中。铁素体的硬度较低,从而使淬火后的硬度达不到要求,同时也会影响其他力学性能。若将亚共析钢加热到远高于AC3温度淬火,则奥氏体晶粒回显著粗大,而破坏淬火后的性能。所以亚共析钢淬火加热温度选用AC3+(30~50℃),这样既保证充分奥氏体化,又保持奥氏体晶粒的细小。 过共析钢的淬火加热温度一般推荐为AC1+(30~50℃)。在实际生产中还根据情况适当提高20℃左右。在此温度范围内加热,其组织为细小晶粒的奥氏体和部分细小均匀分布的未溶碳化物。淬火后除极少数残余奥氏体外,其组织为片状马氏体基体上均匀分布的细小的碳化物质点。这样的组织硬度高、耐磨性号,并且脆性相对较少。 过共析钢的淬火加热温度不能低于AC1,因为此时钢材尚未奥氏体化。若加热到略高于AC1温度时,珠光体完全转变承奥氏体,并又少量的渗碳体溶入奥氏体。此时奥氏体晶粒细小,且其碳的质量分数已稍高与共析成分。如果继续升高温度,则二次渗碳体不断溶入奥氏体,致使奥氏体晶粒不断长大,其碳浓度不断升高,会导致淬火变形倾向增大、淬火组织显微裂纹增多及脆性增大。同时由于奥氏体含碳量过高,使淬火后残余奥氏体数量增多,降低工件的硬度和耐磨性。因此过共析钢的淬火加热温度高于AC1太多是不合适的,加热到完全奥氏体化的ACm或以上温度就更不合适。 在生产实践中选择工件的淬火加热温度时,除了遵守上述一般原则外,还要考虑工件的化学成分、技术要求、尺寸形状、原始组织以及加热设备、冷却介质等诸多因素的影响,对加热温度予以适当调整。如合金钢零件,通常取上限,对于形状复杂零件取下限。 强韧化新工艺选用的淬火加热温度与常用淬火温度有所区别。如亚温淬火是亚共析钢在略低于AC3的温度奥氏体化后淬火,这样可提高韧性,降低脆性转折温度,并可消除回火脆性。如45、40Cr、60Si2等材料制成的工件亚温淬火加热温度为AC3-(5~10℃)。 采用高温淬火可获得较多的板条状马氏体或使全部板条马氏体提高强度和韧性。如16Mn钢在940℃淬火,5CrMnMo钢在890℃淬火,20CrMnMo钢在920℃淬火,效果较好。 高碳钢低温、快速、短时加热淬火,适当降低高碳钢的淬火加热温度,或采用快速加热及缩短保温时间的办法,可减少奥氏体的碳含量,提高钢的韧性。(2) 保温时间 为了使工件内外各部分均完成组织转变、碳化物溶解及奥氏体的成分均匀化,就必须在淬火加热温度保温一定时间,既保温时间。

淬火变形相变仪相关的耗材

  • 城池牌淬火槽搅拌器,淬火油槽搅拌机,热处理淬火池搅拌器,高温淬火槽搅拌器
    淬火槽搅拌器  本淬火槽搅拌器(淬火油槽搅拌机、热处理淬火池搅拌器,高温淬火槽搅拌器)是城池工业炉针对热处理淬火工艺设计的专用型搅拌器,可适用于圆形淬火槽,方形淬火槽,也可用于混凝土淬火池。直接在开放式淬火槽槽上部边缘安装,为老式淬火槽提供一种低成本高效的淬火搅拌解决方案。  城池牌淬火槽搅拌器,淬火油槽搅拌机,热处理淬火池搅拌器,高温淬火槽搅拌器工作原理是由提供动力的电动机,通过皮带传动至搅拌轴,带动淬火液下螺旋桨式搅拌叶轮旋转。因导流筒的限制导流作用,使淬火液(淬火油)顺着导流筒的方向由上至下,转而向前经过淬火工作区,再回流至导流筒,如此反复循环,使整个淬火工作区液体连续流动。一方面可以保证淬火工作区域温度均匀,而且在淬火工件进入淬火工作区使,迅速带走淬火工件的热量,以达到快速均匀性淬火的目的。淬火槽搅拌器,淬火油槽搅拌机,热处理淬火池搅拌器,高温淬火槽搅拌器发货  淬火槽搅拌器,淬火油槽搅拌机,热处理淬火池搅拌器,高温淬火槽搅拌器为分体式结构,注定特别适用于需要高温淬火的淬火油槽。不会因为高温淬火油而造成电机温度过高而缩短电动机使用寿命。淬火槽搅拌器,淬火油槽搅拌机,热处理淬火池搅拌器,高温淬火槽搅拌器控制柜  城池牌淬火槽搅拌器安装方式为顶装式,后期维护保养及维修非常方便。特别是大型淬火槽,不需要排空淬火液。可以整体吊装出槽或者某部分故障拆卸、更换该部件即可。维修保养简单、方便、低成本。
  • 城池牌QT双液淬火槽
    城池牌QT双液淬火槽   双液淬火槽是城池工业炉根据双液淬火需求定作的专用淬火槽。  双液淬火槽设有淬火水槽、淬火油槽及控制系统组成。淬火水槽和淬火油槽也可以根据淬火工艺要求放置不同的淬火介质,且两个槽体分别有单独的搅拌机构、加热机构、温度显示和控制系统。不仅可以单独控制,而且可以通过加热淬火油使进入淬火油中的水分快速去除。PS:关于双液淬火  双液淬火法是将淬火工件自淬火温度中取出,先在快速冷却剂中冷却,使其奥氏体急速过冷至接近于马氏体转变区域,然后再在缓慢的冷却剂中冷却。一般是先水后油。  双液淬火法的优点是在奥氏体不稳定区域快冷,而在马氏体转变区域内进行慢冷。因而组织应力与热应力都比较小,故这种淬火法可适用于淬透性不大的高碳钢形状复杂的工具淬火。但使用这种淬火法也有它的缺点。首先是很难确定在第一种淬火剂中的停留时间。如果停留时间过长,产生内应力过大,失去双液淬火的意义;如果停留时间太短,就有可能在第二种冷却剂中发生向珠光体类组织的转变,因而达不到要求。有时表面虽然达到了马氏体,但中心部分温度仍高。余热过多,这样,当工件由第一种冷却剂中移入第二种冷却剂中的一瞬间,就有可能发生由内向外的加热,造成不适当的表面回火。其次是零件自第一种冷却液中取出放入第二种冷却液中的一瞬间,工件各部分温度是不均匀的,这又会造成淬火缺陷的产生。因此,采用这种方法淬火时,要求淬火工人具有足够的经验和熟练的技巧,否则很难达到预期的目的。
  • 城池牌DQT双液淬火槽
    城池牌双液淬火槽是城池工业炉根据双液淬火需求定作的专用淬火槽。  双液淬火槽设有淬火水槽、淬火油槽及控制系统组成。淬火水槽和淬火油槽也可以根据淬火工艺要求放置不同的淬火介质,且两个槽体分别有单独的搅拌机构、加热机构、温度显示和控制系统。不仅可以单独控制,而且可以通过加热淬火油使进入淬火油中的水分快速去除。PS:关于双液淬火  双液淬火法是将淬火工件自淬火温度中取出,先在快速冷却剂中冷却,使其奥氏体急速过冷至接近于马氏体转变区域,然后再在缓慢的冷却剂中冷却。一般是先水后油。  双液淬火法的优点是在奥氏体不稳定区域快冷,而在马氏体转变区域内进行慢冷。因而组织应力与热应力都比较小,故这种淬火法可适用于淬透性不大的高碳钢形状复杂的工具淬火。但使用这种淬火法也有它的缺点。首先是很难确定在第一种淬火剂中的停留时间。如果停留时间过长,产生内应力过大,失去双液淬火的意义;如果停留时间太短,就有可能在第二种冷却剂中发生向珠光体类组织的转变,因而达不到要求。有时表面虽然达到了马氏体,但中心部分温度仍高。余热过多,这样,当工件由第一种冷却剂中移入第二种冷却剂中的一瞬间,就有可能发生由内向外的加热,造成不适当的表面回火。其次是零件自第一种冷却液中取出放入第二种冷却液中的一瞬间,工件各部分温度是不均匀的,这又会造成淬火缺陷的产生。因此,采用这种方法淬火时,要求淬火工人具有足够的经验和熟练的技巧,否则很难达到预期的目的。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制