铅屏蔽罐检测

仪器信息网铅屏蔽罐检测专题为您提供2024年最新铅屏蔽罐检测价格报价、厂家品牌的相关信息, 包括铅屏蔽罐检测参数、型号等,不管是国产,还是进口品牌的铅屏蔽罐检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合铅屏蔽罐检测相关的耗材配件、试剂标物,还有铅屏蔽罐检测相关的最新资讯、资料,以及铅屏蔽罐检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

铅屏蔽罐检测相关的仪器

  • 低本底铅屏蔽室 400-860-5168转2786
    简介:LX7系列低本底铅屏蔽室采用低本底铅整体浇筑成型。提供从新铅至50年以上低本底老铅多种选材,对应不同型号。新铅经过电解提纯,不含杂质;老铅经过Pb-210至少2个半衰期的储存时间。所有铅室均采用专业一次成型浇筑,避免内部起泡,保证密度均匀,无屏蔽薄弱点,具有纯度高、本底低等特点。通过选择不同的铅塞,可完美配合ORTEC和CANBERRA等品牌的高纯锗探测器,也可配合NaI(Tl)、LaBr(Ce)等各类闪烁体实验室&gamma 能谱仪使用。基本参数及特性:外层材料:1cm低碳钢中层材料:10cm低本底铅4pi方向屏蔽内层材料:3 mm无氧铜,吸收X射线压杆式顶部平移开门设计易于清洗和去污承重桌材料:低碳钢桌脚调节范围:0-15cm占地不到半平方米:65cm x 65cm内腔尺寸:&Phi 307mm x 404mm重量:1.1吨选型指南:型号中层铅选材本底保证值适用性LX710外部5cm低本底高纯度新铅内部5cm低本底50年老铅2.0cps(50keV-2MeV@40%HPGe)HPGeLX710N10cm低本底高纯度新铅 HPGeLX710S10cm低本底高纯度新铅&mdash &mdash 闪烁体LX715外部10cm低本底高纯度新铅内部5cm低本底50年老铅1.2cps(50keV-2MeV@40%HPGe)HPGe
    留言咨询
  • 医院核磁共振屏蔽室、核磁共振电磁屏蔽机房、MRI屏蔽室  一、 核磁共振屏蔽室(磁屏蔽和射频铜板屏蔽)专用于核磁共振设备的屏蔽,防止外界电磁场干扰。根据用户需要,可设计磁场屏蔽和射频屏蔽双重功能的核磁共振屏蔽室。  二、选址与规划:  核磁机房的场地规划和选址,要综合一下因素进行考虑:核磁设备的环境要求;机房空间的最小尺寸要求;对建筑的要求;设备运输通道要求;失超管的布局规划。  核磁机房由3个房间组成:  (1)检查室,指摆放磁体病人做扫描的房间。  (2)设备室,为摆放核磁辅助机柜、精密空调、水冷机组房间。  (3)控制室,为医生操作设备拍片的房间。  三个房间最长采用的是一字型布局。  三、屏蔽效能:  按国家GB12190-90标准测试:  (1)屏蔽效能:10MHz ~100MHz ≥100dB  (2)对地绝缘性:>3KΩ-10KΩ  四、制作依据:  磁共振屏蔽体结构应尽量减少铁磁性材料,大多铁磁材料将影响磁场均匀性,影响图像质量,良好的屏蔽对图像质量的提高有很大作用。室内应采用LED灯,观察窗应敷设金属铜网屏蔽材料,双层玻璃接触必须稳固贴合,并与周围建筑物绝缘,通过一点接地,接地电阻应小于规定值。进入室内的电源线盒信号线等都必须在入口处经过滤波器屏蔽处理。  五、运输路径要求  核磁设备到货前施工方需提前准备设备吊装平台,设备吊装平台建议尺寸3m ×3m有混凝土或钢结构制作而成,完成面需铺设钢板与搬运通道齐平,吊装平台需满足承重8t以上(永磁设备16t),设备吊装完毕后方可拆除平台。  核磁设备搬运时,运输通道需平整、无坡道、无台阶、无暗沟、狭窄空间内无直角拐弯、地面承重满足8 t 以上(永磁设备16 t ),并且保证搬运路径中所有洞口尺寸不得小于2600mm(宽) × 2600mm(高),搬运洞口尺寸建议2800mm(宽) × 2800mm(高) 。若是设备安装所在楼层较高,建议搬运洞口扩大至3000 mm 宽) × 3 000mm(特殊机型如7T 高场磁共振对运输路径的要求更为严格,具体咨询生产厂家) 。  六、失超管路径规划  失超管最终出口位置必须空旷,出口处不能堵塞增大不,且需保证氮气喷出时不能伤及人员。若失超管比较长,弯头多,失超管的管径也会相应增加不少,需要根据场地情况以及相关厂家压力计算来确认管径。为保证失超管出口位置美观,且安全,磁共振机房选择与室外空旷地界相邻的房间。
    留言咨询
  • RVVP 是普通屏蔽铜芯聚氯乙稀绝缘型连接软电线,适用于通信、音频、广播、音响系统、防盗报警系统、智能自动化系统、自动抄表系统、消防系统等需防干扰线路连接、高效安全的传输数据电缆。具有更佳的电磁兼容特性。故特别适用了电磁环境较恶劣,安装距离较小的安装场所。RVVP电缆线产品可安装在桥架,软管中,用于室内安装。 RVSP屏蔽双绞线型号、名称型号结构组合方式: R—软结构电缆 V—聚氯乙烯塑料(PVC) S—双绞型 P—铜丝编织屏蔽型号、名称屏蔽双绞线RVSP RVSP屏蔽双绞电缆 RVSP 也叫RVVSP RVVPS屏蔽双绞电缆 结构:聚氯乙烯绝缘聚氯乙烯护套双绞屏蔽电缆,只适用于一般数据的传输,传输距离较近,尤其是其绝缘电阻是让人最不能忍受的只有几十兆欧。RVSP屏蔽双绞线使用环境: 1. 工作温度:一般型不超过70℃,型号后带105的不超过105℃。 2. 环境温度:固定敷设-40℃非固定敷设-15℃。 3. 额定电压U0/U 450/750V 4. 弯曲半径:无铠装层电缆应不小于电缆外径的6倍,带铠装层电缆应不小于电缆外径的12倍。
    留言咨询

铅屏蔽罐检测相关的方案

铅屏蔽罐检测相关的论坛

  • 如何完成电镜室的屏蔽

    想知道如何才能花最少的钱完成对电镜室的完全屏蔽。现我们准备安放新电镜的房间振动指标已经合格,但磁场的屏蔽方法我们却不很了解,虽然找了专门的公司做屏蔽,但国内的公司针对电镜的屏蔽也不是很了解,若有哪位对这方面有经验或相关标准,望指教。除使用铜网外还有什么方法对高频可以有效屏蔽?若要屏蔽低频选用哪个厂家的消磁器会比较好?方便的话请告知原理。对磁屏蔽,电屏蔽和电磁屏蔽分别可以选择哪种方式比较好?

  • 屏蔽网房简单说明

    说明: 适用于各种无线电发射、接收、遥控等电子产品的设计开发、生产测试、品质控制等,能提供一个无高频电磁场干扰的空间。(在常用频率300KHz-900MHz范围内衰减60-90dB).主要用于移动其主要结构特点是结构简单、安装方便、性能稳定,价格低廉。组装和拆卸性强,利于用户搬迁和扩建。结构组成: 1、壳体:有六面板体及与地面之间的绝缘处理。六面板体是由厚度为1.2mm的冷轧钢板制成单元模块,镀锌喷塑后通过M8镀锌螺栓、螺母、垫片及导电衬垫组装而成。 2、屏蔽门:结构为内外拉手单开屏蔽门,门洞尺寸为1800×750(mm)。 3、通风窗:双层金属网,四周固定,尺寸为400×400(mm)。 4、滤波器:单相电源滤波器一只。 5、室内电气:配电箱一只;板体双面静电喷塑,室内电气穿管明装,简洁大方。规格:1、200MHz低频网房,屏蔽效果85dB以上。2、1GHz高频网房,屏蔽效果75dB以上。3、2.4GHz高频网房,屏蔽效果:A型镀锌网房,70dB以上。B型全不锈钢网房,80dB以上;型 号: 宽×长×高(m)DLS-1 1.2×1.2×2(m)DLS-2 1.8×1.2×2(m)DLS-3 1.8×1.8×2(m)DLS-4 2.7×1.8×2(m)DLS-5 2.7×2.7×2(m)

铅屏蔽罐检测相关的耗材

铅屏蔽罐检测相关的资料

铅屏蔽罐检测相关的资讯

  • 国内首次!中国电科将石墨烯电磁屏蔽涂料应用于电磁屏蔽工程
    近日,中国电科33所与大同墨西科技有限责任公司通过对石墨烯电磁屏蔽涂料及其工程应用技术的联合研究,在国内首次将石墨烯电磁屏蔽涂料应用于屏蔽工程,并完成了石墨烯电磁屏蔽涂料屏蔽防护样板间的施工,屏蔽效能达到40dB,可实现电磁波阻隔99.99%。石墨烯是一种碳六元环组成的蜂窝状二维纳米材料,sp²杂化碳原子贡献的可自由移动的电子赋予了石墨烯优异的导电性和导热性,在电磁屏蔽领域拥有广泛的应用价值。石墨烯电磁屏蔽涂料不含有金属元素,具有比重小(~0.36g/cm³)、耐腐蚀性好、稳定性高、成本低廉等特点。石墨烯屏蔽涂料区别于传统的钢结构六面体式屏蔽结构,在常规房间内进行综合电磁防护设计后,在墙面上涂覆该屏蔽涂料,结合其它电磁防护产品,配合电磁防护手段,可实现40dB以上的屏蔽效果。石墨烯屏蔽涂料施工工艺简单、房屋面积利用率高,相比传统的钢结构均有显著的优势,有着广阔的前景。目前,该方案已经在山西多单位开展应用。
  • 张承青电镜实验室环境约稿[3]:低频电磁屏蔽实践
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之三,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之三 低频电磁屏蔽实践《低频电磁屏蔽实践》一文第一稿于2007年11月完成,曾被不知名朋友鼓捣到百度上置顶数年(未署名),本篇主要内容来自该文。此次经补充修改,第一次署名。孔乙己有名言:偷书不算偷,我抄自己的当然更不算啦。怕产生误解,特此说明一下。这里我们讨论一下低频电磁屏蔽的机理及推导计算(以下不加说明均指磁路分流法),和在实际工作中必须要加以注意的事项。对“感生反相电磁场法”感兴趣的朋友,请参见本系列之五《几种改善电磁环境方法比较》。许多“专业文献”在分析低频电磁屏蔽机理的机理时套用了中高频电磁屏蔽的理念和计算方法,致使计算和设计与实际结果偏差很大。有些中高频电磁屏蔽理念被盲目照搬到低频领域,造成不少误解、产生不少浪费和失误。众所周知,电磁波是磁场-电场交替传播的,既有电性又有磁性。所以往往很自然地推导出电磁波既可以用电场来度量,也可以用磁场来度量。可是这必需要做具体讨论。实际上泛泛谈论“电磁波”对讨论基本物理原理而言固然没错,但实际工作中,还必须结合频率来考虑。在频率趋于0时(频率等于零时,那就是直流磁场啦),电磁波的磁场分量趋强,电场分量渐弱;在频率升高时,电场分量趋强而磁场分量减弱。这是一个渐变的过程,没有一个明显的转变点。一般从零到几千赫兹时,用磁场分量可以较好地表征、度量和计算,所以一般我们用“高斯”或“特斯拉”做场强的单位;而在100kHz以上时,用电场分量表征比较好,这时就用伏特/米来做场强的单位。对于低频电磁环境,直截了当从减弱磁场分量入手应该是一个好办法。下面重点讨论屏蔽体内体积为40~120m3,屏蔽前磁场强度在0.5~50mGauss p-p(毫高斯 峰-峰值) 范围的低频(0~300Hz)电磁场屏蔽的实际应用(一般电镜实验室环境大致就是这样的)。考虑到性价比,屏蔽体材料如无特殊情况,一般应选择低碳钢板 Q195(旧牌号为A3)。 我们先来建立一个数学模型:1.计算式推导因为低频电磁波的能量主要由磁场能量构成,所以我们可以使用高导磁材料来提供磁旁路通道以降低屏蔽体内部的磁通密度,并借用并联分流电路的分析方法来推导磁路并联旁路的计算式。这里有以下一些定义:Ho: 外磁场强度Hi: 屏蔽内空间的磁场强度Hs: 屏蔽体内磁场强度A: 磁力线穿过屏蔽体的面积 A=L×WΦo:空气导磁率Φs:屏蔽材料导磁率Ro: 屏蔽内空间的磁阻Rs: 屏蔽材料的磁阻L: 屏蔽体长度W: 屏蔽体宽度h: 屏蔽体高度(亦即磁通道长度) b: 屏蔽体厚度由示意图一可以得到以下二式Ro=h/( A×Φo)=h/(L×W×Φo) (1)Rs=h/(2b×W+2b×L)Φs (2)由等效电路图二可以得到下式Rs= Hi×Ro/(Ho- Hi) (3)将(1)、(2)代入(3),整理后得到屏蔽体厚度b的计算式(4) b=L×W×Φo(Ho-Hi)/ (W+L) 2Φs Hi (4)注意:在(4) 式中磁通道长度h已在整理时约去,在实际计算中Φo、Φs 、Ho、Hi等物理单位也将约去,我们只需注意长度单位一致即可。由(4)式可以看出,屏蔽效果与屏蔽材料的导磁率、厚度以及屏蔽体的大小有关。屏蔽材料导磁率越高、屏蔽材料越厚则磁阻越小、涡流损耗越大,屏蔽效果越好;在导磁率、厚度等相同的情况下,屏蔽体积越大屏效越差。因为整体材料的涡流损耗比多层叠加(总厚度相同)的涡流损耗要大,所以如无特殊情况不宜选用薄的多层材料而选用厚的单层材料。2.计算式校验我们用(4)式计算并取Φo=1, L=5m,W=4m,Φs=4000,计算结果与实测数据(收集这些数据花了好几个月呢)对照比较(参见表1),发现差别很大:表1厚度(mm) 场强(%)1.5234568外磁场强度100100100100100100100实测内磁场强度60~6545~50~35~27~22~168~12计算内磁场强度18.513.99.266.945.564.633.47注:1.外磁场强度为5~20mGaussp-p。 2.为便于比较将计算数值及实测数值都归算为百分数。 3.实测值系由不同条件下的多次测试折算而得。由于各次的测试条件不完全相同,所以只能取其大约平均数。事实上,由于各种因素的影响,试图建立一个简单的数学模型直接去分析和计算低频电磁屏蔽的效果是相当困难的。通过分析,发现计算与实测相比偏差较大主要有两方面的原因。并联分流电路的函数关系是线性的,而在磁路中,导磁率、磁通密度、涡流损耗等都不是完全线性关联,许多参数互为非线性函数关系(只是在某些区间线性度较好而已)。我们在推导磁路并联旁路的机理时,为避免繁杂的计算,忽略或近似了一些参数,简化了一些条件,把磁路线性化后计算。这些因素是造成计算精度差的主要原因。另一方面,商品低碳钢板的规格一般为1.22m×2.44m,按一个长×宽×高为5×4×3m3的房间来算,焊接缝至少五六十条,即便是全部满焊,焊缝厚度也往往小于钢板的厚度。另外屏蔽体上难免有开口和间隙,这些因素造成的共同结果就是:屏蔽体磁阻增大,整体导磁率下降。用并联分流电路的分析方法推导出的磁路屏蔽计算式必须加以修正才能接近实际情况。3.修正后的计算公式在(4)式基础上,我们引入修正系数μ,且考虑到空气导磁率近似为1,得到(5)式b=μ〔L×W(Ho-Hi)/ (W+L) 2Φs Hi 〕 (5)μ在3.2~4.0之间选取。屏蔽体体积小、工艺水平高可取小值,反之取较大值为好。我们用(5)式取μ=3.4计算出的结果与实测数据对照比较(参见表2),啊哈,这下吻合度基本可以满意。表2厚度(mm)场强(%)1.5234568外磁场强度100100100100100100100实测内磁场强度60~6545~50~35~27~22~168~12计算内磁场强度62.947.231.523.618.915.711.8注:其它情况与表1相同。必须指出的是,多次测试数据表明,虽然(5)式计算结果与多次的现场实测结果吻合度较高,但后来也发现个别相差较大的实例,究其原因是属于现场施工的问题。以下是在现场施工中可能发生的几种情况:1.个别部位(如门)用了薄钢板;2.钢板没有连续焊接且拼接缝过大;3.钢板焊缝深度不足,焊缝处导磁率变小,形成多处“瓶颈”;4.屏蔽体在设备基础部位开口过大且波导口处理不当;5.随意缩短波导管的长度或加工时有偷工减料现象;6.波导管壁厚过小;7.屏蔽体多点接地致使屏蔽材料中有不均匀电流;8.屏蔽体与电源中性线相连。一两处小小疏忽就会造成屏蔽效果严重劣化。这有点类似于“水桶理论” :水桶的容量取决于最短的那块木板。对于这类隐蔽项目,质量往往由工艺保证。所以在选择一个可靠的施工单位、严格遵照设计工艺要求、加强现场施工监理、实施分阶段验收等方面,都是一定要引起高度注意的。屏蔽体的开口设计:设计一个屏蔽体,一定会碰到开口问题。常见开口设计的理论方法大多难以在低频磁屏蔽设计中直接应用。下面以一个房间的屏蔽设计为例来讨论。1.小型开口房间内安装的被屏蔽设备,一般都需要供应动力、能源和冷却水等等。这些辅助设施大多位于屏蔽室之外,通过进出水管、进排气管和电缆连接进来。我们可以将这些管道和电缆适当集中,统一经由一个或数个小孔穿过屏蔽体。小孔可用与屏蔽体相同的材料做成所谓 “波导口”,长径比为一般认为至少要达到3~4﹕1(现场条件允许的话长些更好)。例如小孔直径为80mm,则长度至少为240~320mm。2.中型开口空调的通风口、换气扇的进排气口等直径(或者正方形、长方形的边长)一般在400~600mm左右,这样算来波导口的长度将达到1200~2400mm,这在实际施工中是无法承受的。这时可以用栅格将原来的开口分隔为几个同样大小的小口。例如将一个400×400mm的进风口分隔为九个等大的栅格,则长度由1200~1600mm减少为400~530mm(栅格增加的风阻很小,可以忽略不计)。设计和加工时注意以下几点:1)栅格的材料与屏蔽体相同,不要随意减小材料的厚度;2)栅格的截面尽量接近正方形;3)在长度可以接受的情况下,尽量减少栅格的数量,以减少加工难度和风阻;4)栅格各处都要连续焊接,以免磁阻增大;5)各个开口接缝处,可以增加硅钢板就,以增加导磁性。3.可关闭的大型开口一般房间的门窗等开口都在1m×2m以至更大,这时应该依照门窗(均为与屏蔽体同样的材料制成)关闭后的非导磁间隙来设计波导口。设门窗关闭后的非导磁间隙为5mm(这在技术上并不困难,个别难以处理的地方可以加道折边),则波导口的长度为15~20mm。考虑到间隙是狭长的,这个长度尽量长些为好。注意这里的波导口并不是只由门窗的框构成,在所有的非导磁间隙处都要有一定厚度的折边,保证波导口的长度。为保证特殊情况下的安全撤离,屏蔽室的门框应特别加强,屏蔽门最好向外开启。下面有一个实际设计的例子:房间的长、宽、高分别为5米、4米和3.3米,原磁场强度x=10mGauss,y=8mGauss,z=12mGauss,试设计一低频电磁屏蔽,要求屏蔽体内任一方向的磁场强度小于2mGauss。参见图三。1.选用商品低碳钢板,Φs=4000,规格为1.22m×2.44m;2.按照(5)式分别从x、y、z三个方向来计算钢板厚度:μ取3.8,L×W分别以条件所给的长、宽、高代入,且与x、y、z等方向的原磁场强度对应。bx=3.8〔3.3m×4m×(10mGauss -2mGauss)/(4m+3.3m) 2×4000×2mGauss〕 =3.43mmby=3.8〔3.3m×5m×(8mGauss -2mGauss)/(5m+3.3m) 2×4000×2mGauss〕 =2.83mmbz=3.8〔5m×4m×(12mGauss -2mGauss)/(4m+5m) 2×4000×2mGauss〕 =5.28mm (若取长宽分别为10、6米,则可计算得b=2280/56000=8.91mm)全部钢板厚度至少为6mm(为防止环境磁场变化留有裕量亦可选用8~10mm),单层。全部焊缝要求连续焊接,并尽量使焊缝深度接近母材厚度。3.波导口处理(略。参见屏蔽体的开口设计)。以上实例完工后检测,完全达到设计要求。需要注意的是:由于磁屏蔽不能改善DC干扰环境,在需要改善DC电磁干扰环境时,需与具有消除DC功能的主动式消磁器配合使用。另有一种情况,对于电源线、变压器等产生电磁干扰的,也用铁管铁盒套住,是不是也可以改善呢?千万不要!多地多处的多次测试证明,电源线用铁管套住后磁场往往不会减少反而增大,似乎可以解释为这是加大了“源”的体积,提高了磁场发散效率。2020.10张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八 温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 谁为防辐射服制定“屏蔽保护”?
    期待更多的国家标准能够跟得上突飞猛进的市场,跟得上日新月异的社会   市场上如日中天的防辐射服正遭遇前所未有的质疑声浪。著名打假斗士方舟子关于“防辐射服起不到屏蔽作用”话音未落,日前,又有权威媒体调查称,这一类防辐射服,如果面对一个辐射源,能阻隔90%的辐射,但在多个辐射源时,防辐射服内的辐射强度反而变大。   “为了下一代的安全,我们穿还是不穿?”面对质疑,最不安的是消费者——这边商家言之凿凿防辐射产品有科学依据,那边权威媒体称有科学实验为证。到底谁更科学?公众迫切需要来自权威部门的声音。   遗憾的是,目前市场上的防辐射产品的标准多是生产企业自身定的,我国目前尚无防辐射产品的行业标准,也使得这一新兴产业既不属于医疗器械也难归工业产品,防辐射服的生产、销售等环节因此处于监管真空,以至于今天被质疑有严重安全隐患时,我们迟迟等不到相关部门的说法,看不到监管部门的行动,只听到国家服装标准化技术委员会有关人士说,防辐射标准还在起草,目前只是技术研究,要等有关机构拿出初稿、各方论证、国家审定通过后才能正式发布。   标准制定需要一定时间,只是,消费者和企业恐怕没有多少时间可等。因为,在等待的一年半载间,多少婴儿会问世?面对电磁辐射环境,孕妈们该如何选择?防辐射服的市场占有量非常巨大,一旦真有健康危害后果不堪设想。如果确是一种“科学忽悠”甚至是“科学谎言”,需要立即叫停、市场禁入,以免造成更大危害 如果安全问题与产品的质量优劣有关,需要立即加大检测、加强监管,绝不能让不安全产品、不合格服装流入市场 如果这类产品没问题,也迫切需要权威部门拿出科学解释,开展科普知识,化解公众焦虑,保证行业、产业的发展。   当然,无论哪种行动,当务之急都必须有来自权威部门的声音,尽快确认孕妇防辐射服是否“伪产品”,相应加快行业标准的制定,从而让退出与检测、监管做到严格而科学,整治混乱无序的市场。   从频谱仪、脑白金,到核酸营养,经济发展以及人们对生活质量的追求,让许多打着“科技创新”的新概念产品应运而生,其中也产生了一些“科学忽悠”甚至是“科学谎言”。诚然,产品的面世必会超前于标准的确定,监管的能力往往在解决问题中才能获得提高,民间举报、媒体监督更易先行一步发现问题,但对已经形成市场规模的产品及新兴行业及时关注、跟进、发布信息,缩短标准制定的时间差,是当前相关部门亟需提高的能力。防辐射产品市场火爆已有数年,城里准妈妈几乎人手一件孕妇防辐射服,如此庞大的消费市场,相关检测机构和监管部门难道不能更敏感、更主动吗?   行业标准缺失、滞后,监管部门缺位、无为,会让“科学忽悠”一次次上演,令消费者一回回伤财伤神,甚至威胁人们的健康安全。为了下一代的安全,期望防辐射服产品标准尽快出台。为了社会的安全,期待更多的国家标准能够跟得上突飞猛进的市场,跟得上日新月异的社会,为社会经济发展保驾护航。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制