热导池检测

仪器信息网热导池检测专题为您提供2024年最新热导池检测价格报价、厂家品牌的相关信息, 包括热导池检测参数、型号等,不管是国产,还是进口品牌的热导池检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热导池检测相关的耗材配件、试剂标物,还有热导池检测相关的最新资讯、资料,以及热导池检测相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热导池检测相关的仪器

  • 电池热失控监测传感器产品介绍ATRS-1012电池热失控监测传感器通过对电池热失控释放出的CO2和H2进行有效监测,为汽车动力电池热失控和储能消防安全进行提前快速预警,提高安全性。该传感器具有测量准确、响应时间快速、测量量程大、功耗低和寿命长等显著特点。电池热失控监测传感器产品特性精度高,响应快寿命长,免维护无气体交叉干扰,防漏报误报车规级设计,可适应恶劣车载环境电池热失控监测传感器技术参数型号ATRS-1012测量原理NDIR+TCD测量组分CO2+H2通讯方式CAN通讯参数500k测量量程CO2:0~5%volH2:0~4%vol响应时间T9015s测量精度CO2:±(10%+0.1%vol)H2:±(10%+0.1%vol)分辨率CO2:1ppmH2:1ppm工作温湿度-40℃~85℃;0~99%RH
    留言咨询
  • 甲醛检测仪,美国4160-2甲醛检测仪,interscan甲醛检测仪,进口甲醛检测仪,便携式甲醛检测仪1:人的一生,没有所谓的“弯路”,那些弯路,其实是你到达终点的必经之路。人生不存在精密计算的捷径,通往喜悦的道路,永远是发自本心的热爱。每一条路,都有甜蜜与苦涩,重点是从心选择,学会坚持,拥抱改变。 进口甲醛测试仪 美国4160-2甲醛检测仪和国产4160-II甲醛检测仪区别  很就之前小编写过一篇关于进口jia醛检测仪和国产jia醛检测仪的区别,当时那边文章的浏览量很高,也是因为我那篇文章的发布,很多客户看到后,都后台留言让我帮忙推荐一款好用的jia醛检测仪,那边今天热持小编再给大家简单介绍一下吧。  关于目前市面上常用的几款jia醛检测仪,  美国interscan 4160-2、日本理研FP-30MK2(C)、英国PPM ppm-htv、英国ppm ppm-st、美国格雷沃夫FM-801,这几个型号是目前小编从事这么多年环保行业的销售总结出来的常卖的设备。今天小编主要给大家介绍 国产的4160-II和进口4160-2jia醛检测仪的区别。其他款jia醛检测仪会在另外的文章里面做介绍,如果喜欢我的文字内容,请联系我哦~  我们分别从相同点和不同点去给大家做简单的分析介绍,  相同点,同样的量程范围0.01ppm-19.99ppm,同样的分辨率,同样的产品配置情况,同样都可以过检,同样都可以满足室内jia醛检测尤其适应于做室内jia醛治理的代理商们,这款国产的4160-IIjia醛检测仪真的是一款很棒的产品。  那设备既然说的那么好,那么国产和进口的区别到底在哪里呢?  据小道消息哈,嘻嘻,传感器肯定不一样,  1)进口传感器需要注水操作,但是国产的4160-ii 型jia醛检测仪是免维护型,无需注水操作  2)电池方面有区别,进口的jia醛检测仪 有两组电池,一组充电电池一组碱性电池,他们所分管的工作不同,给传感器供电的,给泵供电的,给气路供电的,给报jing器供电的,等等,但是国产的jia醛检测仪,只有一组锂离子充电电池,没有其他电池, 即可完全满足整个设备的供电情况。  3)充电器的接口有区别,一个是耳机插口式,另外一个是 形容不出来,反正有区别就对了。  其他的真的无可挑剔,来咨询看看,咨询看看又不要钱  国产4160-IIjia醛检测仪的简单介绍:  4160-II型jia醛分析仪采用美国进口高灵敏度jia醛电化学传感器和中央处理器组成,其灵敏度大于扩散性传感器的20-200倍,对于检测室内环境空气中低浓度游离态jia醛气体非常敏感,它可以检测室内空气非常低的挥发性游漓jia醛。  4160-IIjia醛分析仪采用3800mA大容量锂离子可充电电池,操作方便,可广泛用于室内环境检测,室内环境治理,环保装饰装修,化工场所,科研教学中jia醛检测专用设备。  国产4160-IIjia醛检测仪的产品特点:  1、标准的ppm显示单位  2、在污染环境中也可以进行回零  3、电化学传感器长寿命、高灵敏、无需复杂的注水维护  4、B-TEST可以检测提醒传感器的使用寿命  5、独特的二电极传感器设计,无需独立电池供电  6、采用DC8.4V,3800mA大容量锂离子可充电电池,无碱性电池  7、采用美国进口INTEASCAN传感器和中央处理器,国内组装,方便维修  8、完全可以替代美国4160-2型jia醛分析仪  9、已获批外观专利证书  国产4160-IIjia醛检测仪的技术参数:  检测原理:进口电化学传感器  检测方式:泵吸式  显示方式:直读数码液晶显示  检测范围:0.00-19.99ppm(高精度建议不超过5ppm)  分 辨 率: 0.01ppm  响应时间: 10S  零点漂移:±1%FS  电 源 : DC8.4V ,3800mA;  外形尺寸:177 x 103 x226 mm  国产4160-II jia醛检测仪的标准配置:  主机1台  便携背包1个  背带1个  C-12过滤器1个  连接软管1个  采样手柄1个  充电器1个  工具1个  铝制箱1个  说明书1本  合格证1个商家答疑(3)
    留言咨询
  • 电池自燃监测系统 400-860-5168转3578
    电池自燃监测系统概述: 目前,由于锂电池内部电化学反应复杂多样,单体热失控现象尚无法完全避免,致使电池自燃事故频发,锂电池热失控早期安全检测十分必要。然而,传统的温度、电压等安全性监测方法难以实现早期预警,而交流阻抗等创新性方法由于成本和准确度问题尚无法商业化应用。气体监测相对于温度、电压、爬电距离等参数具有更短的响应时间。因此,通过产气现象早期监测锂电池热安全事件具有重要的预警作用。 热失控初期,SEI膜反应分解,SEI的分解使负极暴露在电解液中,促使电解液与负极中的锂反应并生成C2H6、C2H4、C2H2等气体。采用电池自燃监测系统监测 CO、CO2、CH4、C2H6、C2H4、C2H2 、C3H6、C3H8、H2等共性⽓ 体含量和不同类型锂电池逸出气体中还可能包含的HCN、HF、HCl、NH3、苯系物等气体含量,以及温度、压力等参数。检测锂电池热失控自燃过程中多组分指标⽓ 体的⽣ 成规律,为热失控早期隐患特征信息的判别提供技术⽀ 持和理论⽀ 撑,为电池自燃火灾事故的防治工作提供科学依据。 杜克泰克公司DK-BSC 3001系列电池自燃监测系统,集成紫外吸收光谱、红外光声光谱、腔增强吸收光谱、傅里叶红外光谱、可调谐半导体吸收光谱、热导顺磁氧等技术,具有测量精度⾼ 、检测限低、实时性好、原位在线、⾼ 效测量等优点,可为热失控大样实验台和小样实验台监测系统,也为电池自燃消防火灾科学等多个方向的科学研究提供实验条件和提⾼ 电池安全生产效率。特点优势可测量 300 多种⽓ 体,比如CO、CO2、CH4、C2H6、C2H4、C2H2 、C3H6、C3H8、H2、HCN、HF、HCl、NH3、SO2、苯系物等;ppb,sub-ppm 级的检测限;采样气室/集烟罩、多点采样器、采样管线、监控微机、紫外吸收光谱气体分析传感器、光声光谱多⽓ 体分析传感器、傅里叶红外气体分析传感器、腔增强气体分析传感器、可调谐半导体吸收光谱气体分析传感器、热导/顺磁氧气体传感器、输出设备、系统软件等组成;
    留言咨询

热导池检测相关的方案

  • 热成像检测屋顶安装式太阳能电池板
    近年来,随着太阳能电池板的价格渐趋实惠,也因此销量大增,许多家庭都安装上了太阳能电池板。在屋顶安装太阳能电池板,有利于采光,但也存在不足,例如,在高层安装的话,就很难进行热成像的维修与检查。某公司提出一种创造性的解决方案:在伸缩式的桅杆上安装热像仪。
  • 使用热成像技术检查屋顶太阳能 电池板
    太阳能电池板销量猛增,这有助于减少发电厂的二氧化碳排放。随着时间的推移,太阳能电池板可能会产生故障,这些故障如果及时检测,则可以轻松修复,但如果置之不理,就会造成发电能力严重下降,在某些情况下甚至会引发火灾。这就是为什么越来越多的太阳能电池板安装厂商与提供常规热成像检查服务的富有经验的热像师开展合作,以保证太阳能系统的安全和有效部署。
  • 岛津分析仪锂离子电池正、负极检测解决方案
    岛津公司作为综合性的仪器生产商,为电池材料的性能测试和结构表征提供综合解决方案。X 射线光电子能谱仪(XPS)以光电效应为基础,致力于材料表面和界面的元素状态分析,不仅可以给出元素成分的半定量信息,还可以通过化学位移给出元素的价态信息,采用多模式氩离子刻蚀技术还可以提供沿深度的二维元素分布信息,同时可以实现原位充放电过程中的元素追踪检测;电子探针显微分析仪(EPMA)以聚焦电子束为探针,可以提供纳米尺度上的形貌像和微米尺度上元素分布信息,和SEM-EDS相比,EPMA 以其高稳定性的电子束流和波长色散的分光技术,提供更高分辨率的元素信息,在新材料开发和失效分析等领域有着不可替代的作用;扫描探针显微镜(SPM)可以查看纳米尺度上的样品形貌,追加可控气氛分析室可以观察不同气氛时样品表面情况,为表面分析和界面分析提供强有力的表征手段;X 射线衍射仪(XRD)致力于提供样品的晶体结构信息,可以实现原位充放电过程中的结构变化监测;能量色散型X射线荧光分析仪(EDX)具有高灵敏度、高分辨率以及卓越的通用性的特点,通过工作曲线法,以及具有专利的FP和背景FP法快速地进行元素的定性和定量测试,可应对电池三元材料及原材料的成分测试。此外,还有多种成分及结构分析 手段,如ICP、EDX用于正负极组分的检测、GC/GCMS用于电解液添加成分的检测、FTIR用于表面有机基团的检测、SALD用于材料粒径的检测等。

热导池检测相关的论坛

  • 热导池检测原理

    热导池检测原理在一块不锈钢块上钻上孔道,装入热敏元件(热丝),就构成热导池。热敏元件用钨丝或铼钨丝等制成,它们的电阻随温度的升高而增大,并且具有较大的温度系数,故称为“热敏”元件。钨丝的电阻温度系数为6.5×10欧/(欧度)。将两个材质、电阻相同的热敏元件,装入一个双腔的池体中,构成双臂热导池(图7-12)。一臂联接在色谱柱之前,只通载气,称为参考臂;另一臂联接在色谱柱之后,称为测量臂。两臂的电阻分别为R与R。将R、R与两个阻值相等的固定电阻R、R组成桥式电路(图7-13)。  当载气以恒定的速度通入热导池,并以恒定的电压给热导池通电时,热丝温度升高。 所产生的热量主要经载气由热传导方式传给温度低于热丝的池体;其余部分由载气的“强制”对流所带走;热辐射散失的热量很小,可忽略不计。当热量的产生与散失建立热动平衡后,热丝的温度恒定。若测量臂无样气通过,即只通载气时,两个热丝的温度相等,R=R。根据惠斯敦电桥原理,当R/R=R/R时,A、B两点间的电位差V=0。因此,此时检流计G中无电流通过(IG=0),检流计指针停在零点。  当样品由进样器注入色谱柱,分离后,某组分被载气带入测量臂时,若组分与载气的热导率不等,则测量臂的热动平衡被破坏,热丝的温度将改变。若组分的热导率小于载气的热导率,则热传导散热减少,热丝的温度升高,电阻R增大。R<R;R/R≠R/R;V≠0;IG≠0,检流计指针偏转。当组分完全通过测量臂后,指针又恢复至零点。若用记录器(电子毫伏计)代替检流计,则可记录mV-t曲线,即色谱流出曲线。  由于V的大小决定于组分与载气的热导率之差,以及组分在载气中之浓度,因此在载气与组分一定时,峰高(V)与组分在载气中的浓度成正比。

  • 【转帖】应用热导池检测器的注意事项

    热导池检测器 (TCD) 是动态比表面仪中应用较为广泛的检测器,尤其是在气体分析中应用最多。由于不断的研究和发展,精微高博动态比表面仪中的热导池检测器灵敏度很高,已越来越多应用于 ppm 级气体成份的微量分析,在许多分析应用中取代了 FID,然而,了解热导池检测器损坏的因素,可以避免不必要的损失。  热导池中的关键热导元件是用钨铼丝做的,钨铼丝直径一般只有 15μ-30μ,材料又比较容易氧化,氧化或受污染后,阻值发生变化或断损,造成热导池测量电桥的对称性被破坏,致使仪器无法正常工作,引起热导元件损坏的因素较多,注意事项归纳如下:  1. 热导池接并联双气路应用时,必须同时并联装上二根色谱柱,二路都要同时通载气,如果只装一根柱,而另一路不装柱不通载气,那么,一通电源就会将钨丝元件烧坏。  2. 在应用科创微型热导池做毛细管色谱分析时,可一路装毛细柱加尾吹,另一路必须也装上一根填充柱或空柱,同时通入载气。大多数人习惯FID毛细柱系统,往往会忽略这一点犯错误。  3. 仪器停机后,外界空气往往会返进热导池和柱系统,因此必须在开机时要先通载气 10 分钟以上再通电,停机时间越长,那么重新开机时先通载气的时间也要长,否则系统中残留的空气中氧气会将钨铼丝元件氧化或烧断。  4. 热导检测器使用的载气纯度必须四个9以上( 99.99% ),最忌载气中含氧量高, 载气不纯将会影响热导元件的使用寿命,也会降低检测灵敏度,所以载气必须脱氧净化。  5. 在更换装色谱柱时,必须检漏,保证气密性,色谱柱连接处漏气将会造成热导元件 损坏,色谱柱出口端必须填装好玻璃棉和不锈钢丝网,避免柱担体吹入TCD 。  6. 在多次进样分析后,应及时更换进样器上的硅橡胶垫,如果待到硅橡胶垫被多次注 射针扎破漏气时再更换就迟了,因为硅橡胶垫一漏,载气漏出,空气漏进,热导元件就会烧坏。分析过程中更换硅橡胶垫时,必须将热导电源关断后,再迅速换垫,换好后必须通载气几分钟后才能再通热导池电源。   7. 用平面六通阀做气体进样时,六通阀的位置必须停在二个极端位置,不能将阀旋停在中间位置,因为中间位置是六通阀将载气切断不通,这是很危险的,容易导致热导池中因不通载气而损坏。  8. 色谱柱高温老化时,必须将热导池电源关断,热导池温控关断,并且将柱出口连接 热导池进口的接头处断开,让高温老化的载气( N2 )流入柱箱内,这样可避免因柱子老化而污染热导池及钨铼丝元件。    9. 热导池桥电流的设定,必须比被分析试样组份的最高沸点高 20 -30℃ ,避免试样中 高沸点组份冷凝在热导池中和污染钨铼丝元件。   10. 热导池桥电流的设定,必须考虑所用载气的种类、工作温度和钨铼丝元件的冷阻,应明了这样的原则: ① 轻载气( H2 、 He )桥电流可大,重载气( N2 、 Ar )桥电流必须小; ② 热导池工作温度高,桥电流应减小,工作温度低,桥电流可增加; ③ 各生产厂家热导池钨铼丝元件阻值是不同的,因此,使用桥电流大小也不同,元件阻值大的,桥电流就应设定小些,具体桥电流设定可看说明书。我们要注意影响热导池灵敏度因素:1. 桥路工作电流影响电流增大,使钨丝温度提高,钨丝和热导池体的温差加大,气体容易将热量传出去,灵敏度就提高。2. 热导池体温度影响当桥路电流一定,钨丝温度一定。如果池体温度低,池体和钨丝的温差就大,能使灵敏度提高。一般池体温度不应低于柱温。但池体温度不能太低,否则被测组分将在检测器内冷凝。3. 载气的影响载气与试样的热导系数相差愈大,则灵敏度愈高。由于一般物质的热导系数都比较小,故选择热导系数大的气体,如氢气。4. 热敏元件阻值的影响[font=Arial

  • 【资料】应用热导池检测器的注意事项有哪些

    应用热导池检测器的注意事项有哪些  热导池检测器 (TCD) 是气相色谱仪中应用较为广泛的检测器,尤其是在气体分析中应用最多。由于不断的研究和发展,科创色谱仪器中的热导池检测器灵敏度最高,已越来越多应用于 ppm 级气体成份的微量分析,在许多分析应用中取代了 FID,然而,热导池检测器损坏的因素,避免不必要的损失。  热导池中的关键热导元件是用钨铼丝做的,钨铼丝直径一般只有 15μ-30μ,材料又比较容易氧化,氧化或受污染后,阻值发生变化或断损,造成热导池测量电桥的对称性被破坏,致使仪器无法正常工作,引起热导元件损坏的因素较多,注意事项归纳如下:  1 、热导池接并联双气路应用时,必须同时并联装上二根色谱柱,二路都要同时通载气,如果只装一根柱,而另一路不装柱不通载气,那么,一通电源就会将钨丝元件烧坏。  2 、在应用科创微型热导池做毛细管色谱分析时,可一路装毛细柱加尾吹,另一路必须也装上一根填充柱或空柱,同时通入载气。大多数人习惯FID毛细柱系统,往往会忽略这一点犯错误。  3 、仪器停机后,外界空气往往会返进热导池和柱系统,因此必须在开机时要先通载气 10 分钟以上再通电,停机时间越长,那么重新开机时先通载气的时间也要长,否则系统中残留的空气中氧气会将钨铼丝元件氧化或烧断。  4 、热导检测器使用的载气纯度必须四个9以上( 99.99% ),最忌载气中含氧量高, 载气不纯将会影响热导元件的使用寿命,也会降低检测灵敏度,所以载气必须脱氧净化。  5 、在更换装色谱柱时,必须检漏,保证气密性,色谱柱连接处漏气将会造成热导元件 损坏,色谱柱出口端必须填装好玻璃棉和不锈钢丝网,避免柱担体吹入TCD 。  6 、在多次进样分析后,应及时更换进样器上的硅橡胶垫,如果待到硅橡胶垫被多次注 射针扎破漏气时再更换就迟了,因为硅橡胶垫一漏,载气漏出,空气漏进,热导元件就会烧坏。分析过程中更换硅橡胶垫时,必须将热导电源关断后,再迅速换垫,换好后必须通载气几分钟后才能再通热导池电源。   7 、用平面六通阀做气体进样时,六通阀的位置必须停在二个极端位置,不能将阀旋停在中间位置,因为中间位置是六通阀将载气切断不通,这是很危险的,容易导致热导池中因不通载气而损坏。  8 、色谱柱高温老化时,必须将热导池电源关断,热导池温控关断,并且将柱出口连接 热导池进口的接头处断开,让高温老化的载气( N2 )流入柱箱内,这样可避免因柱子老化而污染热导池及钨铼丝元件。    9 、热导池桥电流的设定,必须比被分析试样组份的最高沸点高 20 -30℃ ,避免试样中 高沸点组份冷凝在热导池中和污染钨铼丝元件。   10 、热导池桥电流的设定,必须考虑所用载气的种类、工作温度和钨铼丝元件的冷阻,应明了这样的原则: ① 轻载气( H2 、 He )桥电流可大,重载气( N2 、 Ar )桥电流必须小; ② 热导池工作温度高,桥电流应减小,工作温度低,桥电流可增加; ③ 各生产厂家热导池钨铼丝元件阻值是不同的,因此,使用桥电流大小也不同,元件阻值大的,桥电流就应设定小些,具体桥电流设定可看说明书。我们要注意影响热导池灵敏度因素:1,桥路工作电流影响电流增大,使钨丝温度提高,钨丝和热导池体的温差加大,气体容易将热量传出去,灵敏度就提高。2,热导池体温度影响当桥路电流一定,钨丝温度一定。如果池体温度低,池体和钨丝的温差就大,能使灵敏度提高。一般池体温度不应低于柱温。但池体温度不能太低,否则被测组分将在检测器内冷凝。3,载气的影响载气与试样的热导系数相差愈大,则灵敏度愈高。由于一般物质的热导系数都比较小,故选择热导系数大的气体,如氢气。4,热敏元件阻值的影响选择阻值高,电阻温度系数较大的热敏元件(钨丝),当温度有一些变化时,就能引起电阻的明显变化,灵敏度就高。

热导池检测相关的耗材

  • 安捷伦 热导检测器(TCD) 备件G2630-61230 6850 TCD可更换的热导池 其他色谱配件
    G2630-612306850 TCD可更换的热导池确定TCD 的电子压力控制(EPC) 类型如果您使用6890A 或6890A Plus 气相色谱,您的TCD 的电子流路控制模块设计可能是老式的。老式设计需要拆下金属板才能将TCD 参比气管线安装在气相色谱内部。新的“多路管”设计允许将TCD 参比气直接连接到气相色谱的后面。更换TCD 热导池体组件,根据不同的EPC 设计有不同的部件号。一旦您确定了EPC 模块的类型,就要决定是否购买钝化的热导池组件。钝化的组件推荐用于脂肪酸或反应活性/酸性样品的分析。TCD 热导丝池体组件仪器钝化的应用性能指标EPC 设计部件号7890A 是标准TCD 分析气体/烃类化合物完整的检测器组合件包含检测器托架和加热器/传感器组件老式的G3432-602207890A 是标准TCD 分析气体/烃类化合物完整的检测器组合件包含检测器托架和加热器/传感器组件第三检测器, 侧面安装老式的G3432-602216890 否标准TCD 分析气体/烃类化合物只有热丝块必须重新使用加热器/传感器老式的G1532-606756890 否标准TCD 分析气体/烃类化合物只有热丝块必须重新使用加热器/传感器多管G1532-606856890 是推荐用于脂肪酸分析只有热丝块必须重新使用加热器/传感器老式的G1532-606906890/6850 是推荐用于脂肪酸分析只有热丝块必须重新使用加热器/传感器多管G1532-606956890/6850 否完整的检测器组合件包含检测器托架和加热器/传感器组件多管G2630-61230
  • 高灵敏度检测池
    高灵敏度检测池 安捷伦高灵敏度检测池——使灵敏度提高一个数量级的技术飞跃——为毛细管电泳中常见的灵敏度不够问题提供了解决方案。从而大大增强毛细管电泳在手性药物杂质分析、生物样品和环境中的目标化合物分析等方面的应用。宽线性范围可在一次分析中对主成分和 0.1% 的杂质同时进行定量。这将有助于对所有杂质进行测定,特别是分析手性剩余物。Agilent CE 系统的高灵敏度检测池与标准毛细管相比,不仅提高了10 倍以上的灵敏度,而且将线性范围扩展到2000 mAU 以上,提供了卓越的光谱功能。这些改进受益于专利微型机电技术,它将检测光程从75 μm 扩展到1200 μm,同时大大减少了杂散光。高灵敏度检测池的设计包含熔融石英池体和可拆卸的毛细管。通过检测池的光路使用黑色熔融石英制造,这大大减少了杂散光,确定了二极管阵列光谱仪的通光孔。此外,内部反射功能就像一个“光管”,保证进入检测池的光几乎100% 都被传导。这些特性大大增强了线性范围和卓越的二极管阵列检测器光谱性能。安捷伦高灵敏度检测池的特点信噪比提高10 倍检测器线性范围超过2000 mAU,可用于准确定量分析可拆卸的设计有利于快速更换毛细管,并降低操作成本特殊的毛细管几何尺寸保证了峰的对称性完整的二极管阵列光谱功能适合于所有安捷伦的CE 仪器订户信息:高灵敏度检测池说明G7100 CE部件号G1600 CE部件号高灵敏度检测池工具包G7100-68723G1600-68723包括检测池、一对内径为75μm的入口毛细管(72cm)和出口毛细管(8.5cm)、毛细管支架盒、装配用具(3个具有密封垫的装配螺丝,2个装配帽)、清洗溶液和CE附带的CD-ROMCE 池接头工具包—G1600-63200包括 3 个接头螺丝、2 个接头帽更换检测池—G1600-60027检测池清洗溶液,1 L—5062-8529
  • 高灵敏度检测池用毛细管附件包
    高灵敏度检测池 安捷伦高灵敏度检测池——使灵敏度提高一个数量级的技术飞跃——为毛细管电泳中常见的灵敏度不够问题提供了解决方案。从而大大增强毛细管电泳在手性药物杂质分析、生物样品和环境中的目标化合物分析等方面的应用。宽线性范围可在一次分析中对主成分和 0.1% 的杂质同时进行定量。这将有助于对所有杂质进行测定,特别是分析手性剩余物。Agilent CE 系统的高灵敏度检测池与标准毛细管相比,不仅提高了10 倍以上的灵敏度,而且将线性范围扩展到2000 mAU 以上,提供了卓越的光谱功能。这些改进受益于专利微型机电技术,它将检测光程从75 μm 扩展到1200 μm,同时大大减少了杂散光。高灵敏度检测池的设计包含熔融石英池体和可拆卸的毛细管。通过检测池的光路使用黑色熔融石英制造,这大大减少了杂散光,确定了二极管阵列光谱仪的通光孔。此外,内部反射功能就像一个“光管”,保证进入检测池的光几乎100% 都被传导。这些特性大大增强了线性范围和卓越的二极管阵列检测器光谱性能。安捷伦高灵敏度检测池的特点信噪比提高10 倍检测器线性范围超过2000 mAU,可用于准确定量分析可拆卸的设计有利于快速更换毛细管,并降低操作成本特殊的毛细管几何尺寸保证了峰的对称性完整的二极管阵列光谱功能适合于所有安捷伦的CE 仪器订户信息:高灵敏度检测池用毛细管附件包说明有效长度(cm)G1600 CE部件号75 μm 毛细管套装,带 8.5 cm 出口端56G1600-6871672G1600-6871588G1600-6871475 μm PVA 涂层毛细管附件包,出口为8.5cm56G1600-68319

热导池检测相关的资料

热导池检测相关的资讯

  • 日本岛津推出Nexera X2光电二极管阵列检测器用高灵敏度检测池
    近日,日本岛津制作所推出了高灵敏度选配检测池,进一步提高了UHPLC(超快速液相色谱仪)系列Nexera X2的灵敏度。 Nexera X2光电二极管阵列检测器 SPD-M30A的流动池「SR-Cell」增添了长光程(85mm)的高灵敏度检测池,可以构筑灵敏度高于标配检测池(光程10mm)5倍の分析系统,在医药品中微量杂质检测・ 定量等需进行高灵敏度检测的领域发挥威力。 另外,Nexera X2还追加了新的数据处理功能&mdash 动态量程扩展功能i-DReC,即使在高浓度区域饱和的色谱图,通过线性自动校正,也可以在以往10倍的高浓度区域内获得良好的线性。   追加高灵敏度检测池与i-DReC功能后,Nexera X2可测定的浓度范围最大扩展到50倍,应用领域大幅扩大,可以赢得遗传毒性试验中的痕量杂质分析、合成化合物的纯度确认・ 稳定性试验等广泛用途。 烷基酮分析时标准检测池与高灵敏度检测池的S/N比较 ● 医药品杂质分析例 高灵敏度检测池可以充分应对医药品中以标准检测池难以检测的杂质。使用Nexera SR系统,分别以标准检测池与高灵敏度检测池(选配)分析了缬沙坦和其分解生成物。使用高灵敏度检测池可以检测痕量杂质。Nexera SR系统与高灵敏度检测池组合成为痕量成分分析的利器。 缬沙坦杂质分析中高灵敏度检测池的灵敏度 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 岛津CT助力锂离子动力电池检测(下)
    近年来,新能源汽车屡屡发生起火、自燃等动力电池安全事故,提升动力电池安全迫在眉睫。经过多年的发展,动力电池从最初的圆柱电池,发展到方形、软包电池,容量提升,形式多样。上篇中,上篇中,我们展示了岛津CT在正极材料和负极材料观测方面的应用。本篇我们将展示岛津CT观测各种成品电池和对电池原位充放电的实时观察。 成品动力锂电池CT的观察在成品动力锂电池检查中,CT检测可以发现动力锂电池内部缺陷,比如内部杂质、正负极扭曲变形、正负极片短路和正负极片的断裂等不良。在长期充放电使用及激烈碰撞后,这些不良容易造成电池短路,甚至可能造成新能源汽车自燃和爆炸。 岛津SMX-225CT FPD HR Plus微焦点X射线CT系统 CT检测是失效分析和产品工艺优化及品质控制的重要手段。通过对失效的动力锂电池进行无损检测,在不破坏失效动力锂电池结构的情况下获得真正失效原因。通过对动力锂电池的内部结构观察及尺寸测量,可以优化生产工艺、提高品质。 电池内部结构及缺陷观察目前动力锂电池电芯生产主要有卷绕和叠片两种制造工艺,对应的动力锂电池结构形式主要为圆柱和方形、软包三种,圆柱和方形锂电池主要采用卷绕工艺生产,软包锂电池则主要采用叠片工艺制造。圆柱锂电池主要以18650为主,方形锂电池外壳采用硬铝壳包装,而软包锂电池采用铝塑料包装。 运用CT对18650动力锂电池检测可观察内部正负极及隔离膜,因此内部变形及金属杂质可以清晰地被检测到。通过对正极极片展开,可观察到极片上的孔隙。图1给出了18650动力锂电池的CT图像。 图1 18650动力锂电池CT图像 图2是方形动力锂电池的CT扫描图像,外形尺寸为L150mm´W100mm´H26mm。 通过扫描半电池可以清晰地看到电池正负极片和杂质以及激光焊接部位的孔隙。甚至有机质的隔离膜也能够被观察到。 图2 方形动力锂电池CT图像 软包叠片动力锂电池的常见缺陷为极片开裂破损、有杂质及当封入外壳时负极变形等,CT检测是此缺陷观察必要手段。如图3所示。 图3 软包叠片动力锂电池CT图像 电池内部尺寸测量在电池生产中,尺寸质量控制的要求变得越来越复杂,无法使用传统的测量技术进行测量,更不可能对电池进行切割或破坏后再进行检测。此时,需要使用微焦点CT对电池内部缺陷及结构进行尺寸测量。从而能够评估产品制造过程和优化产品。 图4是18650动力锂电池在空电和满电状态下的电芯尺寸测试,通过比较发现满电状态比空电状态下的电芯尺寸膨胀了约0.2mm。这对电池研发人员设计很有帮助。 图4 18650动力锂电池空电和满电状态电芯尺寸测量 在方形动力锂电池中,满电时的极片厚度尺寸测量、正负极对齐测量和封装时电芯与外壳的距离等这些尺寸对电池生产厂家都有很重要的参考意义,如图5所示。 图5 方形动力锂电池尺寸测量 图6给出了软包动力锂电池中的孔隙及金属杂质尺寸测量,这些缺陷都可能会引起电池起火或自燃。 图6 软包动力锂电池尺寸测量 电池原位充放电循环中的CT观察通过对原位动力锂电池充放电试验,可以观察电池在循环充放电情况下的状态。X射线微焦点CT作为对动力锂电池充放电循环检查的重要一环,可以直观观察动力锂电池在不同状态下内部结构的变化,为研发及生产制造提供数据。 图7从2D截面图像和3D图像示出了100次、500次、1000次、1500次动力锂电池的充放电试验CT测试图像。从而观察到随着充放电次数的增加,动力锂电池由于内部产生的惰性气体的释放而不断膨胀。图7 动力锂电池充放电实验CT观察 通过以上案例展示,岛津X射线微焦点CT不仅可以观察动力锂电池正负极片材料内部微观结构,还可以观察成品动力锂电池的内部结构及缺陷。结合尺寸测量定量分析,为动力锂电池研发设计者及生产制造商提供帮助,优化生产流程及制造工艺,为新能源汽车提供安全保障。
  • 岛津CT助力锂离子动力电池检测(下)
    近年来,新能源汽车屡屡发生起火、自燃等动力电池安全事故,提升动力电池安全迫在眉睫。经过多年的发展,动力电池从最初的圆柱电池,发展到方形、软包电池,容量提升,形式多样。 上篇中,我们展示了岛津ct在正极材料和负极材料观测方面的应用。本篇我们将展示岛津ct观测各种成品电池和对电池原位充放电的实时观察。 成品动力锂电池ct的观察 在成品动力锂电池检查中,ct检测可以发现动力锂电池内部缺陷,比如内部杂质、正负极扭曲变形、正负极片短路和正负极片的断裂等不良。在长期充放电使用及激烈碰撞后,这些不良容易造成电池短路,甚至可能造成新能源汽车自燃和爆炸。 岛津smx-225ct fpd hr plus微焦点x射线ct系统 ct检测是失效分析和产品工艺优化及品质控制的重要手段。通过对失效的动力锂电池进行无损检测,在不破坏失效动力锂电池结构的情况下获得真正失效原因。通过对动力锂电池的内部结构观察及尺寸测量,可以优化生产工艺、提高品质。 电池内部结构及缺陷观察 目前动力锂电池电芯生产主要有卷绕和叠片两种制造工艺,对应的动力锂电池结构形式主要为圆柱和方形、软包三种,圆柱和方形锂电池主要采用卷绕工艺生产,软包锂电池则主要采用叠片工艺制造。圆柱锂电池主要以18650为主,方形锂电池外壳采用硬铝壳包装,而软包锂电池采用铝塑料包装。 运用ct对18650动力锂电池检测可观察内部正负极及隔离膜,因此内部变形及金属杂质可以清晰地被检测到。通过对正极极片展开,可观察到极片上的孔隙。图1给出了18650动力锂电池的ct图像。 图1 18650动力锂电池ct图像 图2是方形动力锂电池的ct扫描图像,外形尺寸为l150mm´w100mm´h26mm。 通过扫描半电池可以清晰地看到电池正负极片和杂质以及激光焊接部位的孔隙。甚至有机质的隔离膜也能够被观察到。 图2 方形动力锂电池ct图像 软包叠片动力锂电池的常见缺陷为极片开裂破损、有杂质及当封入外壳时负极变形等,ct检测是此缺陷观察必要手段。如图3所示。 图3 软包叠片动力锂电池ct图像 电池内部尺寸测量 在电池生产中,尺寸质量控制的要求变得越来越复杂,无法使用传统的测量技术进行测量,更不可能对电池进行切割或破坏后再进行检测。此时,需要使用微焦点ct对电池内部缺陷及结构进行尺寸测量。从而能够评估产品制造过程和优化产品。 图4是18650动力锂电池在空电和满电状态下的电芯尺寸测试,通过比较发现满电状态比空电状态下的电芯尺寸膨胀了约0.2mm。这对电池研发人员设计很有帮助。图4 18650动力锂电池空电和满电状态电芯尺寸测量 在方形动力锂电池中,满电时的极片厚度尺寸测量、正负极对齐测量和封装时电芯与外壳的距离等这些尺寸对电池生产厂家都有很重要的参考意义,如图5所示。 图5 方形动力锂电池尺寸测量 图6给出了软包动力锂电池中的孔隙及金属杂质尺寸测量,这些缺陷都可能会引起电池起火或自燃。 图6 软包动力锂电池尺寸测量 电池原位充放电循环中的ct观察 通过对原位动力锂电池充放电试验,可以观察电池在循环充放电情况下的状态。x射线微焦点ct作为对动力锂电池充放电循环检查的重要一环,可以直观观察动力锂电池在不同状态下内部结构的变化,为研发及生产制造提供数据。 图7从2d截面图像和3d图像示出了100次、500次、1000次、1500次动力锂电池的充放电试验ct测试图像。从而观察到随着充放电次数的增加,动力锂电池由于内部产生的惰性气体的释放而不断膨胀。 图7 动力锂电池充放电实验ct观察 通过以上案例展示,岛津x射线微焦点ct不仅可以观察动力锂电池正负极片材料内部微观结构,还可以观察成品动力锂电池的内部结构及缺陷。结合尺寸测量定量分析,为动力锂电池研发设计者及生产制造商提供帮助,优化生产流程及制造工艺,为新能源汽车提供安全保障。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制