荷叶碱

仪器信息网荷叶碱专题为您整合荷叶碱相关的最新文章,在荷叶碱专题,您不仅可以免费浏览荷叶碱的资讯, 同时您还可以浏览荷叶碱的相关资料、解决方案,参与社区荷叶碱话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

荷叶碱相关的耗材

荷叶碱相关的仪器

  • HT-ZWZG-B植物株高测量仪1.1 产品简介: 株高是植物遗传形状的重要表征,有的植株要求测量高度达到5米以上。本便携式株高测高仪通过智能手机连接来高精度快速自动测量植株高度。 1.2 主要技术指标 1、通过手机扫描农作物条码自动获得植株编号,并通过激光测距仪来一键测量获得农作物植株高度。2、通过传输自动将激光测距的植株高度数据发送至手机,并对应到植株编号,同个编号可有多个测量数据,以便测量数据更稳定。3、植株高度测量范围:0.2米~5米(单株测量时间≤2秒,测量误差≤±2.0mm)。4、测量结果可保存和输出至EXCEL表,并可通过云平台保存数据,多设备随时随地查看。手持部分总重≤750g。 1.3 标准配置 1、激光测距仪1台2、测距仪固定夹1付3、安卓手机1台4、碳纤维4米伸缩杆1付5、测距尺1付
    留言咨询
  • 粽叶清洗机有上下两层毛刷辊制作,毛刷辊有特殊材料制作,不会对粽叶产生损伤,毛刷辊的软硬适中。粽叶清洗机架体采用SUS304不锈钢制作,不生锈,不腐蚀。在设备的下方带有循环水水箱,水箱中带有循环水装置,补水装置。使用时将水箱内放满水,经循环水泵循环到设备上方的喷淋管进行冲洗,清洗下来的水在落入水箱循环使用。用户在使用时用水量非常的小。因规格不同,价格有所差异,故此定价仅供参考下单前请一定联系我们
    留言咨询
  • HTMJ-S 叶面积分析测量仪(普通) 1.1 用途: 用于植物叶面积分析等。 1.2 主要技术指标 1 、配 Windows 系统平板电脑(≥11.6”/4G 内存/64G 固态硬盘/500 万 像素拍照/支持 WIFI 无线网络)、10000mAH 的 12V 移动电源辅助背光 源板,可野外背光照明 3 小时。最大测量面积为 A4 幅面, 自动标定 和自动图像校正。2 、拍照与分析一键化操作,大批量全自动分析多片叶的叶片面积、 周长,最大叶长、最大叶宽,矩形度,凹凸比,球状性,形状系数, 虫洞数量,虫洞面积、叶柄长宽等参数,并标记叶片边缘以便核对正 确性。3 、可分析小至 1mm ^2 的叶片,分析误差<0.5% 、测量中的分析时 间<2 秒,自动独立标记各叶片并可保存图,分析结果可输出至 Excel 表。4 、可自动测定非相碰的稻谷、小麦、瓜子等普通种子的各粒粒长、 粒宽、投影粒面积。1.3 标准配置 1 、叶面积分析仪系统软件 U 盘及软件锁 1 套2 、辅助背光源板 1 套3 、平板电脑一台
    留言咨询

荷叶碱相关的试剂

荷叶碱相关的方案

荷叶碱相关的论坛

  • 【求购】荷叶生物碱

    哪位前辈有N-去甲基荷叶碱,O-去甲基荷叶碱,莲碱,阿朴啡的纯品,急需,谢谢,有其中一种即可[em0808]

  • 【资料】奇妙的荷叶效应!

    众所周知,水滴落在荷叶上,会变成了一个个自由滚动的水珠,而且,水珠在滚动中能带走荷叶表面尘土。荷叶的基本化学成分是叶绿素、纤维素、淀粉等多糖类的碳水化合物,有丰富的羟基(-OH)、(-NH)等极性基团,在自然环境中很容易吸附水分或污渍。而荷叶叶面都具有极强的疏水性,洒在叶面上的水会自动聚集成水珠,水珠的滚动把落在叶面上的尘土污泥粘吸滚出叶面,使叶面始终保持干净,这就是著名的"荷叶自洁效应"。 为什么会有这种"荷叶效应",用传统的化学分子极性理论来解释,不仅解释不通,恰恰是相反。从机械学的光洁度(粗糙度)角度来解释也不行,因为它的表面光洁度根本达不到机械学意义上的光洁度(粗糙度),用手触摸就可以感到它的粗糙程度。 经过两位德国科学家的长期观察研究,即上世纪九十年代初终于揭开了荷叶叶面的奥妙。原来在荷叶叶面上存在着非常复杂的多重纳米和微米级的超微结构。在超高分辨率显微镜下可以清晰看到,荷叶表面上有许多微小的乳突乳突的平均大小约为10微米,平均间距约12微米。而每个乳突有许多直径为200纳米左右的突起组成的。在荷叶叶面上布满着一个挨一个隆起的"小山包",它上面长满绒毛,在"山包"顶又长出一个馒头状的"碉堡"凸顶。因此,在"山包"间的凹陷部份充满着空气,这样就在紧贴叶面上形成一层极薄,只有纳米级厚的空气层。这就使得在尺寸上远大于这种结构的灰尘、雨水等降落在叶面上后,隔着一层极薄的空气,只能同叶面上"山包"的凸顶形成几个点接触。雨点在自身的表面张力作用下形成球状,水球在滚动中吸附灰尘,并滚出叶面,这就是"荷叶效应"能自洁叶面的奥妙所在。 研究表明,这种具有自洁效应的表面超微纳米结构形貌,不仅存在于荷叶中,也普遍存在于其它植物中。某些动物的皮毛中也存在这种结构。其实植物叶面的这种复杂的超微纳米结构,不仅有利于自洁,还有利于防止对大量漂浮在大气中的各种有害的细菌和真菌对植物的侵害。另外,更重要的是,为了提高叶面吸收阳光的效率,进而提高叶面叶绿体的光合作用。

  • 鲜薄荷叶怎么吃,方法有哪些?

    鲜薄荷叶怎么吃,方法有哪些?

    [img=,690,467]http://ng1.17img.cn/bbsfiles/images/2017/05/201705090929_01_676_3.jpg[/img]新鲜的薄荷叶具有清热去火的功效。在炎热的夏天吃一些新鲜的薄荷叶是一个不错的选择。最简单的方法就是拿薄荷叶泡水喝了,把薄荷叶洗干净,加入沸水泡制两三分钟,这样一个美味的薄荷茶就做成了,喝下去神清气爽,给炎热的夏天带去一丝丝的凉意,当然除了泡水喝,新鲜的薄荷叶还可以用来熬粥,在煲小米粥或者白粥的时候,放两三片薄荷叶其实也是一个不错的选择。

荷叶碱相关的资料

荷叶碱相关的资讯

  • OPTON微观世界|第34期 从荷叶效应到超疏水表面——从自然到人工合成
    前 言在盛夏时节安静的池塘边,正是观赏荷花的好时候。在红花绿叶的点缀下,夏日仿佛多了一丝清凉舒缓。每当提到荷花(莲花),总能想起周敦颐在《爱莲说》中 “予独爱莲之出淤泥而不染,濯清涟而不妖”的诗句。荷花历来被佛教尊为神圣净洁之花,并且极力宣传并倡导学习荷花这种清白、圣洁的精神。另外,李白的诗句“清水出芙蓉,天然去雕饰”,也表明荷花具有天然之美。荷花即青莲,青莲与“清廉”谐音,因此荷花也被用以比喻为官清正,不与人同流合污,这主要是指在仕途中。比如,有一幅由青莲和白鹭组成的名为“一路清廉”的图画,就被很多文人置于自己的书房中。可是,莲为什么可以出淤泥而不染呢?这就要讲到莲花的“自清洁”和“不沾湿”特性了。荷叶效应如果留心观察莲花的叶子,你就会发现荷叶上总是干干净净的,好似不留一点灰尘。这是因为荷叶表面的特殊结构有自我清洁的功能,即荷叶的“自清洁”特性。此外,我们经常会看到这样的场景:当水滴在荷叶上时,水并没有完全铺展开,而是以水珠的形式停留在荷叶上,而且只要叶面稍微倾斜,水珠就会滚离叶面。这就是荷叶的“不沾湿”特性。荷叶的“自清洁”和“不沾湿”特性被统称为“荷叶效应”。这一概念最早是由德国波恩大学的植物学家巴特洛特提出的。图1荷叶效应超疏水特性其实,荷叶的“不沾湿”特性也被称为“超疏水”特性。那么,如何界定“超疏水”这一概念呢?在明确“超疏水”这一概念前,我们要先了解表面化学中的一个概念——接触角。如下图所示,接触角指的是“液-固”界面的水平线与“气-液”界面切线之间通过液体内部的夹角θ。有了这一概念,我们可以很方便地表示液体对固体的润湿情况。当夹角θ小于90°时,我们称该液体可以湿润固体。当θ大于90°时,该液体不能湿润固体。当θ大于150°时,该固体表面具有超疏水特性。通俗地讲,我们可以认为这种固体表面有很强的排斥水的能力。图2 浸润与不浸润的特征在自然界中,奇异的性质往往是其独特的结构决定的。那么,你肯定会问:“荷叶的特性是否与它的结构有关呢?”答案是肯定的。扫描电子显微镜的发展给我们的科学研究带来了更多的可能,也使得我们能够观察到荷叶的微观结构。通过电子显微镜的成像结果,我们可以清晰地看到荷叶表面有许多突起的“小山包”(这类结构被称为“乳突”如图3(a))。这些乳突的尺寸通常在6微米左右,这些乳突的平均间距在12微米左右。而这些乳突是由许多直径在100纳米左右的纳米蜡质晶体组成。由此可见,荷叶表面存在复杂的“微米-纳米”双重结构,正是这些结构使得荷叶产生了“超疏水”和“自清洁”的双重特性。图3 荷花叶片的sem图像 (a)低倍图像(b) “乳突”高倍图像(c)叶片底部高倍图像(d)“乳突”尺寸对应的接触角曲线分布由荷叶到仿生技术自然界的生物都经历了漫长的演化过程,在物竞天择下,生物自身的结构和功能都经过了长期的筛选、发展和优化,具有极高的效能。荷叶的“自清洁”性能,并不是简单的美观功效,清洁程度直接影响叶片的光合作用效率。那么不仅仅是荷叶,在自然界中具有自清洁功能的生物还有很多种,比如蝴蝶的翅膀具有的超疏水结构,保证蝴蝶翅膀不会粘连露水影响飞行。水黾的脚具有绒毛结构,确保了水黾在水面上能以每秒钟滑行100倍于自身长度的距离,这都由于水黾腿部上有数千根按同一方向排列的多层微米尺寸的刚毛。而这些像针一样的微米刚毛的直径不足3微米,表面上形成螺旋状纳米结构的构槽,吸附在构槽中的气泡形成气垫,从而让水黾能够在水面上自由地穿梭滑行,却不会将腿弄湿。还有蚊子的复眼,它是由许多尺寸均一的微米半球组成,其表面还覆盖有无数精细的纳米乳突结构,这种纳米乳突结构的尖端与雾滴接触的面积无限小,具有理想的超疏水特性,从而确保了蚊子的复眼具有理想的超疏水防雾性能。图4 蝴蝶翅膀,水黾足,蚊子复眼的超疏水结构对自然界演化生成的超疏水结构,科学家们也做了进一步的研究,其超疏水表面的制备方法有多种:溶胶-凝胶法、相分离法、模板法、蚀刻法、化学气相沉积法、自组装法等等,下图为具有独特形状的表面微米阵列(如图5)纳米阵列(如图6),使得它们具有很好的疏水特性。图5不同形态的人工合成的超疏水结构图6 超疏水结构碳纳米管阵列经过先进结构材料的表面改性,我们常见的水也可以变得很有趣,比如我们可以用手切割水珠(图7),利用涂有超疏水材料的刀片对水滴进行切割(图8)。日常生活上,通过先进疏水材料的应用我们可以使得衣物不再被水或者油污污染,减少洗涤衣物的麻烦。在军事上,由于疏水材料的使用使得水的阻力明显下降,有效地提升了舰载的行驶速度。 图7超疏水表面上流动的水珠 图8超疏水表面涂层的刀片切割水滴结束语从荷叶效应到超疏水结构材料的合成制备,实际上是一个仿生学研究的过程。它将生物的结构、功能和行为应用于现代工程系统和技术设计中,解决人类所遇到的科学技术问题。仿生不是对自然模型的简单复制,而是对大自然中生物的理解、升华和具有创新价值的“重塑”。在这“重塑”的过程中,电子显微科学技术对其发展与促进作用是十分巨大的。
  • 近红外研究在日本的前世、今生与未来——访日本近红外研究会会长河野澄夫教授
    近红外光谱(NIR)分析技术是分析化学领域迅猛发展的高新分析技术,越来越引起国内外分析专家的注目,在分析化学领域被誉为分析&ldquo 巨人&rdquo ,它的出现可以说带来了又一次分析技术的革命。日本近红外技术发展早于我国,日本近红外技术的发展历程以及现状如何呢?日本近红外技术的发展过程对我国近红外技术的发展有何可借鉴的经验呢?中日两国在近红外领域可有哪些合作呢?带着这些问题,近日,仪器信息网采访了日本近红外研究会会长、亚洲近红外协会主席河野澄夫教授,中国农业大学韩东海教授采访时在座。  日本近红外技术起源于美国  说起日本近红外技术的起源,河野教授侃侃而谈:&ldquo 上世纪80年代初期,日本近红外技术的开创者岩本睦夫在美国近红外鼻祖Karl Norris的实验室学习了一年,回国后开启了日本近红外技术的研究工作。岩本教授是日本食品综合研究所非破坏检测研究室(注:我国称无损研究室)的第一任主任,因此非破坏检测研究室也是日本近红外技术的发祥地。为了便于日本近红外技术的交流与传播,岩本教授于1985年创建了一个论坛&mdash &mdash &lsquo 无损检测技术论坛&rsquo ,此论坛每年召开一次,至今已召开了将近30届了。&rdquo 岩本教授退休后,河野教授接替岩本教授成为无损检测研究室第二任主任,目前河野教授也已从此研究室退休,并有了新的接班人。  近红外技术是一种二次检测技术,这决定了大多数情况下近红外技术不太适合作为国家标准来实施,因此目前近红外技术多用于企业内部的质量控制。首先采用近红外技术对原材料、生产中间品、产品等做检测,如果检测结果符合要求,再按照国家标准取样进行检测。在日本,近红外技术应用最广的领域也是工厂的内部质量控制。河野教授提到,日本某酱油厂采用近红外技术测定酱油的全氮、盐分、乙醇等指标来控制酱油的品质。  &ldquo 与美国近红外技术应用从农业领域到食品领域的发展路径基本相同,日本近红外技术的应用也是先从农业开始,后来发展到食品行业,现在逐步扩展到化工、纤维等领域,将来制药可能成为日本近红外应用发展的一个重要方向。&rdquo 河野教授说。  基础研究是日本近红外技术研究热点  据河野教授介绍,与其他技术不同,近红外技术一开始就是一项应用型的技术,而随着近红外技术应用越来越广泛,很多研究者发现近红外技术的基础研究还很不足,因此有一些研究者开始对近红外技术进行基础研究。  &ldquo 我的前辈岩本教授现在开始研究水。农产品中大部分都是水,而且水对近红外吸收很强烈,因此水在近红外技术的基础研究中很重要。但是现在对水的了解还不是很清楚,因此很多近红外技术的基础研究者开始关注水在近红外技术中的作用&rdquo 。  还有一个问题是,现在很多近红外技术的研究是很好的,但是应用起来却很困难,主要原因在于精度不够,而精度不够的原因在于对精度的管理还没有形成一个系统。河野教授比喻说,就像我们的计算机有一个CPU,CPU有一个WINDOWS系统,WINDOWS系统就像一个大舞台,舞台上面搭建了office等很多的应用软件。而近红外技术的这个大舞台还没有搭建好,因此虽然可能已有很多实际应用,但有时候会显得薄弱,后续管理肯定会有些问题。总而言之,近红外技术的基础研究还不够扎实。  近红外技术的挑战是无创检测和仪器小型化  说起近红外技术目前最大的挑战,两位教授一致认为,医学上利用近红外技术进行无创检测是一个重要的课题。  &ldquo 近红外技术因其对人体伤害小而被认为是一项有优势的无创检测技术,尤其是对虚弱的个体如婴儿等和较敏感的人体部位如脑部等,如能应用近红外技术,则会大大提高医学检测的安全性&rdquo ,韩教授说到。但目前,近红外技术在人体健康检测方面的研究还处于一个比较前期的状态,虽然研究者很多,有些研究者甚至已开展研究十几年了,但是还不能形成定论。  &ldquo 主要难点在于检测成分含量低,样品差异性大。以血糖检测为例,首先人体血糖含量很低,而检测方法都有自己的检测限,这就对近红外检测方法提出很高的要求 其次,人体差异性很大,如皮肤厚度不同等,导致模型比较难建立,而且针对某个人建立的模型,对其他人同样指标的检测就不适用。&rdquo 河野教授解释说。  近红外技术的另一大发展需求是仪器小型化。河野教授举例说,利用近红外仪器检测水果的成熟度在日本应用是比较广泛的,但是现在的便携式仪器还是稍嫌笨重,使用不方便。如仪器能小到仅有一支钢笔的体积,则将大大提高此类仪器使用的便捷性,可方便的检测果树上水果的成熟度。  还有一个应用方向要求近红外仪器小型化。随着人们对自身了解需求的增加,一些小巧的科学仪器不断面市,进入人们的日常生活中。而皮肤老化原因的检测可能会受到大众的欢迎。皮肤老化主要是两个原因,一是皮肤的自然老化,一是紫外线对皮肤的伤害造成的皮肤老化。利用近红外技术可以判断皮肤老化是哪种原因造成的,而此类仪器要真正得到大众的接受,则需要近红外仪器足够小巧。  专注于模型建立  谈到自己的研究课题,河野教授说,&ldquo 除了前面提到的人体血糖检测,我目前主要研究的课题还包括如何快速去除温度对近红外结果的影响和建立通用型的模型。&rdquo   温度对近红外测量结果有很大影响,而一般的处理方式是将温度作为一个变量来建立模型。河野教授介绍说,目前其研究团队正寻找一种快速去除温度对近红外结果影响的方法,即通过找到对温度比较敏感的波段,在模型建立时将此波段去除,从而快速去除温度对近红外结果的影响。  以水果为例,在近红外技术应用于水果检测时,一种水果需要一个模型,有时候同种水果的不同品种也需要不同的模型。有些水果的测量方式不同,如橘子一般用透射模式来测量,桃子一般用反射模式来测量,这样的水果很难建立通用型的模型。但是有些水果测量方式相同,如苹果、梨等都采用的是反射模式,如果能建立通用型的模型,则近红外技术应用将更加方便。目前,河野教授也正在致力于这方面的研究。  中国成为近红外仪器厂商布局亚洲的中心  提到近红外技术在亚洲的发展情况,河野教授说&ldquo 中国将是世界近红外生产厂商未来业务布局的中心&rdquo 。在亚洲地区,近红外技术发展较好的国家有日本、中国、韩国、泰国四国,有定期技术交流的是日本(每年一次技术交流会)、中国(两年一次技术交流会),而且亚洲近红外技术大会是在中国、韩国、日本、泰国轮流召开。近红外处于发展期,对仪器需求较大的国家有中国、泰国、马来西亚、菲律宾等。因此&ldquo 各个近红外厂家综合考虑技术发展和技术需求,在亚洲布局中均以中国为中心,然后开始向周边国家辐射。因此中国在亚洲近红外技术发展中占有重要位置&rdquo 。  采访合影(左二为河野澄夫教授,右二为韩东海教授)  采访后记:采访快要结束时,河野教授还热情地为我们介绍了下一届亚洲近红外光谱大会的情况。第五届亚洲近红外光谱大会将于2016年在日本召开,时间暂定11月份下旬,地点在日本鹿儿岛,预计规模将达到250人左右,大会期间计划安排到有特色的先进的水果分选现场进行参观。河野教授热烈欢迎广大中国学者和中国厂商到日本鹿儿岛参加大会,也欢迎大家同时参观日本的活火山等美景。采访编辑:李学雷  附录:个人简历  河野澄夫,农业博士,1975年至1987年在Distribution Engineering Laboratory, National Food Research Institute工作,分别为研究员和高级研究员,1987年至2011年开始在Nondestructive Evaluation Laboratory, National Food Research Institute任主任,1997年至2011年在兼职筑波大学教授,2011年至今,在鹿儿岛大学任教授。现还任职《Journal of NIR Spectroscopy》亚洲编辑、亚洲近红外学会主席、日本近红外研究会会长。
  • 新产品抢先体验——Ascentis Express 5 μm熔融核液相色谱柱促销
    时间:2012年12月1日至2012年12月31日活动期间购买Ascentis Express 5&mu m色谱柱任何一款,享受6折 继2008年首发 Ascentis Express 2.7 &mu m 熔融核液相色谱柱在市场上热卖之后, Sigma-Aldrich公司旗下分析品牌 Supelco 于2012年8月又首发推出 Ascentis Express 5&mu m 熔融核液相色谱柱。该色谱柱基于熔融核技术,性能超越传统全孔5&mu m和3&mu m色谱柱,在不增加柱压的情况下,实现快速高效分离,可作为传统5&mu m色谱柱的新型标准柱。 同等分析条件和色谱柱尺寸下替代传统5&mu m 色谱柱方法可直接转移柱效远高于全孔5&mu m液相色谱柱,与全孔3&mu m色谱柱相当柱压与传统5&mu m相当分析时间仅为原来的一半,亦合适生物样品LC/MS分析 Ascentis Express 5&mu m熔融核色谱柱与传统全孔5&mu m、传统全孔3&mu m色谱柱最高塔板数/压力的比较 更多产品详情,可参见Sigma-Aldrich.com/express5或致电021-61415566-8242或者email至connie.chen@sial.com您现在还可报名参加Sigma-Aldrich 2012年12月20日在仪器信息网的网络讲堂《Ascentis Express 5um熔融核快速液相色谱柱技术及应用》在线听讲并提问。链接如下:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/645
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制