甲醛自由基空间分布

仪器信息网甲醛自由基空间分布专题为您整合甲醛自由基空间分布相关的最新文章,在甲醛自由基空间分布专题,您不仅可以免费浏览甲醛自由基空间分布的资讯, 同时您还可以浏览甲醛自由基空间分布的相关资料、解决方案,参与社区甲醛自由基空间分布话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

甲醛自由基空间分布相关的耗材

  • 自由空间光隔离器
    自由空间光隔离器1)高隔离度,稳定性极佳2)最大功率下损耗很小3)大孔径,拥有优异的光束质量自由空间光隔离器采用特殊的设计和制造工艺,提供卓越的性能,具有高隔离度,透射和功率密度。它可以有效减少二极管激光系统的外部空腔反馈,并截止自由空间光纤耦合的反射。自由空间光隔离器增加了光学系统的功率稳定性,能够消除反馈,避免对敏感光学元件的造成损伤。这款光隔离器拥有先进的保护功能,可用于稳定激光,适用于各类苛刻的激光应用。Common Specifications类型:Optical Isolator设计波长 DWL (nm)波长范围 (nm)透射率 (%)Typical Isolation at Design Wavelength (dB)产品号405395 - 42592 (typical)43#35-969780750 - 81092 (typical)43#35-973660640 - 68090 (typical)67#35-980780760 - 80590 (typical)67#35-983820800 - 86590 (typical)67#35-984订购信息:405nm Single Stage Free-Space Optical Isolator库存 #35-969设计波长DWL(nm):405波长范围(nm):395 - 425传输(%):92(典型)设计波长典型隔离度(dB):43透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):38最小传输(%):85工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准780nm Single Stage Free-Space Optical Isolator库存 #35-973设计波长DWL(nm):780波长范围(nm):750 - 810传输(%):92(典型)设计波长典型隔离度(dB):43透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):38最小传输(%):85工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准660nm Dual Stage Free-Space Optical Isolator库存 #35-980设计波长DWL(nm):660波长范围(nm):640 - 680传输(%):90(典型)设计波长典型隔离度(dB):67透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):60最小传输(%):80工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准780nm Dual Stage Free-Space Optical Isolator库存 #35-983设计波长DWL(nm):780波长范围(nm):760-805传输(%):90(典型)设计波长典型隔离度(dB):67透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):60最小传输(%):80工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准820nm Dual Stage Free-Space Optical Isolator库存 #35-984设计波长DWL(nm):820波长范围(nm):800-865传输(%):90(典型)设计波长典型隔离度(dB):67透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):60最小传输(%):80工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准1070nm Dual Stage Free-Space Optical Isolator库存 #35-988设计波长DWL(nm):1070波长范围(nm):1050-1100传输(%):90(典型)设计波长典型隔离度(dB):67透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):60最小传输(%):80工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准
  • 自由空间光隔离器
    自由空间光隔离器 产品特点:产品应用:高隔离度偏振相关光路无胶尺寸紧凑封装方式多样光纤传输系统激光器封装TOSA/ROSA/BOSA标准单极:参数 P级A级操作波长(nm)1310, 1550 或其他CWDM波长中心波长最小隔离度(dB)4240插入损耗(23°C) (dB)0.200.20通光孔径(mm)0.90 or 0.80 or 0.70输入光角度( °)5工作温度( °C)-20 ~ +70存储温度( ° C)0 ~ +85额定功率(mW)300标准双级:参数 P级A级操作波长(nm)1310, 1550 或其他CWDM波长中心波长最小隔离度(dB)6055插入损耗(dB)0.300.35通光孔径(mm)0.90 or 0.80输入光角度( °)5工作温度 (°C)-20 ~ +70存储温度 (°C)0 ~ +85额定功率 (mW)300订购信息:LQ-T-G-W-S-PType:S=Single stage D=Dual stageGrade:P=Prenim A=Grade AWavelength: 13=1310nm 14=1480nm 15=1550nmSize:1=2.5(OD)*1.1(L)2=2.5(OD)*1.4(L)3=3.0(OD)*1.4(L)4=2.5(OD)*3.0(L) 5=3.0(OD)*3.0(L) 6=3.0(OD)*2.5(L) X=customerPackage:1=Epoxy used 2=Epoxy Free
  • 居室装修甲醛盒
    室内空气中甲醛自测盒/甲醛检测试剂盒/居室装修甲醛盒 型号:HAD-JQ家中甲醛有多少?自己检测就知道!甲醛自测盒——30分钟出结果!检测范围0.05~1.0mg/m3 检测下限0.05mg/m3国家卫生标准规定:室内空气中甲醛浓度限值为0.1mg/m3适用于检测居家、汽车、办公室、宾馆、学校、幼儿园等室内甲醛气体含量 更快速:原来需要五十分钟检测完,现在三十分钟即可出结果。原来门窗关闭两小时,现在一小时即可更稳定:结果持久不变色更简单:原来六步现在只需四步更安全:以前用玻璃包装易碎,现在改用塑料包装,质量轻巧,路上不易破碎使用说明:1、检测前先将待测空间门窗关闭1小时,然后打开吸收盒,将试剂1全部到入吸收盒内。 2、盖上吸收盒盖,轻轻摇动吸收盒,待内容物完全溶解后,将吸收盒盖打开,放置于被检测空间内30分钟(距地面80-150里面处)。 3、将试剂2完全倒入吸收盒内,盖上盒盖并轻轻摇动,摇匀后静置10分钟。 4、与色卡比色,读出被测空间(或家具)内每立方米空气中甲醛的浓度值。 注意事项: 1、检测过程中尽量减少室内空气温度和湿度的变化,保证检测条件的稳定,若温度过低可在第三步显色过程中手握白色吸收盒,用体温加热。 2、本产品的检测试剂如不慎溅入眼、口、皮肤,请立即用清水清洗,溅到桌面或器物上应及时擦洗掉。 3、本产品只作半定量检测,不作为法定检测依据。 4、本产品保存于阴凉干燥处,防止儿童接触。打开包装后应立即使用。产品简介:  甲醛对生物细胞蛋白质有破坏作用,是一种毒性很强的原生质物质,被国际癌症研究所列为致癌物之一。本产品采用改进的化学吸附模式,无需任何仪器设备,快速方便地检测空气中的甲醛含量。苯、甲苯、、氨、一氧化氮、二氧化氮等其它常见室内空气污染物质对本测定方法无干扰。本产品主要用于对房间内、汽车内或家具中可能存在的甲醛污染进行一次性现场快速检测,亦可用于甲醛清除剂清除效果的对比检测。每盒检测一次一次性包装 检测范围0.05~1.0mg/m3 检测下限0.05mg/m3产品特点:  (1)科技含量高,检测指标完全符合国家规定的室内甲醛气体检测标准;  (2)携带方便、操作简单,不需要借助任何仪器按照说明书的要求即可使用;  (3)快速检测,完成检测的全过程仅需要30分钟,而市场上同类产品一般需要2-3小时;  (4)价格便宜,适合所有的消费人群,而专业的检测机构一次检测就高达数千元。问:为什么要检测。答:了解室内污染程度准确施治更科学!更准确!《专家建议:准确了解室内污染程;对症施治!综合治理效果更好!》1、轻微污染(超标2倍内 无重点污染源,物理方法治理):延长晾放空置时间,加强通风,经常用盐水擦拭污染源,种植吸收甲醛的绿色植物,如:银苞芋吊兰、芦荟、常春藤、虎尾兰等,放置具有物理吸附能清除甲醛的活性炭等物质。2、中等污染(超标2-4倍 有重点污染源,物理加化学方法治理):在采取以上措施同时,使用可靠的甲醛清除剂和除味剂对污染释放源进行处理,然后放置能清除甲醛的专业活性炭,对室内空间长效净化,防止治理效果反弹,对甲醛等有害气体进行长期分解。3、严重污染(超标4倍以上 有多个重点污染源,室内综合治理):建议选择有专业资质的治理机构实施综合全面的治理解决方案。温馨提示:1、建议先检测再治理,准确了解室内污染程度,对症施治更学2、甲醛自然释放时间3至15年,室内、家具内、柜内、抽屉内长期放置活性炭,控制降低每封闭空间的甲醛浓度,以防甲醛侵蚀!

甲醛自由基空间分布相关的仪器

  • 仪器简介:随着自由基发展环境指数的日益重要和对健康及食品质量要求的不断提高,迫切的需要一种快速、精确的测定样品抗氧化能力的专业分析仪器。采用光化学发光(PCL-hotochemiluminescence〕法的PHOTOCHEM正是这样一种非常快速而经济有效的分析仪器。PHOTOCHEM能够测定大多数物质混合体中的整体抗氧化能力,并且可以测定单个抗氧化剂及过氧化物歧化酶的单独抗氧化能力。PHOTOCHEM的应用包括从食品技术、化学化工、农业分析、制药到生化、医疗等各个领域的研究和常规分析。技术参数:1、检测灵敏度:非酶性氧化物质:纳摩尔浓度,如0.2nmol Vc 酶类物质:0.1ug超氧化物歧化酶 2、结果准确可靠,重现性好:CV&le 2%3、检测简单快速,一个样品测量时间&le 3分钟 4、通过计算机软件控制和分析计算,实时检测并出具结果 5、和常用方法光谱法和色谱法都有很好的的可比性 6、只需几微升样品就能检测,不需要复杂冗长的样品制备7、对检测的pH、温度等没有特殊要求主要特点:世界上第一台能够快速、准确、直接、全面的测定基质中综合抗氧化能力的仪器。使用光化学发光法(PCL)的PHOTOCHEM,分析一个样品仅需要3-4分钟,用于判断物质内部自由基-抗氧化剂的平衡状况,和抗氧化综合能力。 PHOTOCHEM用途非常广泛,如食品、化妆品、医学、制药、化工、环保、生物研发等行业都是PHOTOCHEM的应用领域。  用于测定水溶性物质和脂溶性物质抗氧化能力  结合标准试剂包可测定单个抗氧化剂及过氧化歧化酶的综合抗氧化能力  只需几微升样品  无需复杂冗长的样品制备;  易于掌握(单一试剂检定)和易于自动化;  节省分析成本,不需要昂贵的化学试剂或酶试剂;  提供定量评价生物体抗氧化状态的实用性实验结果
    留言咨询
  • E-scan是布鲁克为了解决各种专业化应用推出的台式机EPR。主要特点:1. 研究级的灵敏度;2. 台式机,设备小巧,占用空间小;3. 采用永磁体,不需水冷;4. 自动调谐,数据采集和数据分析; e-scan A: 适用于辐照剂量测量系统;e-scan B: 快速、自动化的分析,适用于啤酒保鲜度的质量控制和优化;e-scan F: 适用于辐照食品的测量;e-scan M: 专门用于稳定的自由基和/或自旋加和物(ROS,活性氧自由基和RNS,活性氮自由基)的研究。
    留言咨询
  • 一、荧光分布成像系统(EEM View)简介 作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到日立F-7000/71000荧光分光光度计的样品仓内。入射光经过积分球漫反射后均匀照射到样品,利用荧光光度计标配的荧光检测器可以获得样品荧光光谱,积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光成分图像。 二、 荧光分布成像系统特点: 1. 可以全面测定样品的光谱数据(反射光、荧光特性)在不同光源条件下(白光和单色光)拍摄样品图像,(区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm),同时利用先进的光谱算法,分别显示荧光图像和反射图像, 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)2. 样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具荧光分布成像系统是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。
    留言咨询

甲醛自由基空间分布相关的试剂

甲醛自由基空间分布相关的方案

  • 新拓仪器:甘草多糖清除自由基活性的研究
    摘要 本文利用超声- 微波协同萃取法提取甘草多糖,并用分光光度法检测甘草多糖对DPPH自由基、羟自由基( OH)和超氧阴离子自由基(O2- )的清除能力。结果表明,甘草多糖溶液对DPPH自由基、OH和O2- 均具有较好的清除作用。
  • 新拓仪器:黑果枸杞色素清除自由基活性的研究
    摘要: 利用超声- 微波协同萃取法提取黑果枸杞色素, 并用分光光度法检测黑果枸杞色素对DPPH 自由基、羟自由基( OH) 和超氧阴离子自由基( O2-) 的清除能力。结果表明, 黑果枸杞色素溶液对DPPH 自由基、OH 和O2-均具有较好的清除作用。
  • 利用电子顺磁共振(EPR)追踪环境中的自由基
    电子顺磁共振(EPR)波谱技术是一种检测带未成对电子的物质的技术。有很多材料具有未成对的电子,包括自由基、许多过渡金属离子以及存在缺陷的材料。自由基通常寿命很短,但在光合作用、氧化、催化和聚合等重要过程中起着至关重要的作用。因此,EPR的应用跨越了任何单一的主要分析技术的范畴,覆盖化学、量子物理、结构生物学、材料科学、医学研究中的分子研究到质量控制。食物、药物和环境中的许多化学物质都具有形成自由基的能力。例如,当氧分子分裂成自由基时,会发生氧化应激,这些可能在环境中持续并进入生物系统。在体内,自由基可能攻击生物分子,破坏细胞、蛋白质和DNA,并可能导致疾病。因此,在环境中监测自由基和其它带不成对电子的物质是至关重要的。除了寿命较短的自由基外,还存在寿命较长的物质,被称为环境持久型自由基(EPFRs)。EPFRs几乎可以无限期地存留于环境中,特别是当与细颗粒表面相关时。

甲醛自由基空间分布相关的论坛

  • 羟基自由基的测定

    [b][b]韩瑶等,报道了一种新颖的测定羟基自由基的方法,该方法是通过二甲基亚砜(DMSO)捕获羟基自由基生成甲醛,再与衍生试剂2,4-二硝基苯肼(DNPH)反应生成相应的腙(HCHO-DNPH),并用高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法进行分析测定。研究了衍生试剂浓度、pH、不同衍生温度和衍生时间对衍生化反应的影响,确定衍生试剂浓度为270μmol/L,pH=4,温度为50℃,时间为30 min的最佳衍生化条件。对羟基自由基的检出限为0.0027 mmol/L,定量限为0.0090 mmol/L,平均回收率范围为102.41%~117.61%,相对标准偏差小于8%,该方法新颖独特,能为相关研究者提供有益借鉴。详见分析科学学报[font=&][size=12px][color=#666666]. [/color][/size][/font]2021,37(02)。[/b][/b]

  • 19.6 红毛五加叶水提液对羟自由基清除率的测定

    19.6 红毛五加叶水提液对羟自由基清除率的测定

    【作者】 杨鑫嵎; 杨文宇; 叶强;【机构】 西华大学生物工程学院; 成都中医药大学药学院;【摘要】 测定红毛五加叶水提液对羟自由基的清除率并评价其抗氧化活性。利用Fenton反应产生羟自由基,用二甲亚砜(DMSO)捕获羟自由基并与之反应生成甲醛,甲醛经2,4-二硝基苯肼衍生成相应的苯腙,通过HPLC检测加或不加样品时该苯腙的峰面积的变化,从而计算红毛五加叶水提液对羟自由基的清除率。色谱条件:色谱柱为Diamonsil C18(250 mm×4.6 mm5,μm),流动相为乙腈-水(65∶35,V/V),流速为0.8 ml/min,检测波长为365 nm。Fenton反应体系为2.0 mmol/L Fe2++107.7 mmol/L H2O2+225.2 mmol/L DMSO;在该反应体系中红毛五加叶水提液清除羟自由基的IC50为0.67 mg/ml(即每1 ml含药材量为0.67 mg);红毛五加叶总皂苷是清除羟自由基的活性成分。红毛五加叶水提液能够清除Fenton反应产生的羟自由基,具有较强的抗氧化活性。 http://ng1.17img.cn/bbsfiles/images/2012/07/201207231727_379271_2379123_3.jpg

  • EPR与自由基捕获实验

    先说说什么是自旋捕获吧,EPR是一种波谱学仪器,它是检测未成对电子的一种波谱学方法,自由基即是带有未成对电子的体系。但是既然是仪器,就有其特定的检测限,这个限一个限在样品量,另一个就是时间。样品量的限度不同型号有不同的最低检测限,Bruker的通常在10的9次方量级,基本上可达nMol量级吧,但是这个量级是样品中同一时刻(即检测时刻)的未成对电子量。而检测时间,对于扫场实验来说,一般是在分钟量级,即样品中的未成对电子的寿命起码要在分钟量级。问题就来了,很多氧化性很强的自由基,比如羟基、超氧、碳中心自由基等,它们化学性质都非常活泼,所以同一时刻的寿命会非常短,分钟量级的时间检测限,根本测不到它们的信号。为了实现检测,人们找到了一种自旋捕获剂的化学分子,它们会与这些寿命短的自由基结合,生成一种寿命较长的自旋加合物(spin adduct),加合物的寿命通常在10分钟到2小时不等。[img]https://mmbiz.qpic.cn/mmbiz_png/X8l5lSW5ibxauQAJolLvrTHWBPWDdcibFqh1nPPibMGhTeIm9TXLGicLAhRZRYfibBwtlygwEnURNSyqsOMdhLcT16g/640?wx_fmt=png&wxfrom=5&wx_lazy=1&wx_co=1[/img]商用捕获剂通常有几种,最常见的是PBN和DMPO,PBN由于其自旋加合物谱图没有特异性,因此多用来定量,但是其耐高温,可以接受一定程度的光照。与之对应的DMPO,其谱图具有很好的特异性,因此多用来定性和定量,但是DMPO不能承受高温,有个别用户研究发现,其UV光照也易分解。这两种捕获剂呢都可以从很多商业平台购买,但是通常买来的是纯的(DMPO一般在两千多1ml吧),不纯的会便宜很多,但是需要用户自行再提纯一次。通常一个捕获剂分子能捕获一个分子的自由基基团,不能重复利用,因此需要用户自行对自己体系中可能产生的自由基量进行估计,然后DMPO的加入量需要在自由基量的50-100倍的浓度(以防漏掉一些自由基,以及考虑到反应效率的问题)。新购置的DMPO,用户可以根据自己平时需要的浓度进行初步的稀释,稀释之后平均分成10份或20份,然后每一小份进行除氧处理,之后密封好放入-20摄氏度的冰箱中保存。每次实验使用时,拿出一小份,一次用完,如果用不完,没有污染的情况下,可以考虑再次除氧之后密封保存(建议是小份的量可以做到一次用完,接触氧之后,容易变质,不易再长期保存)。然后先把样品反应物中的一样处理好,之后加入DMPO,再然后加入第二反应物。即有一个要点:在反应开始之前把DMPO加入!至于DMPO的浓度,需要根据不同的反应,评估生成自由基的量,再根据这个量评估DMPO需要加入的量。加入第二反应物之后,尽快取样,进行EPR测量!通常用仪器默认的参数即可测到这些捕获后的自旋加合物的信号,如果一时测不到,可以考虑二维时间实验,等待一段时间,即给体系一些反应时间,让DMPO与自由基充分反应,累积一定的加合物的量之后再进行EPR检测。当然,如果不放心就做二维实验,一般都不会有太大的问题。得到初始信号之后,再进行EPR实验参数优化,调整功率及调制幅度,达到最优,不过,一般文献中DMPO-羟基都是用10dB,即20mW.关于参数优化,将会在EPR实验中再详细讲述。

甲醛自由基空间分布相关的资料

甲醛自由基空间分布相关的资讯

  • 药代动力学领域新突破——小动物活体自由基检测系统助力体内自由基分布和药代动力学研究
    自由基是具有非偶电子的基团或原子,它具有非常强的化学反应活性。在生物体内,自由基高度的化学活性使得它可以与各类生物大分子反应使其变性,这使它成为了一把生物体的“双刃剑”:在炎症反应中自由基可以攻击外来病原体来保护生物体自身,而过度的自由基又会导致DNA变性甚至细胞坏死和凋亡。因此检测自由基的含量,尤其是在体内检测尤为重要。以一氧化氮为代表的自由基药物一直是药物学研究的重点。传统的药代动力学自由基测量,需要从生物体的不同部位提取体液,然后再使用电子顺磁共振波谱仪(electron paramagnetic resonance,EPR)来测量体液样品内的自由基含量。然而如何在生物体内定点、定时、定量地检测释放自由基药物,以及如何在时间、空间、剂量上测量生物体内的自由基药物,一直是药代动力学领域的难题。波兰Novilet公司新推出的小动物活体自由基检测系统ERI TM 600,是一款可对小鼠与大鼠等动物进行活体顺磁成像的商业化仪器。ERI TM 600突破了传统电子顺磁共振波谱仪仅能对体外提取物进行定量分析的局限,实现了对小鼠体内的自由基药物进行长时间的3D/2D实时成像观测。同时ERI TM 600配置了温度控制与呼吸监测仪,有效保证小动物在成像时维系正常的生理活动。ERI TM 600成像原理图ERI TM 600成像非常简单,仅需将小鼠麻醉之后,对荷瘤小鼠与对照小鼠注射OX063自旋探针即可。ERI TM 600在2分钟内可对小鼠进行255个投影扫描(25 cm2,精度500 μm),获得一系列的2D图像,然后通过软件对这些2D图像进行重构,获得小鼠的实时3D图像。ERI TM 600成像结果 近期发表于J. Phys. Chem.C的工作“Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging”表明与荷瘤小鼠相比,对照组小鼠探针(尤其在肿瘤部位)分布均匀。荷瘤小鼠探针的信号强度、峰值时间、流入流出比等药代动力学参数与对照小鼠差异明显。将3D成像图与小鼠体表照片相拟合,可以明显观察到肿瘤部位的ERI探针成像表征的药代动力学参数异常。ERI TM 600所得3D图像可以更加直观、准确、长时间地展现自由基药物在小鼠体内的药代动力学分布。 作为中国与进行先进技术、先进仪器交流的重要桥头堡,Quantum Design中国于2020年初引进了波兰Novilet公司的先进产品小动物活体自由基检测系统——ERI TM 600,欢迎感兴趣的老师咨询!
  • 中红外光学反馈腔增强OH自由基探测技术取得新进展
    近日,中科院合肥研究院安光所张为俊研究员团队在腔增强吸收光谱OH自由基探测技术方面取得新突破,相关研究成果以《基于中红外分布反馈二极管激光器的光学反馈腔增强吸收光谱技术应用于OH自由基探测》为题发表于美国光学学会(OSA)学术期刊Optics Express。   OH自由基是大气中最重要的氧化剂,其快速循环反应决定着大气中主要污染物的生成和去除。由于反应活性高,寿命短,在大气中浓度低,准确测量十分困难,是当今大气化学领域非常重要和挑战性的研究内容。   团队赵卫雄研究员和杨娜娜博士等人发展了2.8微米中红外光学反馈腔增强技术,为OH自由基探测提供了一种新的直接探测手段。该技术利用谐振腔的共振光反馈回激光器,可以有效压窄激光器线宽,实现光学自锁定,提高激光入射谐振腔的耦合效率,实现高灵敏度探测。   团队采用波长调制的方法,以腔模的一次谐波为误差信号反馈给压电陶瓷控制器,精确控制距离,从而达到相位实时锁定,在800 米有效光程下获得1.7×10-9 厘米-1探测灵敏度,对应OH自由基探测极限为~2×108 个/立方厘米。该技术进一步与磁旋转吸收光谱(FRS)和频率调制光谱(FMS)等技术相结合,将为大气OH自由基直接探测提供新的途径。   本研究得到国家自然科学基金国家重大科研仪器研制项目、国家自然科学基金优秀青年科学基金项目、第二次青藏高原综合科学考察研究项目、中国科学院青年创新促进会、中国科学院合肥物质科学研究院院长基金资助。
  • 苏州大学:基于自由基促进的阳离子RAFT聚合实现快速活性3D打印!
    基于可逆失活自由基聚合(RDRP) 的3D 打印技术为制备具有“活性”的聚合物材料提供了有效手段。该类材料由于保留有活性位点,可进一步用于聚合后修饰及功能化,以制备多种多样的刺激响应性材料,目前正成为该领域的研究热点。然而,相较于商用体系,已有技术的打印速率通常较低,限制了其实际应用。同时,已报道工作主要基于RDRP方法,机理较为单一。近期,苏州大学朱健教授团队探索了基于阳离子可逆加成断裂链转移(RAFT)聚合的立体光刻蚀(SLA)3D打印(ACS Macro Lett. 2021, 10, 1315)以及阳离子/自由基RAFT聚合联用的数字光处理(DLP)3D打印(Macromolecules 2022, 55, 7181)。拓宽了活性3D打印的聚合机理及单体适用范围,为调控材料性能提供了丰富手段。相较于自由基RAFT聚合,阳离子RAFT聚合通常具有更快的聚合速率。在本文中,该研究团队考察了基于自由基促进的阳离子RAFT(RPC-RAFT)聚合的DLP 3D打印体系,实现了较为快速的打印速率(12.99 cm/h)。首先,作者设计了模型聚合来研究该方法的聚合行为,其机理如图一所示。商业可得的光引发剂(TPO)与二苯基碘鎓盐(DPI)被用于产生初始的阳离子引发种,随后聚合由一种二硫代氨基甲酸酯RAFT试剂(图3 B)通过阳离子RAFT过程调控。图1. 推测的聚合机理。如图2A所示,聚合呈现一级线性动力学,聚合物分子量与理论值吻合较好,分子量分布窄,符合活性聚合特征。图2. 在405 nm波长光源下IBVE的聚合动力学结果:A) 单体转化率半对数与聚合时间的关系曲线;B) 分子量(Mn)和分子量分布(Ɖ )与单体转化率的关系;C)IBVE聚合物的SEC曲线。随后研究团队详细研究了交联体系的聚合行为(图3),对双官能度单体二乙二醇二乙烯基醚(DDE),单官能度单体异丁基乙烯基醚(IBVE),RAFT试剂以及TPO/DPI引发体系不同配比进行了考察。结果显示没有IBVE时,聚合速率与单体最终转化率降低,这可能是由过高的交联密度导致。DDE与IBVE的比例在3:1到1:3之间变化时对聚合速率影响较小。进一步提高IBVE含量则会导致鎓盐析出。改变RAFT试剂的比例对聚合速率影响较小,这与传统的自由基RAFT聚合不同,可能是由于在阳离子RAFT聚合中不存在阻聚效应。图3. A)商用DLP 3D打印机模型示意图;B) 用于RPC-RAFT聚合3D打印的树脂配方; 聚合树脂在405 nm波长光源照射以及不同反应条件下单体的转化率与时间曲线:C) 不同光催化剂浓度;D)不同官能度乙烯基醚配比;E)不同RAFT试剂浓度。利用优化后的打印树脂与商业可得的DLP 3D打印机,研究团队成功打印出具有较好分辨率的物体(图4)。然而,打印速率最高为6.77 cm/h。当进一步优化打印条件提高速率时,由于IBVE相对较低的沸点(83 °C),释放的聚合热使树脂出现了沸腾现象。 图4. 具有不同形状的3D物体数字模型以及相应的3D打印实体模型。于是研究人员将低沸点的IBVE替换为高沸点(179.09 °C)的环己基乙烯基醚(CVE),成功将打印速率提升至12.99 cm/h,该速率为目前活性打印体系的最高值。在该打印条件下,成功打印出具有不同形成的三维物体(图5)。 图5. 具有不同形状的3D物体数字模型以及相应的3D打印实体模型。最终,研究人员通过荧光单体(TPE-a)的聚合后修饰证明了所打印物体的活性特征。如图6所示,在利用该树脂所打印的薄膜表面涂上荧光单体溶液并用打印机形成的图案光照射,随后洗去溶液。经过照射的部分由光引发RAFT聚合扩链成功实现了荧光单体的接枝,因此在紫外光下呈现出荧光图案(图6 F)。在对比实验中,打印的薄膜由不含RAFT试剂的树脂制备,经过相同操作后在紫外光下则无荧光图案(图6 D),证明了该方法所打印物体具有活性特征。 图6. A) DLP 3D打印机中进行3D打印物体后功能化修饰示意图;B)3D打印物体后功能化修饰机理图;C) 未经后功能化修饰的3D打印物体在可见光下的数字图像;D) 未经后功能化修饰的3D打印物体在紫外光下的数字图像;E) 经后功能化修饰的3D打印物体在可见光下的数字图像;F) 经后功能化修饰的3D打印物体在紫外光下的数字图像。该工作以“Fast Living 3D Printing via Free Radical Promoted Cationic RAFT Polymerization”为题发表在《Small》上 。论文第一作者是苏州大学在读博士生赵博文,通讯作者为苏州大学朱健教授和李佳佳博士后。该工作获得了国家自然科学基金,中国博士后科学基金以及江苏省优势学科基金的资助。后续工作敬请关注。原文链接:https://doi.org/10.1002/smll.202207637摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制