近边带发射

仪器信息网近边带发射专题为您整合近边带发射相关的最新文章,在近边带发射专题,您不仅可以免费浏览近边带发射的资讯, 同时您还可以浏览近边带发射的相关资料、解决方案,参与社区近边带发射话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

近边带发射相关的耗材

  • 全发射附件 L2250101
    全发射附件这种全发射附件可增强对发射弱的样品的荧光检测灵敏度,建议用于生物冷光和化学冷光试验。该附件使用一种可旋转进入发射光单色仪前面适当位置处的平面镜,以对样品进行全荧光测定。建议使用截止发射滤光器以减少源自其他波长的发射。LS55光谱仪提供5个受软件控制的发射滤光器。订货信息:产品描述部件编号For LS50B/55L2250101本品必须由珀金埃尔默的服务工程师进行安装。
  • 室内空气质量发射器S900配件
    室内空气质量发射器S900配件是一款提供多路输出和一个实时网络连接,的数据控制器,用于与其它仪器控制和传感器网络的集成的,室内空气质量发射器可用于对不同气体的探针测量。 室内空气质量发射器S900配件特点 室内空气质量发射器S900配件应用 为提高精度,主动采样 多个模拟和数字输出 实时网络连接 可拆卸气体传感器,用于检测多种气体 数据记录到PC(可选) 温度和相对湿度(可选) 臭氧控制发生器 网络测量和实时测控 健康和安全 挥发性有机化合物排放测量 室内空气的质量控制 编号 说明 S900 变送器/控制器S900
  • 扫描电镜专用场发射电子源9215736
    场发射电子源921 5736 ,这个型号的场发射灯丝,适用于原厂H机型。场发射扫描电子显微镜其实它是电子显微镜的一种,扫描电镜是介于透射电镜和光学显微镜之间的一种微观形貌观察手段,可直接利用样品表面材料的物质性能进行微观成像。广泛用于生物学、医学、金属材料、高分子材料、化工原料、地质矿物、商品检验、产品生产质量控制、宝石鉴定、考古和文物鉴定及公安刑侦物证分析。可以观察和检测非均相有机材料、无机材料及在上述微米、纳米级样品的表面特征。优点:1、有较高的放大倍数,20-30万倍之间连续可调;2、有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;3、试样制备简单,目前的扫描电镜都配有X射线能谱仪(EDS)装置,这样可以同时进行显微组织形貌的观察和微区成分分析。大束科技是一家以自主技术驱动的电子显微镜系列核心配件研发制造的供应商和技术服务商。目前公司主要生产电子显微镜的核心配件离子源、电子源以及配套耗材抑制极、拔出极、光阑等销往国内外市场,此外,还为用户提供定制化电子显微镜以及电子枪系统等的维修服务,以及其他技术服务和产品升级等一站式、全方位的支持。在场发射电子源(电子显微镜灯丝)、离子源以及电镜上的高低压电源、电镜控制系统研发制造等领域等均具有优势。

近边带发射相关的仪器

  • 岛津光电直读光谱仪PDA-8000仪器简介:PDA-8000是岛津公司2010年推出的最新一款光电发射光谱仪,集合了岛津光电发射光谱仪之精华,突出了高灵敏度、高稳定性的特点,尤其在高纯有色金属、钢铁中酸溶铝、夹杂物方面的分析有着独特的技术。性能特点:1)高分辨率分光器最新设计的1米光栅分光室,可以有效减少元素间的分光干扰。同时,为了提高对C、N等元素的分析精度,通过2次或3次等高次线进行分析,分辨率得到有效提高。2)实时能量监控(REM)功能通过增设实时能量监控功能可监视光源能量是否激发成功,激发能量为0.02J-0.6J(可以0.02J为单位步进进行设定)。即时掌握电极和样品间的发光放电是否正常(是否由于样品本身造成放电异常)从而只收集正常放电时的谱峰强度数据。对不正常放电时的脉冲不进行计数,提高分析稳定性。3)定电流放电(CRS)技术为了实现对高纯有色金属微量元素的良好分析,首次使用了定电流放电技术,即电弧放电后段,电流持续保持在10A,放电持续时间最大可达2msec,从而微量元素的灵敏度及稳定性可以得到有效提高。4)强大的软件控制功能(最新设计,操作简单,实现人机对话功能)中/英文分析软件,具有强大的数据处理能力及人性化的对话窗口,简单易懂。软件可以监控仪器各单元运行状态,并在仪器操作界面显示;有自动诊断功能,并提供简单解决方案及操作方法;在线帮助功能,自动校正功能,密码保护功能等。
    留言咨询
  • 岛津场发射电子探针EPMA-8050G 开创新纪元——卓越的空间分辨率与超高灵敏度的完美结合 “The Grand EPMA” 诞生搭载最尖端场发射电子光学系统将岛津EPMA分析性能发挥到极致。从SEM观察条件到1μA量级,在各种束流条件下都拥有无与伦比卓越空间分辨率的尖端场发射电子光学系统。结合岛津传统的高性能X射线谱仪,将分析性能发挥至极致。 当之无愧的 “The Grand EPMA” ,最高水准的EPMA诞生! [性能特点]● 卓越的空间分辨率电子探针可达到的最高级别的二次电子图像分辨率3nm(加速电压30kV),分析条件下No.1的二次电子分辨率。(加速电压10kV时20nm@10nA/50nm@100nA/150nm@1μA)● 大束流超高灵敏度分析实现3.0μA(加速电压30kV)的最大束流。可超高灵敏度进行超微量元素的面分析。并且全束流范围无需更换物镜光阑。● 高性能X射线谱仪秉承岛津电子探针颇具优势的52.5°X射线取出角。采用4英寸罗兰圆半径的分光晶体兼顾高灵敏度与高分辨率。可同时搭载5通道高性能X射线谱仪。分析性能更胜一筹。● 全部分析操作简单易懂全部操作仅靠一个鼠标就可进行的先进可操作性。追求「易懂」的人性化用户界面。搭载导航模式,自动指引直至生成报告。 ◎实现微区超高灵敏度分析的先进技术 1 高亮度肖特基发射体岛津场发射电子枪采用的肖特基发射体比一般传统SEM使用的发射体针尖直径更大,输出更高。即可以保持其高亮度,还可提供高灵敏度分析不可缺少的稳定大电流。 2  EPMA专用电子光学系统电子光学系统,聚光透镜尽可能的接近电子枪一侧,交叉点不是靠聚光透镜形成,而是由安装在与物镜光阑相同位置上,具有独立构成与控制方式的可变光阑透镜来形成交叉点的。简单的透镜结构,既能获得大束流,同时全部电流条件下设定最合适的打开角度,将电子束压缩到最细。当然是不需要更换物镜光阑的。3 超高真空排气系统电子枪室、中间室、分析腔体之间分别安装有筛孔(orifice)间隔方式的2级差动排气系统。中间室与分析腔体间的气流孔做到最小,以控制流入中间室的气体,使电子枪室始终保持着超高真空,确保发射体稳定工作。4 高灵敏度X射线谱仪岛津场发射电子探针最多可同时搭载5通道兼顾高灵敏度与高分辨率的4英寸X射线谱仪。52.5°的X射线取出角在提高了X射线信号的空间分辨率的同时,又可减小样品对X射线的吸收,实现高灵敏度的分析。 [应用举例] 1. 岛津场发射电子探针EPMA-8050G检测:无铅焊锡焊料中Ag与Cu的分布对无铅焊锡焊料中大量含有Ag的区域进行面分析的数据。(加速电压:10kV;照射电流:20nA)Ag的X射线像中颗粒形状与BSE像(COMPO)的颗粒形状一致。直径约0.1μm的Ag颗粒也清晰可辨(红色虚线圈出)。同时可确认Cu颗粒的存在(黄色虚线圈出)。 岛津场发射电子探针EPMA-8050G应用数据 2. 岛津场发射电子探针EPMA-8050G检测:生物体组织中的金属元素 以下数据为EPMA捕捉到的肿瘤细胞中铂(Pt)元素图像,通过靶向给药将抗肿瘤药物卡铂(铂络合物)导入小鼠头颈部肿瘤组织中后进行分析检测。卡铂通过与癌细胞内的遗传因子DNA链结合,阻碍DNA的分裂(复制)以杀灭癌细胞,我们可以通过元素图像了解抗癌药物以何种形态进入癌细胞内。 岛津场发射电子探针EPMA-8050G应用数据
    留言咨询
  • ZLX-ES系列发射光谱/光源测量系统发射光谱/光源测量系统介绍 发光体,如白炽灯、荧光灯、LED等辐射光谱及发光特性的测试,对研究其特性有很大帮助。系统不仅可测量光源或其他发射光谱分布,而且可在此基础上得到积分辐射通量、光通量、色坐标等。 针对不同辐射光源的特性,可灵活选择测试系统,如:宽带光源和LED通常分辨率要求不高,可使用Omni-&lambda 150系列单色仪系统;激光器、放电灯、等离子体、原子发射光谱等要求分辨率高,可使用Omni-&lambda 300、Omni-&lambda 500、Omni-&lambda 750系列单色仪系统;宽波长范围(UV~IR),建议采用双出口单色仪接两个探测器;测试宽光谱范围的发光体,建议采用SD滤光片轮消多级光谱。系统组成:分光系统+检测系统+数据采集及处理系统+软件系统+计算机系统
    留言咨询

近边带发射相关的方案

近边带发射相关的论坛

  • 亿光发射管简介

    亿光发射管也可以称作亿光红外发射管或亿光红外线发射二极管,属于二极管类。它是可以将电能直接转换成近红外光(不可见光)并能辐射出去的发光器件,主要应用于各种光电开关及遥控发射电路中。亿光发射管的结构、原理与普通发光二极管相近,只是使用的半导体材料不同。亿光红外发光二极管通常使用砷化镓(GaAs)、砷铝化镓(GaAlAs)等材料,采用全透明或浅蓝色、黑色的树脂封装  亿光发射管参数介绍  发射距离、发射角度(15度、30度、45度、60度、90度、120度、180度)、发射的光强度、波长。是亿光发射管的物理参数,需了解其电性能参数:市场上常用的直径3mm,5mm为小功率亿光发射管,8mm,10mm 为中功率及大功率发射管。小功率发射管正向电压:1.1-1.5V,电流20ma,中功率为正向电压:1.4-1.65V 50-100ma,大功率发射管为正向电压:1.5-1.9V200-350ma。1-10W的大功率亿光发射管可应用于红外监控照明。http://www.dzsc.com/data/uploadfile/20121018152042817.jpg  亿光发射管应用范围  亿光发射管的应用范围主要有以下几点:  1、适用于各类光电检测器的信号光源。  2、适用于各类光电转换的自动控制仪器,传感器等。  3、根据驱动方式,可获得稳定光、脉冲光、缓变光,常用于遥控、警报、无线通信等方面。  使用注意事项  亿光发射管应保持清洁、完好状态,尤其是其前端的球面形发射部分既不能存在脏垢之类的污染物,更不能受到摩擦损伤,否则,从管芯发出的红外光将产生反射及散射现象,直接影响到红外光的传播。  由于红外波长的范围相当宽,因此亿光发射管必须与LED接收管配对使用,否则将影响遥控的灵敏度,甚至造成失控。因此在代换选型时,要务必关注其所辐射红外光信号的波长参数。  亿光发射管的发光功率与光敏器件的灵敏度因封装而有角分布使用时注意安装指向调整,更换时亦应做相应调整,注意管子的极性,管子不要与电路中的发烧元器件靠近。  亿光发射管在工作过程中其各项参数均不得超过极限值,因此在代换选型时应当注意原装管子的型号和参数,不可随意更换。另外,也不可任意变更亿光发射管的限流电阻。

近边带发射相关的资料

近边带发射相关的资讯

  • AFM技术文章:通过边带KPFM(Sideband KPFM)对分子聚集体进行电势成像
    充分发挥潜力通过边带KPFM对分子聚集体进行电势成像Ilka M. Hermes, Andrea CerretaPark Systems Europe GmbH, Mannheim, Germany 功函数是一种材料特性,可用于区分复合材料中的单一成分或用于区分样品与基体。开尔文探针力显微镜(Kelvin probe force microscopy,KPFM)能利用已知的探针功函数,以纳米分辨率去成像样品表面功函数分布。在这里,我们介绍了Park Systems 研究型原子力显微镜中新开发的边带KPFM(Sideband KPFM)。边带KPFM显著提高了电势的灵敏度和空间分辨率,从而提高了KPFM测量的准确性和可靠性。 半氟化烷烃由两个链段组成–(CF2)xF和(CH2)yH 嵌段。FxHy 在水中和固体基质上以不同的形态自组装。因此,对半氟化烷烃(如F14H20)的研究有助于对自组装的一般理解。由于F14H20的电偶极子导致F14H20与衬底之间存在明显的表面电势差,所以开尔文探针力显微镜(KPFM)非常适合于自组装F14H20结构的纳米级可视化研究。 KPFM是一种扫描探针显微镜技术,它能同时捕捉样品的表面形貌和表面电势。对于KPFM,振荡的导电探针在扫描样品表面的同时会施加交流电压,用来检测由表面电势局部变化引起的针尖和样品之间的静电力变化。为了最小化所侦测到的静电力,外加直流偏压可以抵消扫描的每个点上针尖和样品之间的接触电势差。基于外加直流偏压,在KPFM信号中重构了样品的表面电势分布。如果已知导电探针的功函数,那么电势分布就可以转换为样品的功函数分布。静电力的检测方法决定了KPFM中表面电势的分辨率和精度。 在非共振KPFM中,交流电压以远离悬臂共振的频率调制静电力,用于形貌成像(图1a)。然后通过交流频率下的振幅来检测力。通过施加与针尖和样品之间的电势差所相匹配的直流偏压,可以消除交流频率下的振幅,从而消除静电力。然而,KPFM信号对长程力的依赖性降低了测量的灵敏度,因为样品和悬臂之间的非局部相互作用可以叠加在局部信号上。 对于边带KPFM,我们采用低频交流电压(2-5kHz)来调制静电力梯度。调制力梯度引入了悬臂共振左右两侧的频率边带(图1b)。与非共振KPFM类似,边带KPFM通过施加与电势差相匹配的直流偏置来抵消这些边带的振幅。通过检测短距离的力梯度来取代长程力梯度,可以减小长距离串扰,提高横向分辨率和局部电势灵敏度。图1:非共振KPFM(a)和边带KPFM(b)的频谱示意图。边带KPFM检测电极阵列在F14H20上进行测量之前,为了测试边带KPFM的电势分辨率和精度,我们在金电极阵列的相邻电极上施加了不同的电压(0V和-2V)(图2a)。图2b中样品形貌和边带KPFM电势的叠加说明了在两个电极上检测到的不同电势:左侧电极显示约0V的亮电势对比度,右侧电极显示约-2V的暗电势对比度。图2c是更详细的分析电势图像的线轮廓。在这里,我们发现测得的电势与外加电压是一致的。因此,我们检测到两个相邻电极之间存在2V压差,以及从电极到基板的急剧过渡。因此,我们证明了边带KPFM能够以很高的电势灵敏度和空间分辨率捕获施加在样品上的全电压。图2: a)电压分别为0和-2V的金电极阵列。b) 边带KPFM电势和形貌的三维叠加显示了两个电极的两种不同电势随外加电压的变化。c) 边带KPFM电势沿红线分布在两个电极上,表明测得的电位与外加电压一致,空间分辨率高。F14H20分子聚集体的KPFM研究 为了比较边带KPFM和更常用的非共振KPFM,我们绘制了半氟化烷烃(F14H20)自组装聚集体的表面电势分布图。在这里,分子的电偶极子在聚集体和亚硝酸盐之间引入了一个显著的电位偏移。图3:使用非共振和边带KPFM对相同的F14H20成像。横截面(红色)可以体现边带KPFM的横向和电势分辨率明显提高。 非共振和边带KPFM测量结果表明,边带KPFM的空间分辨率和电势分辨率都有所提高。对于边带KPFM,我们观察到基板和F14H20之间的潜在对比度为700-750mv,以及确定的横向分辨率,甚至可以成像聚集体中的小间隙。另一方面,非共振KPFM显示大约300mv的电势差,表明局部电位灵敏度较低。此外,边带KPFM捕获的清晰边缘在非共振KPFM中模糊,突出了边带KPFM优越的空间分辨率。 F14H20分子聚集体的柔软性对扫描探针技术的表征提出了新的挑战。然而,边带和非共振KPFM可以与Park Systems的非接触模式相结合,从而允许对这些软分子结构进行稳定的形貌成像。总结 边带KPFM,可扩展在Park NX研究型设备中,对测量如F14H20类似的软样品以及半导体和金属材料提供准确的表面电势研究。对静电力梯度的依赖性显著提高了横向分辨率和电势灵敏度,使边带KPFM成为纳米尺度表面电势定量表征的理想技术。Source:1. Silva, G. M. C., Morgado, P., Lourenço, P., Goldmann, M. & Filipe, E. J. M. Spontaneous self-assembly and structure of perfluoroalkylalkane surfactant hemimicelles by molecular dynamics simulations. Proc. Natl. Acad. Sci. 116, 14868 LP – 14873 (2019).2. Abed, A. El, Fauré, M.-C., Pouzet, E. & Abillon, O. Experimental evidence for an original two-dimensional phase structure: An antiparallel semifluorinated monolayer at the air-water interface. Phys. Rev. E 65, 51603 (2002).3. Zerweck, U., Loppacher, C., Otto, T., Grafström, S. & Eng, L. M. Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B 71, 125424 (2005).
  • 岛津应用:LED灯的发射光谱测定
    荧光灯和LED灯等发射可见光的光源具有特有的发射光谱。因为光波长和光量决定光的色调,所以在灯的开发过程中,测定其发射光谱对评价光源的性质非常重要。 通常使用紫外可见分光光度计(UV)或荧光光谱仪(RF)测定发射光谱。使用UV 得到的光谱为包含仪器特性(仪器函数)的发射光谱,该光谱的色调与视觉感知的色调不同。如果使用岛津公司生产的具有自动仪器校正功能的荧光光谱RF-6000,则不受仪器函数的影响,可以得到精确的发射光谱。综上所述,RF-6000配置大型样品室,可以直接放置较大光源的样品。另外,还可以通过仪器的自动光谱校正功能获得仪器校正后的光谱。使用RF-6000,可以得到准确的LED灯发射光谱。 本文向您介绍使用RF-6000 测定LED 灯发射光谱的示例。 将LED灯放置到样品室内 了解详情,敬请点击《LED灯的发射光谱测定》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 场发射电子源肖特基发射源和冷场发射源
    电子显微镜通过发射电子与样品相互作用成像,用来“照射”样品的可靠电子源是电镜最重要的部分之一。电子显微镜对电子束的要求非常高。目前只有两种电子源满足要求:热电子发射源和场发射电子源。目前商用的,热电子发射源用的是钨灯丝(较少见)或六硼化镧( )晶体(较常见);场发射电子源用的是很细的针状钨丝(具体分为肖特基发射源和冷场发射源)。场发射电子源场发射电子源通常叫做 FEG,其工作原理和热电子源有着本质区别。基本原理是:电场强度 E 在尖端急剧增加,这是因为如果把电压 V 加到半径为 r 的(球形)尖端,则在场发射中我们称细针为“针尖”,钨丝是最容易加工成细针尖的材料之一,可以加工出半径小于 0.1μm 的针尖,场发射与钨针尖的晶体取向相关,310是最好的取向。场发射枪(FEG)相对简单,通过拔出电压将电子从针尖中拉出来,然后通过加速电压对电子加速。第一次启动时要缓慢增加拔出电压,使热机械振动不至于损坏针尖。这就是使用 FEG 要执行的唯一实际操作,并总是由计算机实际控制。热电子发射源我们称热发射钨电子源为“灯丝”,因为钨可以被拉成细丝,类似白炽灯中用的灯丝。六硼化镧通常沿110取向生长来增强发射能力。事实上,把任何一种材料加热到足够高的温度,电子都会获得足够的能量以克服阻止它们离开的表面势垒(称为功函数 Φ)。大小约为几个电子伏。热电子发射机制可以用 Richardson 定律表示:其中,J 为发射源电流密度,T 为工作温度(K),k 是玻尔兹曼常量 ,A 是 Richardson 常数,A ,具体数值取决于电子源的材料。把电子源加热到温度 T,使电子获得大于 Φ 的能量并从此那个电子源中逃逸出来,从而形成电子电子束。然而大多数材料注入几 eV 的热能时就会熔化或蒸发。唯一可能的热电子源材料要么是高熔点(钨熔点 3660K),要么 Φ 异常小( 功函数 2.4)。晶体是现代 TEM 中所用的唯一热电子源,通常被绑在金属(例如铼)丝上通过电阻加热形成热发射。 晶体对热冲击很敏感,所以加热、冷却电子源时要小心。当必须手动开关电子源时,要缓慢增加/减小热电流,在每个设定值后停顿 10~20s。随着科学技术发展,目前部分操作已可以通过计算机控制,但是对于大多数 TEM 仍广泛使用的热电子枪,仍需要操作者进行部分手动控制。大束科技(北京)有限责任公司自主研发了电镜零部件,尤其是消耗型的部件都做到了国产化,例如液态镓离子源、电子枪和离子枪配件、光阑、电镜上使用的各种电源等,可以完全替代进口产品。大束科技(北京)有限责任公司的可以量产的生产制造场地即将装修完毕投入使用,实现量产以后,在最极端的情况下,如果在国内已经安装的进口电镜原厂家不再提供配件,大束科技(北京)有限责任公司的产品可以保障国内这些进口电镜正常运行。