矿物粒子

仪器信息网矿物粒子专题为您整合矿物粒子相关的最新文章,在矿物粒子专题,您不仅可以免费浏览矿物粒子的资讯, 同时您还可以浏览矿物粒子的相关资料、解决方案,参与社区矿物粒子话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

矿物粒子相关的耗材

矿物粒子相关的仪器

  • 当前,随着油气资源勘探开发纵向深入,研究对象愈发复杂、勘探难度也越来越大,常规、特别是非常规油气勘探开发面临非常严峻的技术挑战。现有录、测井技术,如XRF元素分析、XRD矿物分析、岩屑成像技术、核磁共振等,虽都有特定的优势,但也存在各自的局限性,无法实现储层元素、矿物、形貌、孔隙度等特征的同时表征。因此,在工作效率与技术集成性方面需要一种同时满足制样简单、移动方便、测试精度高、快速定量分析矿物学特征、孔隙裂隙结构特征以及岩石力学性质的智能化、数字化设备。基于上述现状,MaipSCAN( Mineralogy by Artificial intellgence powered Scanning Electron Microscopy )应运而生。MaipSCAN是由中科院地质与地球物理研究所与欧波同中国有限公司强强联合自主研发的高度集成化的全新一代数字智能矿物分析系统(图1),主要由高分辨扫描电子显微镜、高灵敏电子信号探测器、X射线探测器及多功能高级测试分析软件组成。图1 MaipSCAN外观图像MaipSCAN应用概况1、 场景多:卓越的抗震功能保障既可以应用于实验室,也可以应用于钻井现场、岩心库等复杂环境。能够实现对岩芯-侧壁岩芯、岩屑、薄片等多种岩石样品的测试分析,尤其是能够将碎小的岩屑样品“变废为宝”充分利用起来,取样成本大大降低。2、 参数全:MaipSCAN可以提供丰富的数据结果,包括岩石的矿物和元素定量数据、高清电子图像、伽马元素、孔隙度、孔隙结构、微裂缝(弱面指数)、弹性参数及脆性指数等多个勘探开发关键参数。3、 用途广:在地质方面,MaipSCAN提供的高分辨率图像可以实现地层准确检测,根据定量的矿物和元素数据能够确定岩性、划分地层、精细划分岩相、评价物性特征、识别地质甜点,依靠岩性、矿物、元素来对比地层,对物源、沉积环境进行分析等;在地球物理方面,MaipSCAN提供的参数可以用于标定常规电缆测井、校正岩石物理模型、生成高质量的弹性属性曲线;在工程方面,MaipSCAN可以实现钻测深度归位,准确卡层,进行井壁稳定性分析,辅助水平井地质导向,完成工程甜点预测,评价岩石脆性,优化水平井压裂选段等。技术特色强大的软件系统MaipSCAN软件分析系统包括测量软件(Inspector)、矿物标准库管理软件(RockSTDManager)和分析报告软件(iCustomer)三个强大模块。1、Inspector:可以快速设定岩样测试参数、实现高效高清BSE图像采集、元素和矿物的准确定量测试,大幅提升样品测试速度。高效易操作的测量模块(Inspecteor) 2、RockSTDManager:包含专利技术的矿物识别算法保障了矿物识别的准确性,尤其是难以识别的粘土矿物;此外,提供了矿物标准库的管理功能,可以新增和更改为符合研究区的矿物库,使得矿物分析更具适应性和准确性。精确识别矿物的矿物标准库管理模块(RockSTDManager)3、iCustomer:具有强大的后处理和报告能力,从图像处理、定量分析、数学模拟到成果图绘制,一个软件可以实现全部功能,极大地优化了后期数据分析的效率。可以定量分析元素含量、矿物含量、矿物颗粒尺寸、矿物相关系、微裂缝密度(弱面指数)、孔隙度及孔隙结构等关键参数;根据工况建立数字岩石模型并计算弹性参数,用于脆塑性分析;根据用户定义的矿物库进行重新分类;实现多个样品的批量处理,且处理速度较快。分析处理与报告生成模块(iCustomer)MaipSCAN岩石力学模型MaipSCAN可以通过分析现场岩屑微观结构和成分特征,经过科学缜密的数据算法,得到研究区的岩石力学参数,建立研究区地层岩石力学模型,可根据工况建立数字岩石模型并计算弹性参数,用于脆塑性分析。
    留言咨询
  • AMCS-Mining自动矿石特征分析系统是AMCS – Advanced (Automatic) Mineral Characterization System 系列自动矿物特征分析系统产品之一,是由国际工艺矿物专家团队主持开发的第三代自动矿物定量分析系统,该系统与高分辨率扫描电镜完美结合,适用于矿业、煤炭、地质等领域,是科学家及工程技术人员对样品进行工艺矿物学定量分析的有力帮手。AMCS-Mining自动矿石特征分析系统可实现的功能有:矿物颗粒的尺寸及面积、组成矿物颗粒的每一单体矿物颗粒的面积、单体矿物颗粒的颗 粒边界、单体矿物颗粒的X射线图谱;自动矿物分类,根据单体矿物颗粒的X射线图谱,确定单体矿物颗粒的矿物成分;经矿物分类的样品测量信息通过计算可得到 各种样品测量结果,包括样品的矿物组成,矿物颗粒及矿物单体颗粒的矿物组成,样品的元素组成,矿物颗粒及矿物单体颗粒的元素组成,矿物元素的分布,矿物颗 粒及矿物单体颗粒的分布,矿物颗粒及矿物单体颗粒尺寸、形态、比重信息,矿物及剂矿物元素回收率及品味估算,矿物生存关系,矿物矿相表面积比,矿物的连生 关系,矿物的解离度等信息。AMCS-Mining自动矿石特征分析系统分析流程: AMCS-Mining自动矿石特征分析系统系统的特点:先进的全自动矿物识别技术 系统采用了先进的第三代自动矿物识别技术。矿物识别无需人工干预、无需人工建立编辑矿物数据标准。大大降低了系统的复杂性,将操作人员从繁琐、复杂的矿物数据标准库建立维护工作中解放出来,同时最大限度地减少人为因素造成的矿物识别错误,使矿物识别更为精准、更快速。完整的矿物数据库矿物数据库矿物种类齐全,数据完整。全新先进的图形处理技术 在分析过程中,系统采用了全新先进的图形处理技术实现分离矿物颗粒,区分矿物边界。不仅处理速度及处理能力(处理图形面积的大小及复杂性)几倍、几十倍于第二代自动矿物所采用的图形处理技术,且结果更为精准。快速在线矿物分类 矿物分类在测量过程中同时进行,用户可以随时监视测量过程。测量完成后立即就可以输出简单的测量结果,如矿物成分及颗粒数。样品测量结果数据分析图表颗粒尺寸分布表颗粒比重分布表矿物连生关系表矿物元素构成、面积及重量百分比矿物解离度分析矿物生存关系分析矿物理想回收率、品位估算表 元素理想回收率、品位估算表案例分析工艺矿物学研究不深入导致工程失败BHP Beenup砂矿-20世纪80年代发现-丰富的钛铁矿和锆石砂矿-九十年代后期投入生产-2000年关闭-损失3亿美元失败的主要原因:-砂矿石比较坚硬,而设计爬斗过大(40米深),爬斗齿因掉落,采矿进度受影响-矿中有较多的粘土矿物,矿物分离困难,影响了钛铁矿和锆石的回收率-矿尾砂含有丰富的黄铁矿,在空气中暴露会变成硫酸,破坏矿区及周围的环境某私企金矿并购案-高品位的黄金矿-收购后的工艺矿物学分析发现80%以上的黄金的生存状态是以1微米或1微米以下的微细颗粒嵌生于石英颗粒中,属难选矿,企业为此蒙受了重大的经济损失。失败的主要原因:-经典的因对矿石的矿物进行特征分析不利而造成的投资失败-告诉我们富矿不一定等于好矿-再一次说明对矿物进行特征分析的重要性南非英美铂业利用矿物自动分析优化选矿,-系统地收集贵金属在源矿中有用矿物的赋存状态,-分析贵金属选场流程中的去向,分析贵金属遗失在尾矿中的原因,-优化选矿工艺使遗失在尾矿中的贵金属从百万分之1%到百万分之0.5%,贵金属回收率上升5%左右,-增收1.75亿美金/年。成功的主要原因:-重视对矿石的工艺矿物学分析-长期投资矿物自动分析技术国内某钨钼矿开发利用矿物分析优化选矿工艺,低品位的复杂钨钼矿床,-传统全浮方法难以保证合理的产品品位和合理的回收 率,被认为是一个难以利用的矿。-深入的工艺矿物学发现94%的目标元素在非磁性矿物中,磁性矿物占矿物总量40%,强磁预丢尾先浮钼后浮钨的选矿方案, 消除磁性矿物对浮选过程的干扰影响,保证浮选的指标,可增大浮选的生产能力,降低浮选药剂成本,综合回收资源中的有价成分,提高资源综合利用率成功的主要原因:-自动矿物参数分析系统的应用可以改变一个矿的命运-深入矿石矿物特征分析使这一本认为是难以利用的矿成了有利用价值的好矿
    留言咨询
  • AMICS矿物特征自动定量分析系统 全自动矿物特征分析系统选矿专家们自动获取工艺矿物学定量分析数据的得力工具 AMICS-Mining 由国际工艺矿物学家团队主持开发的第三代矿物参数自动定量分析系统。该系统与高分辨率扫描电子显微镜完美结合,广泛适用于矿业、煤炭、地质科研等领域,是科学家及工程技术人员对样品进行工艺矿物学定量分析的有力帮手。 作为一个为矿业、煤炭业、地质科研、生产打造的专用矿石特征的定量分析工具,AMICS-Mining自动矿石特征分析系统软件主要功能。 数据采集数据分析结果显示智能信息管理系统 AMICS-Mining可以快速而准确地对矿石样品进行分析,分析结果样品的矿物组成样品的矿物元素组成元素在矿物中的分配矿物颗粒尺寸分布 单体矿物颗粒尺寸分别 矿物颗粒的比重及分布矿物相关关系矿物包裹关系矿物嵌步特征单体矿物解离度分布煤中灰分含量可定制分析 系统可生成的分析图表样品BES图样品矿物成分分布图 矿物成分图、表矿物元素图、表矿物成分图、表矿物元素在矿物中的分布表颗粒尺寸分布图、表单体矿物颗粒尺寸分布图、表颗粒比重分布图、表矿物连生关系图、表矿物解离度计算图、表矿物的生存关系计算图、表矿物理想回收率、品位估算图、表元素理想回收率、品位估算图、表 样品矿物成分分布图 矿物成分图、表 矿物连生关系图、表 AMICS-Minning的应用范围十分广阔●矿产评估,预测矿藏的价值通过对矿石中有价值的成分及赋生状态的分析,对矿石的磨矿粒度,可分选性及回收率的进行预测,对矿产评估,预测矿藏的价值。 ●选矿、选煤工艺设计通过对样品的参数分析,特别是矿物粒度尺寸分布、单体矿物颗粒尺寸分布、目标矿物的解离度的分析,为确定合理的磨矿粒度、有的放矢地进行选矿实验、选矿方案的制定提供牢靠的数据。 ●新选矿、选煤工艺研发通过对矿石的深度分析比如目标矿物元素在矿物中的分配,加深对矿物的认识。研究新的选矿工艺,提高选矿的经济效益。新选矿工艺的诞生往往可以改变一个矿山的命运,使一个难选的矿变成一个有价值的好矿。 ●选矿、选煤流程优化,提高回收率,降低能耗通过对现有选矿工艺不同位置的样品参数分析,发现磨矿及浮选改进的方向及潜力并及以改进,达到优化流程、提高回收率,降低能耗的目的。 ●选矿流程的监控通过不断对原矿、精矿、尾矿,及时地调整选矿参数,使选矿厂始终工作在最佳状态,提高生产效益。在发生选矿回收率下降的情况下,通过分析尾矿中目标矿物的赋生状态,可以确定回收率下降的原因,加以修正。 ●环保通过对岩石、土壤、河床泥、空气粉尘、烟道粉尘的成分与物相分析,为环保提供依据。 ●煤矿灰份矿物的含量及粒度分布测定,指导煤矿资源的评估和综合利用 ●为现代数字化矿山提供基础数据 AMICS-Mining自动矿石特征分析系统系统的特点●先进的全自动矿物识别技术系统采用了先进的第三代自动矿物识别技术。矿物识别无需人工干预、无需人工建立编辑矿物数据标准。大大降低了系统的复杂性,将操作人员从繁琐、复杂的矿物数据标准库建立维护工作解放出来,同时最大限度地减少人为因素造成的矿物识别错误,使矿物识别更为精准、更快速。 ●完整的矿物数据库矿物数据库矿物种类齐全,数据完整。 ●全新先进的图形处理技术在分析过程中,系统采用了全新先进的图形处理技术分离矿物颗粒,区分矿物边界。不仅处理速度、及处理能力(处理图形面积的大小及复杂性)几倍、几十倍于第二代自动矿物所采用的图形处理技术,且结果更为精准。 ●快速在线矿物分类矿物分类在测量过程中同时进行,用户可以随时监视测量过程。测量完成后立即就可以输出简单的测量结果,如矿物成分及颗粒数。 ●简便测量设定及结果输出合理的软件设计,使得测量设定及结果输出及为方便,大大缩短了系统使用培训所需要的时间。 ●全新现代化软件界面采用了最新的软件编制工具,软件界面符合当今的潮流,更为人们所熟悉,方便使用。 ●合理的文件管理系统合理的文件管理系统设计,达到了即能自动管理结果文件,又方便转移结果文件的目的。 ●系统有英、中两个版本 AMICS-Mining自动矿石特征分析系统技术指标最小可识别矿物:1微米样品测量时间(直径30厘米):15分钟数据库:2000种以上基本矿物样品台样品数:高精度5轴电动9桩样品台 AMICS-Mining自动矿石特征分析系统的能谱仪技术指标硅漂移探头(BRUKER等)超快速脉冲处理电制冷(无需液氮)参照系统选择的能谱仪术指标 AMICS-Mining自动矿石特征分析系统的电镜技术指标参照系统选择的电镜技术指标 AMICS-Oil&Gas矿物特征自动定量分析系统作为一个为石油、天然气行业、地质科研、生产打造的专用岩芯、岩屑特征的定量分析工具,AMICS-Oil&Gas自动矿石特征分析系统软件主要功能。 数据采集 数据分析 结果显示 智能信息管理系统 AMICS-Oil&Gas可以快速而准确地对岩芯、岩屑样品进行分析,分析结果样品矿物成分样品元素成分岩屑颗粒、单体矿物颗粒尺寸分布孔隙度及孔隙尺寸分布矿物相关关系孔隙与矿物相关关系可定制分析 系统可生成的分析图表样品BES图样品矿物成分分布图矿物成分图、表矿物元素图、表岩屑颗粒尺寸分布图、表矿物颗粒尺寸分布图、表岩屑颗粒比重分布图、表矿物连生关系表岩屑岩性分析图、表 样品矿物成分分布图 矿物成分图、表 矿物连生关系表 AMICS-Oil&Gas的应用范围十分广阔油田勘探、开发地质分析压裂点的选择(水平井)测井数据修正辅助录井为现代数字化油田提供基础数据特殊应用功能定制
    留言咨询

矿物粒子相关的试剂

矿物粒子相关的方案

  • 合作成果I资源所发现新矿物“白鸽矿”
    新矿物研究,是地球科学领域重要的基础性研究工作。新矿物的发现不仅可以增加自然界的矿物种类,同时也可以为人类认识和利用自然界矿物提供新的参考。截至2022年3月,全球已累计发现新矿物5794种。新矿物的发现数量、研究深度及分析技术水平展现了一个国家基础科技的软实力与硬实力,是国家综合实力的体现。近年来,我国加大了对新矿物研究的支持力度,我国新矿物事业迎来了难得的发展契机。中国地质调查局矿产资源研究所李以科研究团队长期致力于战略性关键矿产成矿作用与资源评价研究工作。
  • 含锡锌铁矿的矿物学特性及其综合利用新技术
    摘要:研究含锡锌复杂铁精矿的矿物学特性,并开发含锡锌铁精矿球团预氧化− 弱还原焙烧新技术。研究结果表明:铁精矿中的主要载铁矿物为磁铁矿,主要含锡矿物为锡石,主要含锌矿物包括闪锌矿和铁闪锌矿,其中闪锌矿占绝大部分;以单体锡石形式存在的锡占 54.78%,而磁铁矿颗粒中的锡占 41.31%;磁铁矿中的锡绝大部分为锡石的微细粒包体;88.95%的锌存在于硫化矿中,闪锌矿多以单体粒状或以不规则状与磁铁矿及其他矿物构成连生体;在w(C)/w(Fe)为0.2,焙烧温度为1 075 ℃,时间为50 min 时,球团矿抗压强度为2 380 N/个,Sn 和Zn 的挥发率分别为71.86%和56.28%,残余Sn 和Zn 含量均小于0.08%。
  • LIBS+HSI光谱成像测量和数据融合技术应用于矿物特征和岩相学分析
    当前传统的矿物测定方法数据准确应用广泛,但是成本、人力及时间耗费高。为了满足开采策略和方法的新要求,矿物分析需构建高质量数据库,必须速度快、费用低,反而对准确度要求不高。近年来,包括HSI(高光谱成像技术)、LIBS(激光诱导击穿元素光谱分析技术)等在内的光谱成像技术日渐广泛地应用于矿物的种类识别和定量分析,由于非常契合上述数据库构建的要求,因而开启了岩相学和矿物学研究的新路径,为地理、构造地质、矿物、矿产勘查和加工等科学领域中的复杂过程研究提供了强大技术支撑。近日,我国“祝融号”火星车在火星乌托邦平原着陆区便是利用短波红外光谱等技术发现类似沉积岩的板状硬壳层富含含水硫酸盐等矿物。本文将介绍德国联邦地球科学和自然资源研究所(Wilhelm Nikonow et al.,2019)应用HSI、LIBS元素分布成像等光谱图像融合技术开展的矿物特征及岩相学分析研究,旨在为地球化学和矿物学科研工作者提供应用参考。

矿物粒子相关的论坛

  • 矿物效应在等离子体光谱中也存在吗?

    如题,之前看文献中说XRF在测粉末铁矿粉时会存在矿物效应,那么在用压片法处理样品后,再用等离子体发射光谱测样时,是否存在矿物效应。希望懂的大牛能答疑解惑~谢谢!

  • 在线全二维矿物油分析系统

    [align=center][b]包装材料和食物中矿物油的检测方法[/b][/align]矿物油是石油原油经过物理分离(蒸馏,萃取),化学转化(加氢反应,裂解,烷基化和异构化)过程形成的烃类化合物,包括由直链,支链及环状饱和烃矿物油(MOSH)以及聚芳烃化合物组成的的芳香烃矿物油(MOAH)两大类[sup][/sup]。食物中矿物油问题由来已久,严重损害人们的身体健康和造成大量的经济损失。1981年世界最大的食品中毒案就是因误食被矿物油污染的菜籽油引起的。1999年8月,广州肇庆发生一起参杂液体石蜡的食用油,引发集体食物中毒事件,中毒人数多达700人;2008年,震惊国际的乌克兰10万吨葵花籽油被不明来源的矿物油污染事件,导致乌克兰葵花籽油被禁止出口欧盟国家。前几年,我国出现的“毒大米”和“毒瓜子”事件都是由于抛光引起的矿物油污染事件。2017年3月,海天,老干妈等矿物油超标事件,引发了国内对矿物油危害的关注[sup][/sup]。[b]1 食品中矿物油的来源[/b]食品中矿物油污染主要有三种方式。第一,食品接触材料中矿物油的迁移[sup][/sup]。食品接触材料导致的食品中矿物油污染情况最为严重,而接触材料中矿物油的来源主要是回收纸或再生包装中残留的胶印油墨的连接料,脱模剂,塑料包装中的润滑剂,蜡纸,麻袋包装中的粘合剂等。第二,食品加工过程中使用矿物油作为加工助剂。如我国GB2760-2011中规定矿物油和白油可作为加工助剂(润滑剂,消泡剂,脱模剂等)用于油脂,糖果,膨化食品和豆制品等的生产。第三,环境污染。食品从原料的收割,晾晒到加工过程中接触到才有发动机的润滑油,没有完全燃烧的汽油,轮胎和沥青的碎屑以及不洁净空气等,都会使食品收到矿物油污染[sup][/sup]。[b]2 矿物油的毒理学[/b]研究表明,C16-C35的饱和烃矿物油(MOSH)会蓄积在人体的各种组织和器官中,如皮下腹部脂肪组织,肠系膜淋巴结,脾脏,肝脏等[sup][/sup]。MOSH呈中低等毒性,大量蓄积容易引发微粒肉芽肿,诱发浆细胞瘤形成,改变免疫功能或诱发自身免疫反应,高剂量的长链MOSH甚至是肿瘤的启动因子[sup][/sup]。芳香烃矿物油(MOAH)可能含有可致癌的多环芳烃,已有研究表明对于男性的肝脏和女性的子宫具有较强的致癌作用[sup][/sup]。工业用的矿物油被人误食后,对人体造成的危害主要油急性中毒和慢性中毒,急性中毒严重时会引发油脂性肺炎,慢性中毒可引发皮炎,神经衰弱综合征等[sup][/sup]。[b]3 矿物油的相关法规和每日允许摄入量建议[/b]随着矿物油毒理学数据的不断披露,国际上陆续开展了人群膳食烃类矿物油暴露风险评估和立法工作。2005年,瑞士颁布Verordmung 817.023,21,2005法规,规定矿物油MOAH迁移量11[/td][td=1,1,179]≧500[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)一级[/td][td=1,1,155]0~10[/td][td=1,1,223]8.5~11[/td][td=1,1,179]450~500[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)二级[/td][td=1,1,155]0~0.01[/td][td=1,1,223]7.0~8.5[/td][td=1,1,179]400~480[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)三级[/td][td=1,1,155]0~0.01[/td][td=1,1,223]3.0~7.0[/td][td=1,1,179]300~400[/td][/tr][/table][/align]4. [b]矿物油检测方法研究现状[/b]目前国内还未明确食品中矿物油的限量要求和检测方法,主要是由于检测方法的限制。关于食品中矿物油的定量检测,国内较先进的方法为使用离线[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-氢火焰离子化检测器(SPE-GC-FID)检测。但其缺点是检出限高,选择性和灵敏度差。随着对矿物油危害的重视,国内越来越多的学者重视矿物油检测方法的研究。如广东省检疫检验局检验技术中心,用SPE-GC-FID检测食品包装中矿物油,其最低检出限为7.79mg/kg(表1中MOSH的迁移限制为2mg/kg,无法满足),且只能检测矿物油中的MOSH[sup][/sup]。北京理化中心开发了银离子固相萃取-程序升温大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法检测巧克力中的MOSH,因为采用的是离线萃取方法,人为影响特别大,重现性差[sup][/sup]。中国食品发酵工业研究院国家食品质量监督检验中心也采用离线SPE-GC-FID对食用植物油中的MOSH定量分析。并且自制SPE复合柱净化。由于自制的净化柱存在一定差异,进一步降低了实验重现性[sup][/sup]。总之,国内目前开发的矿物油检测方法,具有三大检测技术难题。一,采用离线检测方法,这种方法人为误差较大,实验重现性差,很难实现稳定,快速,准确的矿物油检测。二,具有局限性,只能检测矿物油中的MOSH,无法检测MOAH。三, 检出限太高,难以满足国际颁布的相关标准。国际上公认理想的食品中矿物油的检测方法是在线联用LC-GC检测技术,其大体积,不分流的GC进样方式能够更好的富集矿物油,降低检出限。LC-GC-FID在线联用检测矿物油的特点是可以将矿物油中的MOSH和MOAH分离,同时可以将样品提取液中的使用油脂,胡萝卜素,角鲨烯,以及植物中的天然奇数碳烷烃等干扰矿物油测定的物质分离除去,实现矿物油的富集。避免了人工样品前处理,加快了分析速度,提高了分析效率;降低了样品损失和遭受污染的风险,从而提高分析方法的可靠性和重现性[sup][/sup]。目前在许多应用方法中均使用了在线全二维LC-GC联用技术。特别是K.Grob博士和Maurus Biedermann[sup][/sup]使用了Brechubuhler AG公司生产的LC-GC仪器对矿物油进行检测,推动了矿物油检测方法的发展。Luigi Mondelo撰写的文章,Online Coupled LC-GC: Theory and Applications。详细解释了LC-GC在线联合方法的理论和应用。Brechubuhler AG公司的在线全二维矿物油分析系统(LC-GC)不仅可以突破一次进样检测矿物油中MOSH和MOAH两类物质的技术壁垒。而且检出限极低,一般情况为0.6ppm,在对米中矿物油的检测低至0.24ppm。同时,它通过在线富集,避免离线检测时的人为误差,提高实验重现性。下图是使用LC-GC检测矿物油色谱图[sup][/sup]。[align=center] [/align][img=,692,440]file:///C:/Users/Anne/AppData/Local/Temp/ksohtml/wpsE2B6.tmp.jpg[/img] [align=center]图1. 回收纸板中MOSH和MOAH[/align][align=center]从上到下的三张图分别为:LC色谱图中的MOSH和MOAH;GC色谱图中的MOSH;GC色谱图中的MOAH[/align][align=center][img=,692,441]file:///C:/Users/Anne/AppData/Local/Temp/ksohtml/wpsE2C8.tmp.jpg[/img] [/align][align=center]图2. 大米样品中MOSH的检出限为0.24ppm[/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][b]参考文献[/b][align=left] World Health Organization Evaluation of certain food additives.Geneva: WHO,2002[/align][align=left] EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on Mineral Oil Hydrocarbons in Food . 2012[/align][align=left] BarpL, KornauthC, WuergerT, RudasM, BiedermannM, ReinerA, ConcinN, GrobK. FoodChem. Toxicol., 2014, 72: 312-321[/align][align=left] GrobK. J.Verbr. Lebensm., 2014, 9:231-219[/align][align=left] 固相萃取-大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法定量分析油茶籽油中的矿物油. 刘玲玲,武彦文,李冰宁,汪雨,杨一帆,祖文川,王欣欣. 分析化学. 2016,44(9):1419-1424[/align][align=left] MondelloL, ZoccaliM, PurcaroG, FranchinaFA, SciarroneD, MoretS, ConteL, TranchidaPQ.J. Chromatogr.A, 2012, 1259:221-226[/align][align=left] Vollmera, Birdermannm, Grudbckf, IngenhoffJE, BiedermannBremS, AltkoferW, GrobK. Eur. Food. Res. Technol., 2011,232:175-182[/align][align=left] 银离子固相萃取-程序升温大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法定量分析市售巧克力中的饱和烷烃矿物油.李冰宁,刘玲玲,张贞霞,武彦文. 分析化学,2017,45(4):514-520[/align][align=left] 矿物油超标危害有多严重 海天,老干妈等油辣椒产品卷入. 周子荑,中国商报。2017(P05)[/align][align=left] 食品中烃类矿物油的污染情况及迁移研究进展. 杨春艳, 柯润辉, 安红梅, 王丽娟, 黄新望, 尹建军, 宋全厚. 食品与发酵工业, 2017, l43:258-264[/align][align=left] 警惕化妆品美丽背后的伤害.王本进. 首都医药, 2005(11): 26-27[/align][align=left] 食用植物油参入矿物油的鉴别. 白满英,李芳,魏义勇. 中国油脂, 2001, 26(3): 64-65[/align][align=left] Fifty-ninth report of the WHO Expert Committee on Food Additives: Evaluation of certain food additives . Geneva: WHO, 2002[/align][align=left] SPE-GC-FID法检测食品包装纸中的矿物油.李克亚, 钟怀宁, 胡长鹰, 陈燕芬, 王志伟. 食品工业科技, 2015, 19(048): 281-285[/align][align=left] SPE-PTV-GC-FID法定量分析食用植物油中的饱和烃类矿物油.杨春艳, 张九魁, 柯润辉, 王烁, 尹建军, 宋全厚.中国食品添加剂, 2018(1): 165-174[/align][align=left] Enrichment for reducing the detection limits for the analysis of mineral oil in fatty foods . Michael Zurfluh,Maurus Biedermann,Koni Grob. Journal für Verbraucherschutz und Lebensmittelsicherheit . 2014 (1) [/align][align=left] On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 2: Migration from paperboard into dry foods: Interpretation of chromatograms . Maurus Biedermann,Koni Grob. Journal of Chromatography A . 2012[/align][align=left] Determination of mineral oil paraffins in foods by on-line HPLC-GC-FID: lowered detection limit contamination of sunflower seeds and oils . Katell Fiselier,Koni Grob. European Food Research and Technology . 2009 (4) [/align][align=left] On-line HPLC-GC-FID for the evaluation of the quality of olive oils through the methylethyl and wax esters. Maurus Birdermann, Carlo Mariani, Urs Hofstetter.[/align][align=left] Mineral oil, PAHs in food, Maurus Birdermann,Koni Grob[/align][align=left] MOSH MOAH Application note, Philippe Mottay, Brechubuhler AG.[/align]

  • 请教如何清洗矿物表面

    我合成了一些矿物,因以后的实验要求需要把矿物表面的杂质离子清洗掉,我以前用过电渗析法,但速度很慢,两三个月也洗不干净,请问用什么方法比较好。我急呀

矿物粒子相关的资料

矿物粒子相关的资讯

  • 新矿物+2!我国科研人员发现两种新矿物
    人民政协网北京8月16日电(记者 王硕)记者16日从中国地质调查局获悉,由我国科研人员发现、命名并申报的新矿物“氟碳钙钕矿”以及“菊兴铜矿”近日分别获得国际矿物学协会-新矿物命名及分类委员会批准通过,这意味着我国科研人员发现两种新矿物。其中,氟碳钙钕矿由国家地质实验测试中心范晨子研究员联合中国地质科学院矿产资源研究所、中南大学等单位科研人员发现于内蒙古白云鄂博矿。它的发现对丰富稀土氟碳酸盐矿物学基础理论知识,认识白云鄂博稀土元素赋存状态和替代机制,了解矿床的形成与演变、元素赋存状态、元素迁移、富集机制等具有重要的意义。内蒙古白云鄂博矿是世界最大的稀土矿床,也是我国矿物资源的宝库,迄今已发现210余种矿物,在我国新矿物发现地中占据首要位置。此次发现的氟碳钙钕矿是在该矿床发现的第21种新矿物。钕作为当今稀土元素家族中的佼佼者,对促进稀土在永磁材料、激光材料等高新技术领域中的应用,发挥着极为重要的作用。此次新发现的氟碳钙钕矿属于钙稀土氟碳酸盐系列矿物,是常见的稀土矿物氟碳钙铈矿的富钕类似矿物,也是钕资源的重要矿物原料。氟碳钙钕矿呈黄褐色至褐色,与方解石、萤石、霓石、钠闪石、磁铁矿等矿物共生,钕氧化物平均含量约为30%,稀土氧化物平均含量约为60%,且具有多型、体衍交生等复杂晶体微结构特征。菊兴铜矿由中国地质科学院矿产资源研究所顾枫华助理研究员、中国地质大学(北京)章永梅副教授,联合江西应用科技学院/中南大学谷湘平教授和核工业地质研究院范光研究员等发现于西藏甲玛世界级斑岩-矽卡岩型巨型铜多金属矿床中。初步研究表明,菊兴铜矿是一种重要的载金载银矿物,结构复杂,其形成与中高温热液贵金属矿化密切相关。该矿物的发现不仅为硫化物矿物家族增添了新的一员,而且对于研究斑岩-矽卡岩型矿床的成矿物理化学条件与成矿作用过程具有重要的科学意义。菊兴铜矿主要产出于下白垩统林布宗组与中新世斑岩接触带形成的矽卡岩型铜多金属矿体中,共伴生金属矿物主要包括黄铜矿、方铅矿、辉钼矿、黄铁矿、蓝辉铜矿、辉铜矿,以及少量金-银矿物和含铋矿物(如硫铋铜矿)。该新矿物常在斑铜矿中呈固溶体产出,粒径多变化于数至100微米之间。菊兴铜矿为复杂金属硫化物,不透明,具金属光泽;反射色为浅黄白色,均质性,无双反射和反射多色性;其晶体结构由硫、 硫-铋原子层和不同比例空位的铜-铁原子层组成,与斑铜矿、黄铜矿的结构存在联系。
  • 地球科学中自动化矿物学的未来
    随着 2021 年 11 月 Mineralogic 3D 的推出,自动化矿物学刚刚见证了其技术的最大转变。这是一项广泛的开发计划,旨在定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以实现一致和准确的识别矿物相直接来自 3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。介绍几十年来,“自动化矿物学”一词一直是地球科学中电子显微镜的代名词。使用能量色散光谱 (EDS) 快速绘制样品图和识别感兴趣的相已逐渐从其最初的行业应用转移到学术研究环境中。对于希望利用这一强大工具的学者来说,一个主要问题是原始平台在其行业设计的输出方面是僵化的,并且能够提供自动化输出的软件和硬件都缺乏开发。蔡司矿物学一直采用不同的方法,2D 和 3D 的持续发展意味着我们现在拥有有史以来设计的最全面和最先进的岩石学研究平台,重新定义了自动化矿物学这一短语。使用定量 EDS 分析,EM 的矿物学一直领先一步。这使得它在自动化矿物学系统中独树一帜,成为真正的地球化学工具,能够计算薄片等区域的矿物和整体成分。然而,这种能力仍然在传统的自动化矿物学软件的框架内,用户如何访问和使用地球化学信息的灵活性有限。在 Mineralogic 1.8 中,这一切都发生了变化,自动化矿物学的使用方式发生了重大转变,特别是在工作流程高度可变的学术环境中。在最新版本中,地球化学信息被放在首位,与软件设计的阶段 ID 一样重要(图 1)图 1:大颗粒观察器 (LPV) 用于可视化苏格兰西北部路易斯安杂岩中的麻粒岩相超长岩的完整薄片。单击即可从 BSE 和矿物分类图更改为定制的范围元素热图,所有这些都来自同一次扫描。图像显示 a) 灰度 BSE,b) 矿物分类,以及 c) 和 d) 定量 Fe 和 Mg 热图。新的大粒子查看器可以将完整的薄片查看为定量元素热图,并且收集的所有地球化学数据都可以导出为简单的 .csv 文件格式。这种简单的数据导出允许将定量地球化学测量值直接导入为地球科学家专门设计的第三方软件,例如 XMapTools。技术上最大的转变是在 2021 年 11 月推出 Mineralogic 3D。这是在一项广泛的开发计划之后定义 X 射线吸收对比断层扫描 (ACT) 数据的校准和标准化,以允许直接从3D 成像。这对于自动化矿物学来说是真正的新领域,不仅可以非破坏性地进行相识别,而且只需极少或无需样品制备。3D 测量具有许多优点,包括识别次要相位、无立体效应以及对珍贵样品(例如陨石)进行无损分析。现代、灵活的自动化矿物学技术可以应用于地球科学以外的许多材料,包括金属、陶瓷,甚至是根和骨头等有机物质。然而,矿物物种在主要元素化学、结构和密度方面的全球一致行为使其成为此类自动化工作流程的理想候选者。完整的蔡司矿物学软件包现在提供最全面的矿物学和岩石学解决方案,这只是对地球科学界长期投资的开始。突破二维自动化矿物学的极限自动化矿物学在四个十年的使用中几乎没有变化。对严格的行业应用程序进行粒子分析的一致输出的要求导致看似相似的软件环境在输出方面几乎没有灵活性。该设置非常适合设计自动化矿物学的常规工作流程、矿物学处理的长期一致性以及破碎样品的地质冶金学,这些样品在数月和数年内在单个地点几乎没有变化。最大的挑战是在学术环境中越来越多地使用自动化矿物学平台。吸引力非常明显,能够将传统的颗粒分析方法转化为 SEM 中的各种样品的映射,从环氧树脂安装的颗粒分离器到完整的薄片和抛光的芯板。能够用模态丰度、纹理信息等绘制矿物学图,对于构建大型数据集、拥有“大数据”和了解我们个体样本的统计相关性的现代科学来说似乎是完美的。然而,在一个依赖灵活性的研究环境中,这个看似理想的工具却受到为工业应用设计的输出的刚性所阻碍。在蔡司,我们对地球科学界做出了承诺,不仅包括推动仪器的功能和为社区量身定制我们的显微镜解决方案,而且投资于地球科学专业知识以帮助推动技术进步。因此,该软件现在是 SEM 自动化矿物学最全面、最灵活的平台,是定量地球化学分析与定量结构分析的独特组合。 从头到尾的灵活性地球科学家是多产的显微镜用户,他们的 SEM 系统通常以具有多种成像模式和用户要求的探测器“圣诞树”而闻名。结果是集成解决方案的必要性,并最大限度地减少操作员和/或技术人员实现目标的时间,因为在一个会话中需要多种成像技术是很常见的。Mineralogic 并不固定在某个平台上,因此从一开始您就可以从钨丝 (CSEM) EVO 系列到 FESEM Sigma 和 GeminiSEM 系列中选择适合您需求的 SEM。无论对成像分辨率、可变压力和探测器组合有什么要求,使用 Mineralogic 的自动化矿物学都可以成为您设置的一部分。定量 EDS 分析的使用始终使该软件有别于其他自动化矿物学解决方案。通过校准和标准化化学分析,它不仅仅是一种识别矿物种类的简单机制,而是将自动化矿物学转变为真正的地球化学工具,提供真实的矿物成分,以及测绘区域的“整体成分”。在研究环境中,能够获得定量的主要元素化学是许多工作流程的关键方面。通过在单一技术中以内在连接的方式将不同的信息组合在一起,在纹理分析的同时获取这些信息可以简化项目。定量地球化学还提供了另一个明显的优势,因为矿物分类库基于每种元素的 wt% 元素值,而不是定性的峰值强度值。这意味着矿物库更易于理解,并且可以在实验室之间和可变光束条件下立即转移,从而改善协作并减少操作员处理新样品或困难样品的时间。与大多数行业工作流程相比,研究项目的可变性要大得多,并且涉及定制的、采集后的图像和数据分析。很难准确预测数据将如何在研究环境中使用,不仅不同的研究小组有不同的要求,而且即使是同一个项目也可能需要根据样本灵活地询问信息。为了充分利用 Mineralogic 定量矿物学的强大功能,收集的数据必须不锁定在专有数据格式中,假设看似不灵活的输出适合所有人。为此,在可视化和导出方面,数据灵活性被置于软件的核心。自动矿物学的图像输出通常涉及两种图像类型,一种是背散射电子 (BSE) 图,另一种是基于自动矿物学分类的假彩色相图。与其将定量地球化学简化为数值输出,不如将这些信息带到最前沿,能够生成以完全数据拼接格式检测到的任何元素的定量元素热图(图 2)。现在可以通过单击导出在屏幕上查看的任何这些图像,为报告和手稿创建即时数据。图 2:a) 苏格兰格莱内尔格变质岩的全薄片扫描。Ca 热图突出显示分区的石榴石,然后以更高的分辨率重新分析。
 图 2: b) 石榴石图显示了元素和浓度范围选择的周期表用户界面。 比灵活的可视化更重要的是能够决定您希望如何处理数据本身,如果软件平台中的数据库无法访问,这是不可能的。Mineralogic 允许以最简单、最灵活的格式导出所有地球化学热图。这允许在任意数量的通用外部数据和可视化平台中查看数据集,作为电子表格或图像,或合并到定制的图像分析程序和脚本中。特别值得注意的是伯尔尼大学的 Pierre Lanari 设计的 XMapTools (xmaptools.ch/) 的使用。XMapTools 专为地球科学家设计,可从元素图中提取信息,这些信息已通过额外的电子探针样品分析步骤进行量化。将定量 EDS 图直接从 Mineralogic 导入 XMapTools 避免了这一额外的校准步骤,并允许使用矿物数据即时计算有用的参数,例如元素氧化物、末端成员成分和每个公式单位的阳离子,以及进行热力学计算。Mineralogic-to-XMapTools 工作流程最大限度地利用了灵活的数据输出,并为石油学家提供了一个出色的集成工具。通过采用定量地球化学并使其与自动矿物分类本身一样易于访问和重要,该软件现在在一个平台上提供了矿物学和岩石学应用的一站式商店,该平台可以结合许多其他图像和分析技术,如 EBSD 、WDS 和 CL。3D 自动化矿物学 - 新领域数十年来,通过微型计算机断层扫描 (µCT) 进行的非破坏性 3D 成像已被用于研究材料科学样品。这些仪器的性质意味着它们长期以来一直停留在成像领域,并没有被大量用于除分割等操作之外的定量分析。CT 平台通常设计用于增强对比度以可视化样本中的特征,从而导致信噪比抑制复杂的异质样本(如岩石)的详细分析,这一事实进一步阻碍了这一点。长期以来,能够完全基于 X 射线衰减值直接从 CT 吸收对比断层扫描 (ACT) 中识别矿物一直是一个目标,然而,由于校准、标准化和信噪比问题的多重障碍,直到现在这种量化仍然遥不可及。随着 2022 年 11 月 Mineralogic 3D 的推出,这个梦想现在已成为现实(图 3)。图 3: a) X 射线数据的自动矿物分割允许对矿物质地和丰度进行非破坏性分析。这些数据为您的岩石样本提供最可靠和最具代表性的 3D 分析,并指导相关工作流程。
图 3:b) 3D X 射线断层扫描的最新进展已使其超越成像并进入定量分析 (1) DeepRecon Pro 机器学习图像增强,(2) 非破坏性晶体取向分析,现在 (3) 自动化矿物学和定量样品分析。
 Mineralogic 3D 是一种突破性的新软件解决方案,旨在同时在 ZEISS Context (µCT) 和 Versa X 射线显微镜 (XRM) 上运行。预计 3D 自动化矿物学将迅速在工业的常规工作流程应用中找到一席之地,它非常适合识别硫化物和氧化物等矿物种类,计算它们的丰度,并确定它们彼此之间的关系以及脉石矿物. X 射线平台在这方面具有显着优势。ACT 的样品制备很少或根本不存在,整个或粉碎的样品可以在提取后立即加载,并且不需要环氧树脂底座的制作、固化和抛光。获取 3D 数据也消除了抛光表面的立体效应,显着提高数据质量,同时减少获取数据的时间。然而,以最少的样品制备或损坏获得如此详细的定量信息的能力意味着各种研究工作流程很可能也将采用该技术。Mineralogic 3D 将许多单独的解决方案组合到一个软件包中,利用校准和量化蔡司 X 射线平台从源到探测器的各个方面的能力,这意味着可以克服以前所有矿物识别的障碍。为了始终如一地识别矿物相并量化它们的关系,3D 重建需要具有尽可能高的信噪比,必须考虑 X 射线衰减伪影,并且必须分割 100% 的感兴趣体积。这些问题以及许多其他技术挑战已通过最近针对蔡司 CT/XRM 的高级开发计划得到解决。Mineralogic 3D 中最重要的并行进展之一是 DeepRecon Pro 的开发,它是最新的 Advanced Reconstruction Toolbox (ART) 的一部分。DeepRecon Pro 于 2021 年推出,是一种深度学习图像增强算法包,利用神经网络将 ACT 的信噪比提高到前所未有的水平(图 4)。图 4:借助 DeepRecon Pro 的图像增强功能,可以以更快的速度对样本进行成像,以清晰地显示复杂的特征。这里是c的增生lapilli。苏格兰西北部的 1 Ga Stac Fada 撞击喷射层在分割富含氧化铁的边缘后可以清楚地看到。 这对执行自动化矿物学的能力有两个积极影响,扫描时间显着减少,加快了常规分析的过程,并且类似的矿物通过其衰减值变得可区分。将这种“日常人工智能”组件纳入显微镜工作流程现在已成为公司在光、电子和 X 射线显微镜方面的理念的一个组成部分,使用户能够最大限度地提高仪器的输出,同时将对其时间的影响降至最低。量化分析工作流程的每一步的能力对于保持跨平台每次分析的同一矿物的一致价值至关重要,而且该价值本身与分析材料本身的内在特性相关,因此是有意义的. 与此相关的是考虑光束硬化的影响,即随着不同能量的 X 射线被样品吸收,通过材料的信号变化。该伪影通常被视为图像处理问题,需要在分析后进行校正,这对于简单的单相材料来说是一项可以完成的任务,但对于复杂的异质岩石样品却充满了问题。通过使用定量平台,并直接从第一原理应用这些和其他修正,在确定了 3D 断层扫描中存在的矿物质后,自动矿物学过程的一个重要组成部分就是能够计算矿物质比例及其关系(图 5)。图 5:完整的 Mineralogic 3D 工作流程可用于提高图像质量、自动分类矿物和分割样品的全部体积以计算 3 维的定量矿物模式和关系。图 1 中的示例是在 DeepRecon Pro 增强(灰度)和分割(彩色体积)之后看到的。全 3D 分段重建可以提供比 2D 更准确和详细的信息,并且几乎不需要样品制备。这意味着 100% 的分析体积必须被分割,矿物之间没有重叠,即体积的任何部分都不会被计算两次。这意味着所有标准输出,例如解放和锁定关系都可以以真正的 3D 形式计算。专门为此目的设计的智能分割例程,可快速生成用于定量纹理分析的 3D 体积,旨在确保忠实地表示微量矿物质,而不会被更大比例的矿物质吞噬。Mineralogic 3D 是一项改变游戏规则的技术,将 40 年历史的自动化矿物学概念带入一个全新的维度,允许对自然 3D 状态下的岩石样本进行全面定量分析。虽然 3D 分析相对于岩石中矿物和结构的复杂性有明显的好处,但 ACT 的非破坏性和完全定量分析可能是处理珍贵样品(如陨石和博物馆标本)工作流程中的关键步骤。 总结和结论/未来发展能够跨多种成像模式生成大型数据集是解决地质问题的理想选择,自动化流程以减少用户时间、建立统计相关性并为大型项目带来一致性至关重要。自动化矿物学的这些新发展也突出了相关显微镜的方向。越来越多的数据集被放置在云环境中,数据可以存储在大型、可访问的服务器中,为协作项目共享,并使用强大的在线处理工具进行处理。跨多个平台的自动化矿物学允许关联变得更加简化,因为跨这些平台的矿物库能够在此类云环境中进行通信并通过智能数据管理构建连接的数据集。用于矿物鉴定的地球科学中最多产的技术是光学显微镜 (LM),通常使用岩相显微镜。虽然 LM 一直是岩相学的中流砥柱,但它也是最难实现矿物识别自动化的技术,因为参数很少且变化足以区分静态图像中的矿物。因此,使用我们训练有素的地质学家的大脑,通过肉眼识别 LM 中的矿物质仍然比在大量矿物质中自动化该过程要容易得多。然而,即使是这项技术也有可能在未来发生转变。新的 Axioscan 7 Geo 是专为透射光岩相学设计的数字化平台,可在平面、交叉和圆偏振光(PPL、XPL、CPL)的整个薄截面上快速收集 LM 数据集,图 6:a) Axioscan 7 Geo 数字化平台为偏光显微镜生成独特的数据集,在多个方向捕获多种光模式。这使得数字薄切片可以在虚拟岩相显微镜中查看,或询问像素或晶粒尺度信息。
图 6:b) Axioscan 7 Geo 可以创建光学矿物学所需的所有成像模式,并将数字信息转换为模态丰度、取向、晶粒尺寸等的强大定量分析信息。
这些丰富的数据集是大量矿物学光学信息的基础,它们自然地提供了自动化的可能性。虽然这最初可能仅限于具有相对受控矿物组合的常规工作流程,但它为自动化矿物学在未来桥接光、电子和 X 射线显微镜铺平了道路,允许真正多模式和多尺度的相关项目自然。Mineralogic 软件套件处于自动化矿物学的最前沿,正在为工业和学术界的定量地球科学新时代铺平道路。可以将 2D 和 3D 矿物和纹理信息层与定量地球化学相结合,以创建对岩石样本的全面描述,并在整个地球科学中具有丰富的应用。关于作者理查德泰勒 Rich Taylor 博士Carl Zeiss 显微镜,Zeiss House,剑桥郡,英国Rich 于 2009 年在爱丁堡大学完成了实验岩石学博士学位,之后前往西澳大利亚科廷大学担任 SIMS 实验室专家。随后,他在科廷大学地球与行星科学学院担任研究职位,研究地球化学和地球年代学,专门研究成像和微量分析。2017 年,他搬到剑桥大学,使用新的显微镜技术研究地球上最古老材料中的磁性包裹体。2019 年,Rich 搬到了位于英国坎伯恩的蔡司,担任全球地球科学应用开发职位。原文:The future of automated mineralogy in geoscienceWiley Analytical Science ——Microscopy,7 June 202
  • 拉曼光谱新应用:根据矿物粒大小对岩石进行分类
    粒度指常指矿物或颗粒的直径(毫米、微米)大小。沉积物颗粒的大小对沉积物的成岩作用有较大的影响,因此沉积岩矿物组成的粒度大小可以反映沉积岩结构的主要特征,是岩石岩性的主要评价指标,同时对于其性质和潜在用途有着非常重要的影响,例如,在同等孔隙度条件下,颗粒越粗,对应的渗透率越大。石灰岩是一种典型的沉积岩,在建筑、冶金、化工、塑料、涂料、食品等工业领域有着广泛应用。而粒度是石灰岩的分类与利用的关键因素之一,不同工业用途对于矿物粒度的要求也不同。如在冶金工业中,炼铁所需的石灰石粒度在15-60mm,烧结则要求粒度≤3mm。以往的研究表明,拉曼光谱信号和背景的强度取决于所测试样品的颗粒及其大小。研究人员在此基础上研究了钙质材料的拉曼信号强度变化和相关背景强度随晶粒尺寸的变化,并开发出一种可以从拉曼光谱中提取平均晶粒尺寸定量信息的方法。研究人员对来自不同意大利采石场的一组沉积钙质岩样品进行岩石学分类,然后进行拉曼光谱分析,同时还对相应的微球和结晶方解石粉末样品进行了分析,发现拉曼信号与粒径之间存在明显的相关性,并获得了校准曲线。实验实现了拉曼信号和背景强度对晶粒和粒径的可重复行为,因此证明了从前者的测量中获得后者的半定量信息的可能性。该成果可以在石灰工业领域以及各种科学环境和其他材料生产链中加以利用。由于设备便携,该技术在采石时期就可以对石灰岩进行快速分析并分类,有利于有利于缩短石灰石材料的生产周期,减少成本。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制