太阳能电池有机涂层

仪器信息网太阳能电池有机涂层专题为您整合太阳能电池有机涂层相关的最新文章,在太阳能电池有机涂层专题,您不仅可以免费浏览太阳能电池有机涂层的资讯, 同时您还可以浏览太阳能电池有机涂层的相关资料、解决方案,参与社区太阳能电池有机涂层话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

太阳能电池有机涂层相关的耗材

  • 太阳能电池夹具(Jig)
    - C-Si太阳能电池测试.- Bus-Bar接触.- 太阳能电池I-V测试.- 太阳能电池EL成像.联系方式:025-84615783
  • 太阳能电池硅片清洗花篮可定制
    太阳能电池硅片清洗花篮 品牌:瑞尼克型号:RNKHL加工定制:是用途:清洗别名:花篮、承载篮用于半导体硅片,晶片,玻璃,液晶屏等清洗、腐蚀设备的承载花篮,太阳能电池片花蓝、太阳能硅片花蓝_太阳能硅片承载器、光伏电池片花蓝、光伏硅片花蓝,用于太阳能电池硅片清洗设备中,用于承载方形太阳能电池硅片,材质为PTFE,本产品即在100℃以下的NaOH溶液、HCl溶液、HF等溶液中对硅片进行清洗、转换,且长期使用不变形、不污染硅片.特点:1.外观纯白色。2.耐高低温:可使用温度-200℃~+250℃。3.耐腐蚀:耐强酸、强碱、王水和有机溶剂,且无溶出、吸附和析出现象。4.防污染:金属元素空白值低。5.绝缘性:不受环境及频率的影响,介质损耗小,击穿电压高。6.耐大气老化,耐辐照和较低的渗透性。7.自润滑性:具有塑料中小的摩擦系数。8.表面不粘性:是一种表面能小的固体材料。9.机械性质较软,具有非常低的表面能。聚四氟乙烯(PTFE)系列产品:培养皿、坩埚、试剂瓶、试管、镊子、药匙、烧瓶、烧杯、漏斗、容量瓶、蒸发皿、表面皿、阀门、接头、离心管等。
  • PTFE太阳能电池硅片清洗花篮可定制
    太阳能电池硅片清洗花篮 品牌:瑞尼克型号:RNKHL加工定制:是 用途:清洗 别名:花篮、承载篮 用于半导体硅片,晶片,玻璃,液晶屏等清洗、腐蚀设备的承载花篮,太阳能电池片花蓝、太阳能硅片花蓝_太阳能硅片承载器、光伏电池片花蓝、光伏硅片花蓝,用于太阳能电池硅片清洗设备中,用于承载方形太阳能电池硅片,材质为PTFE,本产品即在100℃以下的NaOH溶液、HCl溶液、HF等溶液中对硅片进行清洗、转换,且长期使用不变形、不污染硅片.特点:1.外观纯白色。2.耐高低温:可使用温度-200℃~+250℃。3.耐腐蚀:耐强酸、强碱、王水和有机溶剂,且无溶出、吸附和析出现象。4.防污染:金属元素空白值低。5.绝缘性:不受环境及频率的影响,介质损耗小,击穿电压高。6.耐大气老化,耐辐照和较低的渗透性。7.自润滑性:具有塑料中小的摩擦系数。8.表面不粘性:是一种表面能小的固体材料。 9.机械性质较软,具有非常低的表面能。聚四氟乙烯(PTFE)系列产品:培养皿、坩埚、试剂瓶、试管、镊子、药匙、烧瓶、烧杯、漏斗、容量瓶、蒸发皿、表面皿、阀门、接头、离心管等。

太阳能电池有机涂层相关的仪器

  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光……SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • 太阳能电池量子效率测试系统——SolarCellScan100系列系统功能系统可以实现测试太阳电池的:光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度、量子效率Mapping、反射率Mapping。系统适用范围1、适用于各种材料的太阳电池包括:单晶硅Si、多晶硅mc-Si、非晶硅α-Si、砷化镓GaAs、镓铟磷GaInP、磷化铟InP、锗Ge、碲化镉CdTe、铜铟硒CIS、铜铟镓硒CIGS、染料敏化DSSC、有机太阳电池Organic Solar Cell、聚合物太阳电池Polymer Solar Cell 等2、适用于多种结构的太阳电池包括:单结Single junction、多结multi junction、异质结HIT、薄膜thin film、高聚光HPV 等不同材料或不同结构的太阳电池,在测试过程中会有细节上的差异。比如说:有机太阳电池的测试范围主要集中在可见光波段,而GaAs 太阳电池的测试范围则很可能扩展到红外1.4um 甚至更长波段;单晶硅电池通常需要测内量子效率,而染料敏化太阳电池通常只需要测外量子效率;有机太阳电池测试通常不需要加偏置光,而多结非晶硅薄膜电池则需要加偏置光… … SolarCellScan100 通过主机与各种附件的搭配,可以实现几乎所有种类电池的测试。这种模块化搭配的方式,适合科研用户建立测试平台。 选型列表:型号名称和说明主机SCS1011太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯光源SCS1012太阳能电池量子效率测量系统,含直流测量模式,氙灯光源SCS1013太阳能电池量子效率测量系统,含直流、交流测量模式,溴钨灯光源SCS1014太阳能电池量子效率测量系统,含直流测量模式,溴钨灯光源SCS1015太阳能电池量子效率测量系统,含直流、交流测量模式,氙灯溴钨灯双光源SCS1016太阳能电池量子效率测量系统,含直流测量模式,氙灯溴钨灯双光源附件QE-A1偏置光附件,150W氙灯QE-A2偏置光附件,50W溴钨灯QE-B1标准太阳电池(单晶硅)QE-B1-SP标准太阳电池QE-B2标准铟镓砷探测器(800-1700nm,含标定证书)QE-B3标准硅探测器(300-1100nm,含标定证书)QE-B4标准铟镓砷探测器(800-2500nm,含标定证书)QE-B7透过率测试附件(300-1100nm)QE-B8透过率测试附件(800-1700nm)QE-BVS偏置电压源(±10V可调)QE-C2漫反射率测试附件(300-1700nm)QE-C7标准漫反射板QE-D1二维电动调整台QE-D2手动三维调整台QE-IV-Convertor短路电流放大器专用机型介绍系统功能部分太阳能应用方向的研究人员需要测量量子效率,但本身却不是光电测量方面的行家,卓立汉光在测量平台SolarCellScan100的基础上,进一步开发出以下几套极具针对性的专用机型配置,方便客户使用。以下的专用配置也适合产业化的工业客户使用。1、通用型太阳电池QE测试系统SCS100-Std系统特点符合IEC60904-8国际标准;测量结果高重复性;内外量子效率测量功能;快速导入参数功能;适用于科研级别小样品测试适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、CdTe薄膜电池、CIGS薄膜电池等; 光谱范围: 300~1100nm; 电池结构: 单结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、短路电流密度; 可测样品面积: 30mm×30mm 2.通用型太阳电池QE测试系统SCS100-Exp系统特点符合IEC60904-8国际标准;测量结果高重复性;高度自动化测量;双光源设计;红外光谱范围扩展;薄膜透过率测试功能;小面积、大面积样品测试均适用;适用范围: 晶体硅电池、非晶硅薄膜电池、染料敏化电池、有机薄膜电池、CdTe薄膜电池、CIGS薄膜电池、三结砷化镓GaAs电池、非晶/微晶薄膜电池等; 光谱范围: 300~1700nm; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、内量子效率、反射率、透射率、短路电流密度; 可测样品面积: 156mm×156mm以下 3.晶体硅太阳电池测试专用系统 SCS100-Silicon系统特点集成一体化turnkey系统晶体硅电池测试专用内外量子效率测试快速Mapping扫描功能快速高效售后服务适用范围: 单晶硅电池、多晶硅电池 光谱范围: 300~1100nm 电池结构: 单结太阳电池 可测参数: 光谱响应度、外量子效率、反射率、内量子效率、短路电流密度、*量子效率Mapping、*反射率mapping 可测样品面积: 156mm×156mm 4.薄膜太阳电池QE测试专用系统 SCS100-Film系统特点集成一体化turnkey系统;大面积薄膜电池测试专用;超大样品室,光纤传导;背面电极快速连接;反射率、内外量子效率同步测试;快速高效售后服务。适用范围: 非晶硅薄膜电池、CIGS薄膜电池、CdTe薄膜电池、非晶/微晶双结薄膜电池、非晶/微晶/微晶锗硅三结薄膜电池等; 光谱范围: 300~1700nm ; 电池结构: 单结、多结太阳电池; 可测参数: 光谱响应度、外量子效率、反射率、透射率、内量子效率、短路电流密度; 可测样品面积: 300mm×300mm 5.光电化学太阳电池测试专用系统 SCS100-PEC系统特点光电化学类太阳电池专用配置方案;直流测量模式;低杂散光暗箱;电解池样品测试附件;经济型价格适用范围: 染料敏化太阳电池; 光谱范围: 300~1100nm; 电池结构: 光电化学相关的纳米晶太阳电池; 可测参数: IPCE; 可测样品面积: 50mm×50mm
    留言咨询
  • CS10组合式太阳能电池量子效率测试系统功能 适用电池:小尺寸无机材料太阳能电池、染料敏化电池、量子点电池、有机太阳能电池、聚合物太阳能电池、钙钛矿太阳能电池等 光谱范围:300-1100nm,可扩展至1700nm 可测量参数:光谱响应度、外量子效率、光子电子转换效率、积分短路电流密度、光束诱导电流 可测样品尺寸:1mmX1mm至100mmX100mm 可测样品模式:直流测试法、直流偏置光测试法 注:该染料敏化太阳能电池的测试条件为:绿色曲线为交流(3.8Hz)+ 0.1sun 偏置光;蓝色曲线为直流不加偏置光;红色曲线为直流+0.1sun偏置光。 CS10组合式太阳能电池量子效率测试系统特点 1. 多样化测试手段SCS10 系统测试方案可以是交、直流测试方法,也可以是交、直流偏置光测试方法,方便用户用不同的方式在不同的条件下进行测试。偏置光测试方法中的偏置光可以采用75W 溴钨灯或者150W 氙灯作为偏置光光源,配合特色的双滤光片轮,以及配套的滤光片支架,可以实现丰富的偏置光配置。这样的配置方案,可以使用户满足在不同强度不同波段的偏置光条件下测试样品的量子效率。滤光片轮所用滤光片型号型号透过率光密度OD NDFI2501 79% 0.1 NDFI2503 50% 0.3 NDFI2504 39.8% 0.4 NDFI2508 15.8% 0.8 NDFI2510 10% 1 2. 专用软件,专用测试流程SCS10 组合式小尺寸太阳能电池量子效率测试系统所用软件是为测量小尺寸太阳能电池,特别是染料敏化太阳能电池、有机材料太阳能电池、钙钛矿太阳能电池专业参数设置的软件,并且可以调整系统偏置光参数,以适应各种太阳能电池不同偏置光测试条件的调整。
    留言咨询

太阳能电池有机涂层相关的方案

太阳能电池有机涂层相关的论坛

  • 【科普】有机太阳能电池(OSCs)

    [font=&]太阳能是指太阳的热辐射能,又被称为“太阳光线”。地球上自生命诞生以来。就主要依靠太阳提供的热辐射生存。而在化石燃料日趋减少情况下,面对能源的巨大需求和日趋严重的环境污染问题,太阳能是大自然赋予人类的一个取之不尽、用之不竭的能源宝库。太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳直接发电的光电半导体薄片。它只要被满足在一定光照条件下,瞬间就可以输出电压及在有回路的情况下产生电流。在物理学上可以称为太阳能光伏。太阳能电池是通过光电效应或者光化学效应直接把光能转换成电能的装置。[/font][font=&]目前占主导地位的太阳能电池主要以无机半导体材料构成,主要包括单晶硅、多晶硅和非晶硅无机太阳能电池。经过多年的发展,硅太阳能电池技术最为成熟,在大规模应用和工业化生成中占据主导地位。但是,提纯硅工艺复杂,成本高,造成在制造硅太阳能电池过程中能耗大、污染高等问题,同时制备工艺复杂且成产设备昂贵,限制其发展。高效的非晶硅薄膜无机太阳能电池包括硫化镉、碲化镉、砷化镓等多晶薄膜,但是由于镉、砷等元素有毒性,同时会造成严重环境污染,因而这类材料的发展也必然受限。有机太阳能电池,顾名思义,就是由有机材料构成核心部件的半导体材料替代无机材料,以光伏效应而产生电压形成电流,实现太阳能发电的效果。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8748.png[/img] [/font][/align][align=center][font=&]太阳能电池的广阔应用(网络图)[/font][/align][font=&]有机太阳能电池(OSCs)具有低成本、质量轻、超薄、柔性、易于大面积制备等诸多优点,在便携式、柔性电池、光伏建筑供能等领域具有广阔的应用前景。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8749.png[/img] [/font][/align][align=center][font=&]柔性透明电极与柔性有机太阳能电池的示意图(南开大学提供)[/font][/align][align=center][font=&][b]有机太阳能电池发展历程[/b][/font] [/align][font=&]1958年美国加州大学伯克利分校Kearns和Calvin将镁酞菁夹在两个功函不同的电极之间,检测到了200 mV的开路电压;表现出了光伏效应,成功制备出了第一个有机太阳能电池(Organic Solar Cells,简称OSCs),但是能量转换效率(Power Conversion Efficiency, 简称PCE)非常低。科学家们也一直在尝试不同的有机半导体材料,但是所得到的PCE都很低。直到1986年,柯达公司邓青云博士创造性制备双层异质结有机太阳能电池,以四羧基苝的一种衍生物(PV)作为受体,铜酞菁(CuPc)作为给体,制备双层活性层,其PEC1%。异质结的引入,就像是给有机太阳能电池注入新鲜血液一样,为其开辟了新的研究方向。有机太阳能电池也逐渐成为科学家的研究热点。[/font][align=center][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8750.png[/img][/align][align=center][font=&]邓青云教授[/font][/align][align=center][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8751.png[/img][/align][align=center][font=&]双层有机太阳能电池结构和PV、CuPc的化学结构[/font][/align][align=center][font=&]Appl. Phys. Lett., 1986, 48, 183-185[/font][/align][font=&]1992年,Sariciflci等人发现,激子在有机半导体材料和富勒烯的界面上可以快速实现电荷分离,并且激子分离成的电子和空穴在界面上不复合,从而更利于电荷的收集。次年他们首次将富勒烯作为活性层中的受体材料应用于有机太阳能电池器件中,并且取得较好的光伏器件能量转换效率。在很长一段时间内,富勒烯都成为有机太阳能电池的主要受体材料。1995年,诺贝尔化学奖得主Heeger等人首次提出体异质结结构(Bulk Heterojunction Structure)的有机太阳能电池,创造性将富勒烯衍生物(PCBM)和聚苯乙炔(MEH-PPV)溶液混合,并旋涂加工,获得具有三维互传网络结构的有机太阳能电池活性层,其PCE高达2.9%,自此,体异质结有机太阳能电池成为主流,并且进入快速发展期。2003年Sariciflci等人使用聚3-己基噻吩(P3HT)作为给体,富勒烯衍生物(PC61BM)为受体,制备体异质结有机太阳能电池,PCE达到3.5%。随着加工工艺的不断改善和提高,基于富勒烯衍生物作为受体材料的有机太阳能电池PCE已经超过10%。同时,性能优良的给受体有机半导体的不断被开发,PCE不断提高。中科院化学所李永舫院士、华南理工大学曹镛院士、中科院化学所侯剑辉研究员、北京大学占肖卫教授、南开大学陈永胜教授、香港科技大学颜河教授、中南大学邹应萍教授等国内外众多有机太阳能电池领域的科研团队的不懈努力以及卓越的科研工作,有机太阳能电池的PCE已经达到18%,取得巨大进展。[/font][align=center][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8752.png[/img][/align][font=&]另外,McGehee教授的研究报告表明,基于P3HT/PC70BM和PCDTBT/PC70BM体系的有机太阳能电池各项器件参数均表现出良好的稳定性,经过理论模拟,有机太阳能电池的的理论寿命可达7年以上。有机太阳能电池的高能量转化效率以及高稳定性,充分展现出其商业应用前景。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8753.png[/img] [/font][/align][align=center][font=&]有机太阳能电池工作4400 h之后的器件参数[/font][/align][align=center][font=&]Adv. Energy Mater. 2011, 1, 491–494[/font][/align][align=center][font=&][b]有机太阳能电池的器件参数[/b][/font] [/align][font=&]太阳能电池器件在光照条件下测试电流密度-电压([i]J[/i]-[i]V[/i])曲线,从中可以获得重要的输出特征参数:开路电压([i]V[/i][sub]oc[/sub])、短路电流([i]J[/i]sc)、填充因子([i]FF[/i])以及能量转换效率(PCE)。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8754.png[/img] [/font][/align][align=center][font=&]太阳能电池的电流密度-电压(J-V)曲线[/font][/align][font=&]开路电压([i]V[/i][sub]oc[/sub])是指在没有电流回路(正负电极断路)时经过光照后器件产生的电压,即太阳能电池的最大输出电压,单位为V;开路电压由给体的HOMO能级和受体的LUMO能级的能级差决定。短路电流([i]J[/i]sc)是指在外加电场为零时,受光照的器件在形成回路(正负电极短路)时所能产生的电流,即太阳能电池的最大输出电流;单位为A/cm[sup]2[/sup]或mA/cm[sup]2[/sup]。短路电流可根据[i]J[/i]-[i]V[/i]曲线中,电压为0时的电流值获得。理论上,吸收的光子越多,短路电流越大。填充因子([i]FF[/i])是电池具有最大输出功率时的电流和电压的乘积与短路电流和开路电压乘积的比值,理论最大值为1。能量转换效率(PCE)是指太阳能电池将太阳能转化为电能的效率,是输出功率([i]P[/i]m)与入射光功率([i]P[/i]in)的比值。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8755.png[/img][/font] [/align][font=&]式中[i]V[/i][sub]oc[/sub]是在开路时的光电压;[i]J[/i]sc是在零电压时的电流密度,即短路电流密度;FF为填充因子。当入射光为AM 1.5太阳光时辐射照功率为[i]P[/i]in = 100 mW/cm[sup]2[/sup],这也是实验室实验条件下的常用模拟光照辐射照功率。[/font][align=center][font=&][b]有机太阳能电池的器件结构和工作原理[/b][/font] [/align][font=&]有机太阳能电池的工作原理主要包括四个重要步骤:(1)活性层吸收光子并产生激子;(2)激子扩散到给受体界面层;(3)激子在界面层分离成正负电荷,并迁移至正负电极;(4)正负电极收集正负电荷。[/font][font=&]有机太阳能电池的器件结构可以分为单层Schottky器件、双层异质结器件、体异质结器件和叠层器件等。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8756.png[/img][/font][/align][align=center][font=&]单层Schottky器件结构和工作原理[/font][/align][font=&]由于两个电极功函数不同,有机半导体与具有较低功函数电极之间将形成Schottky 势垒(能带弯曲区域W),即内建电场。光照下,有机半导体材料吸收光后产生激子。由于较大的库仑力使得这些激子不能分离成自由电子和空穴。有机半导体内激子的扩散长度一般都很小,只有扩散到Schottky势垒附近的激子才有机会被分离,所以单层Schottky结构电池的能量转换效率很低,在目前的有机太阳能电池研究中很少再使用这种结构。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8758.png[/img][/font][/align][align=center][font=&]双层异质结器件结构和工作原理[/font][/align][font=&]在双层异质结器件中,给体和受体有机材料分层排列于两个电极之间,形成平面型给体-受体界面。而且阳极功函数要与给体HOMO能级匹配;阴极功函数要与受体LUMO能级匹配,这样才有利于电荷收集。双层异质结器件结构中电荷分离的驱动力主要是给体材料和受体材料的LUMO能级之差,即给体和受体界面处的电子势垒。在界面处,如果电子势垒较大,大于激子结合能,激子的解离更为有利,电子易转移到有较大电子亲和能的材料上(较低LUMO),从而使得激子有效分离,明显高于单层结构,使得器件性能获得很大提升。双层异质结器件的最大优点是同时提供了电子和空穴传输的材料。当激子在D-A界面产生电荷转移后,电子在受体材料中传输至阴极收集,空穴则在给体材料中传输至阳极收集。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8759.png[/img] [/font][/align][align=center][font=&]体异质结器件结构和工作原理[/font][/align][font=&]在本体异质结器件结构中,给体和受体在整个活性层范围内充分混合,D-A界面分布于整个活性层,其工作原理和双层异质结器件结构相似,都是利用D-A界面效应来转移电荷。主要区别在于:(1)本体异质结中的电荷分离产生于整个活性层,而双层异质结中的电荷分离只发生在界面处的空间电荷区域。因此,本体异质结器件中的激子可以高效解离,同时激子符合降低,从而减少或者避免由于有机物激子扩散长度小而导致的能量损失;(2)由于界面存在于整个活性层中,本体异质结器件中载流子向电极传输主要是通过粒子之间的渗滤作用,双层异质结器件中的载流子传输介质时连续空间分布的给受体,因此双层异质结中具有相对高效的载流子传输效率。[/font][font=&]本体异质结可以通过将含有给体和受体材料的混合溶液以旋涂方式制备,也可以通过共同蒸镀的方式获得,还可以通过热处理的方式将真空蒸镀的平面型双层薄膜转换为体异质结器件结构。[/font][align=center][font=&][img]https://img.chemsoc.org.cn/web/2020/04/%E5%9B%BE%E7%89%8760.png[/img] [/font][/align][align=center][font=&]两个子电池组成的叠层器件结构和工作原理[/font][/align][font=&]叠层器件结构电池是将两个或两个以上的电池单元以串联的方式做成一个器件。一般子电池单元按照活性材料能隙不同采取从大到小的顺序从外向背电池串联,即与电池非辐射面(背面)最近的机构单元,其活性层材料的能隙最小。子电池1中产生的空穴和子电池2中产生的电子扩散至连接层并复合,每个子电池中只有一种电荷扩散至相对应的电极。叠层结构电池可利用不同光吸收谱的材料来改善电池对太阳光的吸收,减少高能量光子的热损失,最终提高电池效率。由于串联的叠层电池的开路电压一般大于子单元结构,其转换效率主要受光生电流的限制。因此叠层电池设计的关键是合理地选择各子电池地能隙宽度和厚度,并保证各个电池之间地欧姆接触,以达到高效能量转换效率地目的。[/font][align=center][font=&][b]有机太阳能电池展望[/b][/font] [/align][font=&]有机太阳能电池作为一种新兴高效太阳能电池,近年来得到飞速发展,虽然有机太阳能电池的PCE以及达到18%,初见商业化应用曙光,但是和成熟的无机太阳能电池相比,有机太阳能电池无论从能量转换效率、机理还是器件稳定性等方面都处于尚未成熟阶段。因此,成熟的无机太阳能电池技术以及研究思路对有机太阳能电池的发展具有重要的借鉴意义。挑战与机遇并存,随着科学家对有机太阳能电池的不断深入的探索,高能量转换效率、高稳定性、可大规模生产的有机太阳能电池必将很快问世,有机太阳能电池的商业化前景可期。[/font][font=&]参考文献:[/font][font=&][1] D. Kearns, M. Calvin, J Chem Phys 1958, 29, 950-951.[/font][font=&][2] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183-185.[/font][font=&][3] N. S.Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474 [/font][font=&][4] G. Yu, K.Pakbaz, A. J. Heeger, Appl. Phys. Lett. 1994, 64, 3422-3424.[/font][font=&][5] G. Yu, J. Gao,J. C. Hummelen, F. Wudl, A. J. Heeger, Science1995, 270, 1789.[/font][font=&][6] C. H.Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupré, M. Leclerc, M. D.McGehee, Adv Energy Mater 2011, 1, 491-494.[/font][font=&][7] Y. Cui,H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C.He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 1908205.[/font][font=&][8] 张剑,杨秀程,冯晓东.有机太阳能电池结构研究进展[J].电子元件与材料, 2012, 31(11):75-78.[/font][font=&][9] 黄辉.有机太阳能电池的发展、应用及展望[J].工程研究-跨学科视野中的工程, 2017, 9(06): 547-557.[/font][font=&][10] 袁峰,周丹,谌烈,徐海涛,陈义旺.有机太阳能电池空穴传输材料的研究进展[J].功能高分子学报, 2018, 31(06): 530-539.[/font][align=right][color=#808080]来源:化学通讯微信公众号,闵阳/撰稿[/color][/align]

  • 利用高速分散机分散太阳能电池耐刮涂层的纳米复合型材料

    工作原因,最近翻译了一份稿件,发出来分享一下,原文附在最后,欢迎大家批评斧正!摘要柔性太阳能电池的表面涂层要求是高性能的紫外固化丙烯酸酯纳米复合材料。他们的合成不仅是一个微调的化学步骤,同时要求分散和研磨的过程。已申请专利的气相二氧化硅原位硅烷化在德国VMA公司的TORUSMILL®研磨分散机的帮助下表现得最好。从VMA实验室系列分散研磨机参数的可比性更简单方便的帮助从实验室试样放到规模生产。简介非凡的挑战要求非凡的解决方案:柔性太阳能电池要受到阳光、风力和各种外界因素几十年的摧残。要承受这些极端的要求,表面涂层必须柔韧,耐磨和耐划伤。当然,高透明度,成本效益和避免底材温度过高这些性能也是需要的。由于同时要求高的生产效率和低的工艺温度,优异性能的紫外光固化丙烯酸酯系统是首选。通过加入无机粒子,可使得丙烯酸酯配方的耐刮性和耐磨性可以进一步提高。只要填充度低于的阈值为25%体积(大约与40%质量百分比一致,因为无机颗粒的密度更高)则被认为是表面硬度与填充度呈线性过程。涂料表面硬度的提高比期望的颗粒硬度要低(图1)。直到超过渗流阈值,即颗粒不能再滑动,总硬度成为颗粒和基体的加权和。超过了渗流阈值,另一方面也就意味着这个系统不再搅动。插图1很明显地显示了理论状况,这就是众所周知的冶金过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061742_165.gif图1: 提高填充度的紫外光固化纳米复合材料的微硬度的改善随质量百分比显示。插图显示了硬度和填充度的体积百分比在整个范围内的理论关系。突出的区域对应于主图中显示的数据。分散技术如果不是粒子本身的硬度,那是什么决定了不同填充度的硬度变化呢?这是由颗粒与基体之间的相互作用及矩阵,这受到粒子的表面处理,也即分散技术相互作用的控制。最不理想的情况是,微硬度随填充度的增加而降低,我们最近在实验室研究的一个水性纳米粒子丙烯酸酯系统(数据未显示)就是这种情况。另一方面,为了实现最大的颗粒基质相互作用的原位表面改性的硅烷化是在莱布尼茨研究所研发的。这一专利的概念是基于著名的化学反应与一个新过程的组合。颗粒表面硅烷化包括前体步骤(通过相应的烷氧基硅烷的水解形成的硅醇基取代)和硅烷醇与表面羟基缩合来结合扩散,从而提供表面活性。因为这些过程是丙烯酸酯基的自身反应,并不需要不确定的反式扩散。最后,每个颗粒都有了自己的硅烷均匀包裹,再交联与基体形成坚硬的质膜。如太阳能电池所用的透明薄膜,就需要非常精细的纳米颗粒。操作会产生气相二氧化硅纳米粒子(Degussa的气相二氧化硅比表面积至少200m2/g,即Aerosil200和Aerosil380)未经表面处理的这些粒子通常作为一种触变剂,百分之几的质量足以将清漆变成高粘度的腻子。这种效果当然也发生在中纳米复合材料的合成过程:纳米颗粒必须计量并慢慢加到有丙烯酸酯的TORUSMILL® 研磨分散机 中,该型号的分散机具有高扭矩力的引擎,并能满负荷运转。随着分散的开始并在表面反应的辅助下,纳米复合材料的粘度再次下降。当降低转矩力,机器上会显示出综合数值,告知操作员什么时候恢复供给二氧化硅纳米颗粒。一个完全自动化的耦合转矩控制和粒子计量已经应用在TORUSMILL® TM500中。透明清澈的纳米复合材料——使用TORUSMILL®使用传统的分散机是不可能得到完全透明清澈的清漆而且完全没有附聚物的。这就是TORUSMILL®专利系统的关键之处,分散机的预分散与研磨砂的创新结合,能有效地对基料先作预分散,之后用高性能的珠磨作研磨,不再需要转移基料:已经合成了纳米粒子超过20%质量百分比的透明清澈的纳米复合材料。透明清澈的意思是通过半米厚的纳米复合材料,仍能看到放在桶底的硬币上的字母。TORUSMILL®系列为纳米复合材料的合成线路的发展提供了极大的便利。 TORUSMILL® TM 10已经大批量运用在10L的规模原料下,也已经有了一些经验,更大的机器通常需要用更多的时间。很快将会大批量生产100L的型号 (图2是TM100) 或者是半吨规模的(TM500)。这种方式就是购买原材料从实验室小样到试生产到扩大规模生产的时理步骤。最终的产品通过在TORUSMILL®上的IOM系统生产的丙烯酸酯纳米复合材料表现出令人惊讶的低粘度,使我们制造出高填充度且涂层柔韧耐磨的太阳能电池。柔性太阳能电池还在试生产阶段,而丙烯酸酯纳米复合材料已经由莱比锡的Cetelon Nanotechnik成吨大批量生产并由WKP Unterensingen进一步加工成了耐受性极强、超细克拉级的箔。VMA TM砂磨分散机http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_427.gif图2: 来自VMA Getzmann的TORUSMILL®TM100安装在能在IOM研制纳米合成材料的AFM扫描仪前面,这台扫描仪能展示颗粒被碾磨成坚硬骨料(70nm)的合成过程。http://muchongimg.xmcimg.com/data/bcs/2016/1125/2685408_1480061743_367.gifFig. 3:柔性电池和尺子比较.

  • 太阳能电池全套测试系统

    太阳能电池(光电材料)I-V特性测试系统 目前,石油、天然气等不可再生能源价格的居高不下,使得人类对太阳能电池(光电材料)的研究开发进入了一个新的阶段,国内很多实验室和科研院校也都加紧了对太阳能电池材料(光电材料)的研究和开发。 太阳能电池(光电材料)测试作为太阳能电池(光电材料)研究开发的一个环节,至关重要,需要专业的测试系统来完成。针对当前人们对太阳能电池材料(光电材料)的研究和开发,以及太阳能电池(光电材料)研究人员搭建太阳能电池(光电材料)测试系统的耗时耗力,我公司特推出太阳能电池(光电材料)测试系统,并已在很多太阳能电池材料(光电材料)研究、测试实验室广泛使用。 一、我公司太阳能电池(光电材料)测试系统的优势: 1. 技术服务全面 我公司始终把客户需求摆在首要位置,针对客户特殊需求量身定做,为客户提供全套解决方案,终身提供技术服务,为客户节省了搭建太阳能电池(光电材料)测试系统所消耗的时间和人力物力,同时也得到了客户的一致好评。 2. 针对性强 凭借雄厚的光电技术知识和行业经验,针对不同类型的太阳能电池(光电材料)以及客户对测试系统的不同需求,我公司对太阳能电池(光电材料)测试系统也做出了相应的调整,以达到较好的测试效果。目前,针对硅太阳能电池、多元化合物为材料的太阳能电池、功能高分子材料制备的大阳能电池、纳米晶太阳能电池等不同的太阳能电池,我公司也都搭建了不同的测试系统。 3. 性价比高 我公司太阳能电池(光电材料)测试系统采用国外知名公司仪器集成,信噪比高,性能稳定,技术先进,对太阳能电池(光电材料)的测试过程实现自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。同时,我公司推出的整套太阳能电池(光电材料)测试系统具有很高的性价比。 4. 成熟的太阳能电池(光电材料)测试系统 凭借测试系统的高性价比以及全面的技术服务,我公司太阳能电池(光电材料)测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威的太阳能计量单位、中国科学院等研究机构以及众多的太阳能相关企业,经过大量客户对我公司太阳能电池(光电材料)测试系统的使用,证明了我公司的太阳能电池(光电材料)测试系统的成熟。 二、太阳能电池(光电材料)光谱响应测试系统简介 太阳能电池(光电材料)光谱响应测试,或称量子效率QE(Quantum Efficiency)测试,或光电转化效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等,广义来说,就是测量光电材料的光电特性在不同波长光照条件下的数值,所谓光电特性包括:光生电流、光导等。我公司的光谱测试系统由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。我们可以与用户密切协作,根据用户需要测试的样品的类型、测试指标、测试条件,设计和组建最适合每个客户测试需要的系统。 三、太阳能电池I-V特性测试系统简介 我公司太阳能电池I-V特性测试系统主要用来测试太阳能电池的I-V特性等。光源光谱和强度特性可模拟各种条件下的太阳光谱(AM0、AM1.0、AM1.5、AM1.5Global、AM2.0、AM2.0Global),稳定性高,均匀性好,均可达到A类标准,多种光照射面积尺寸;样品台可控温;高精度表头、可调负载和配套软件组成的系统能够通过计算机对测试参数进行设置,并且读取数据,在计算机内进行数据处理,绘制I-V和曲线和显示其它参数并打印输出;系统还可根据客户的具体情况和特殊需求进行相应的系统扩展太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统   太阳能电池测试行业长期的经验,使得我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统始终处于行业领先位置。符合IEC, JIS, ASTM标准规定,我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统具有很高的稳定性和重复性。   作为光伏器件厂商和科研工作者,为了获得高效的产品,就需要一套高性能太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统来帮助完成产品改进。我公司太阳能电池(光电材料)IPCE/QE/量子效率[font=宋体, MS So

太阳能电池有机涂层相关的资料

太阳能电池有机涂层相关的资讯

  • 纳米级近场光学成像对钙钛矿太阳能电池表面涂层电子迁移和载流子浓度的研究进展
    太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置, 其中以光电效应工作的晶硅太阳能电池为主流。虽然通过掺杂及表面覆盖抗光反射层能提高晶硅太阳能电池的效率,但是超过能带间隙和一些特定波长的光反射造成了巨大的光能量损失,反而限制了晶硅太阳能电池的效率。 Y.H. Wang等利用有机金属三溴纳米粒子(CH3NH3PbBr3)涂层吸收部分短波长太阳光,使其转化成化电场。该化电场可以通过促进分子重排而增强有机-晶硅异质结太阳能电池的不对称性,从而增加表面活性载流子密度,终将有机-晶硅异质结太阳能电池的效率从12.7%提高到了14.3%。 苏州大学Q.L. Bao教授等人在钙钛矿结构微纳米线的光电转换离子迁移行为和载流子浓度分布等领域作出了突出贡献。2016年,发表在ACS Nano上的钙钛矿结构微纳米线的光电转换离子迁移行为的研究中,作者利用neaspec公司的近场光学显微镜neaSNOM发现:1. 未施加外场电压时, 该微纳米线区域中载流子密度(图1 g. s-SNOM振幅信号)和光折射率(图1 g. s-SNOM相位信号)较均匀;2. 施加外场正电压时,该区域中载流子密度随I-离子(Br?)的迁移而向右移动(图1 h. s-SNOM振幅信号),其光折射率随随MA+离子(CH3NH3+)的迁移而向左移动(图1 g. s-SNOM相位信号)较均匀;3. 施加外场负压时,情况正好与施加正电压时相反(图1 i)。该研究显示弄清无机-有机钙钛矿结构中的离子迁移行为对于了解钙钛矿基的特殊光电行为具有重要意义,进而为无机-有机钙钛矿材料的光电器件应用打下了坚实的基础。图1.SNOM测量钙钛矿结构微纳米线的光电转换的离子迁移行为。 d-f. 离子迁移测量示意图;g-i,相应的s-SNOM光学信号振幅和相位图 2017年, Q.L. Bao教授等人发表在AdvanceMaterials的文章中再次利用neaspec公司的近场光学显微镜neaSNOM,次在实验中研究了太阳能电池表面钙钛矿纳米粒子涂层的载流子密度。结果显示:钙钛矿纳米粒子覆盖区域近场信号强度高于Si/SiO2区域中信号强度(参见下图2 b 图2 a为对应区域的形貌)。另外作者也研究了增加光照的时间的影响(参见下图2 c, d)。其结果显示:近场信号强度随光照时间增加,从12.5 μV (黄色,0 min) 增加到 14.4 μV (红色, 60 min),该近场信号反映了可移动自由载流子密度的变化。终,红外光neaSNOM研究结果证明:随光照时间增加,太阳能电池表面的钙钛矿纳米粒子涂层富集和捕获了大量的电子。图2. SNOM测量钙钛矿结构纳米粒子涂层的载流子密度。a. AFM形貌图;b, s-SNOM光学信号图-未加光照;c, s-SNOM光学信号图-光照30min;d, s-SNOM光学信号图-光照60min 作者预见,该研究对于设计新型太阳能电池,提高其转化效率具有重要意义。同时,该研究还提出了一种使钙钛矿结构材料和晶硅太阳能电池相结合的研究方法,为之后的研究和应用提供了解决新思路。相关参考文献1.Zhang Y.P. et. al. Reversible StructuralSwell?Shrink and Recoverable Optical Properties in Hybrid Inorganic?OrganicPerovskite. ACS Nano 2016,10, 7031?7038.2.Wang Y.H. et. al. The Light-InducedField-Effect Solar Cell Concept - Perovskite Nanoparticle Coating IntroducesPolarization Enhancing Silicon Cell Efficiency. AdvancedMaterial 2017, First published: 3 March 2017 DOI: 10.1002/adma.201606370.相关产品链接超高分辨散射式近场光学显微镜 http://www.instrument.com.cn/netshow/SH100980/C170040.htm德国Neaspec纳米傅里叶红外光谱仪 http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 南开刷新有机太阳能电池光电转化效率最高纪录
    p style="text-align: justify " 南开大学化学学院陈永胜教授领衔的团队在有机太阳能电池领域研究中获突破性进展。他们设计和制备的具有高效、宽光谱吸收特性的叠层有机太阳能电池材料和器件,实现了17.3%的光电转化效率,刷新了目前文献报道的有机/高分子太阳能电池光电转化效率的世界最高纪录。这一最新成果让有机太阳能电池距离产业化更近一步。美国东部时间8月9日下午,介绍该研究的论文在线发表于国际顶级学术期刊《Science》上。/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/62f3136a-548f-4a98-8fae-d391287a7e56.jpg" title="1.jpg"//pp style="text-align: justify "有机太阳能电池的柔性特征和本工作主要结果/pp style="text-align: justify " 有机太阳能电池是解决环境污染、能源危机的有效途径之一,其在质轻、柔软、半透明、可大面积低成本印刷、环境友好等方面都远远优于传统太阳能电池,被认为是具有重大产业前景的新一代绿色能源技术。然而,实现高效率的太阳能电能转化是有机太阳能电池研究的核心难题。而这一难题能否解决也直接决定着有机太阳能电池能否走出实验室、走进人类的实际生产生活。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/243c9699-f8c4-4bb5-89cc-a57b9b15c3bc.jpg" title="2.jpg"//pp/pp style="text-align: justify " 近年来,虽然有机太阳能电池研究获得了迅猛发展,实现了14%~15%的光电转化效率,但仍远远落后于其它主要以无机材料(如硅)为主的太阳能电池转化效率。“主要原因在于,有机高分子材料本身较低的载流子迁移率限制了活性层厚度,因此太阳光不能够获得充分和有效的利用。”陈永胜说。/pp style="text-align: justify " 据介绍,叠层太阳能电池不仅可以克服上述难题,还可以充分发挥有机和高分子材料结构和性质优良的可调性特征,通过叠层电池中前后电池里活性材料互补的光吸收,更有效地利用太阳光,从而实现更高的能量转换效率。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/54c72967-855b-4761-8dbd-15b23150ffa7.jpg" title="3.jpg"//pp/pp style="text-align: justify " 陈永胜教授团队与中科院国家纳米科学中心丁黎明教授、华南理工大学叶轩立教授研究团队合作,首先利用半经验模型,从理论上预测了有机太阳能电池实际可以达到的最高效率和理想活性层材料的参数要求。在此基础上,他们以在可见光区域和近红外区域具有良好互补吸收的PBDB-T:F-M和PTB7-Th:O6T-4F:PC71BM分别作为前电池和后电池的活性层材料,采用成本低廉、与工业化生产兼容的溶液加工方法,制备得到了高效的有机太阳能垫层器件,获得了17.3%的验证效率。/pp style="text-align: justify " 该团队研究人员介绍,依据该工作提出的模型和设计原理,结合有机高分子材料结构的多样性和可调性,通过对材料和器件的进一步优化,非常有望获得和无机材料类似的能量转化效率,从而为有机太阳能电池的产业化提供有力技术支撑。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/3a090dba-e3eb-4db6-9406-053ba9748a44.jpg" title="4.jpg"//pp/pp style="text-align: justify " “依据我们提出的半经验模型预测,有机太阳能电池(垫层)的最高转化效率理论上可以达到20%以上。本次工作中,我们同时也对电池的寿命进行了初步试验,发现166天实验后电池效率仅降低4%。未来,我们将继续设计新的材料,在进一步提高能量转化效率的同时,针对电池寿命问题进行系统的实验,争取让有机太阳能电池早日从实验室走向实际应用。”陈永胜说。/pp style="text-align: justify " 据了解,该研究得到了科技部、国家自然科学基金委、天津市科委和南开大学的项目支持。/ppbr//p
  • How It’s Made——钙钛矿太阳能电池的崛起
    导语:与其他光伏材料相比,钙钛矿太阳能电池在性能的提升方面表现出了惊人的速度。近期,来自德国柏林科技大学的Steve Albrecht等研究者在Science正刊中报道了一个单片钙钛矿/硅串联太阳能电池,其认证的功率转换效率高达29.15%,预计还会进一步提高。现如今,钙钛矿太阳能电池生产技术逐渐趋于成熟,生产设备也逐渐小型化和便捷化。继2009年和2012年的早期关键实验之后,人们对这些生产设备的兴趣激增,目前正在进一步优化它们的性能,并寻找可行的商业应用路线。本文,我们将带您看看钙钛矿太阳能电池材料的制造过程和相关技术。什么是钙钛矿太阳能电池钙钛矿太阳能电池(PSC)顾名思义是由钙钛矿材料作为核心部件制备的太阳能电池。钙钛矿材料的种类很多,但它们都有ABX3的化学通式,其中A和B是阳离子,X是阴离子。在钙钛矿光伏材料中,B通常是金属阳离子,X是卤族元素,A可以是有机或无机阳离子。重要的是,这些成分必须以一种特定的几何结构排列,A穿插在阳离子BX6八面体的间隙。如下图所示。 钙钛矿太阳能电池材料晶格结构的3D示意图(中央亮斑为B,红色为X,蓝色为A) 钙钛矿是钙钛矿太阳能电池中吸收光的材料,它吸收光子并产生电子-空穴对。之后,这个电子-空穴对会分离(也可能不会,这是导致太阳能电池效率低下的原因),释放出电子和正电荷载流子。这些电子(负)和空穴(正)载流子分别被设备中的其他材料(传输层)收集,然后流出,在外部电路中产生电压。人们尝试用各种钙钛矿材料来制备PSCs,其中常见的是MAPbI3。这种材料由基铵正离子嵌入Pb2+离子和碘离子(I-)组成的八面体框架。钙钛矿光伏薄膜材料制备太阳能电池的制备过程主要分为薄膜的制备和后续的加工。后续的加工流程与硅基太阳能电池的后续加工有些类似,涉及到微纳加工与封装等流程,我们不做详细介绍。对于薄膜的制备技术目前主要有液体旋涂和真空镀膜两类。旋涂技术由于设备简单,易于快速搭建等特点很容易在实验室实现。但是其规模化拓展性较差,器件的重复性和稳定性以及与后续加工流程的兼容性等方面仍有不足。在真空镀膜方面目前较为流行的是采用物理气象沉积(physical vapor deposition—PVD),例如热蒸发等方式。对于热蒸发技术来说,在真空室中加热钙钛矿前驱体,使它们向上蒸发并覆盖在基片上。通过对过程的精细控制,形成所需的钙钛矿薄膜。热蒸发方法制备出的薄膜不仅性能出色,同时还能与太阳能电池制造过程中需要的其他过程具备良好的兼容性 (例如,传输层和金属接触层的沉积也经常使用PVD)。热蒸发制备方案概要以制备钙钛矿太阳能电池的常用材料MAI(methylammonium iodide)和PbI(lead iodide)为例,MAI蒸发温度约为150℃,而金属卤化物PbI需要400℃~500℃。这与常规的金属热蒸发相比温度低很多,但对热蒸发源温度控制的性要求较高。传统金属热蒸发更注重所能达到的高温(可达~1800℃),如果采用传统的蒸发源生长钙钛矿材料很容易导致温度过冲,制备的薄膜性能不稳定,甚至前驱体会瞬间挥发殆尽导致生长失败。钙钛矿光伏材料除了在较低温度下生长之外,沉积速率也是一个重要的控制变量。由于沉积速率并非温度的直接函数,钙钛矿材料在沉积时需要对每一个蒸发源的速率进行标定与检测。通常在热蒸发过程中,可以采用晶振探头来探测每一个蒸发源的蒸发速率。对于常规的金属热蒸发过程,材料从蒸发源沿着直线方向到达衬底,按照类似于标准分布函数的规律在衬底上沉积成薄膜。然而对于非常易挥发的材料,例如MAI,蒸发过程中会先在源上方形成较高的蒸气压,这会导致材料向侧方扩散,导致材料在腔体的其他部位形成非必要的沉积。因此,对于钙钛矿光伏材料的沉积过程必须控制得更加精密,否则MAI容易导致其他材料的晶振传感器被污染。专业的低温热蒸发技术与设备英国Moorfield 公司基于多年的薄膜设备生产经验发布了低温蒸发(LTE)技术和相关设备。这使得科研人员能够快速建立高性能的钙钛矿光伏薄膜沉积系统。Moorfield 公司用于钙钛矿太阳能电池制备的设备包括台式nanoPVD - T15A,以及功能增强型的落地式MiniLab系列。这样的低温热蒸发系统具有以下几方面的优点:● 低温蒸发源与控制器:超低的热容量,可选择主动水冷方案实现控制和小的温度过冲;基于传感器的PID反馈回路使得温度、功率或沉积速率可控。● 石英晶振传感器探头:水冷式,降低温度影响。专业设计和安装位置,在生长高蒸汽压钙钛矿前驱体时使信号“串扰”小化。● 真空系统:专业真空腔体设计和定制,包括可选的耐腐蚀泵组系统和预抽保护功能。● 过程控制:采用先进的自动过程控制器,允许多阶段程序设定操作,每个阶段包含单个或多个源蒸发(即共同蒸发),反馈回路控制每个源的速率。● 多功能配置:允许在一个系统上通过不同的PVD技术沉积钙钛矿和其他PSC涂层。此外,系统可以配备冷却或加热样品台,用于处理热敏感基片或在沉积期间/沉积后进行热处理。nanoPVD系统中的LTE蒸发源手套箱集成式系统虽然成品PSCs元件可以在大气条件下使用,但通常有必要在惰性气氛下进行器件封装制造。因为在后的保护涂层覆盖之前,湿气和氧气会对材料性能造成影响。因此,一些PSC制备工作通常在惰性气体(如纯氩气或氮气)的手套箱中进行。基于MiniLab 026和MiniLab 090平台的Moorfield LTE系统可以与手套箱集成,允许在惰性气氛中对衬底或样品进行加工处理。Moorfield可以提供整套的手套箱集成系统或与客户选定的手套箱进行集成。其中MiniLab 026系统可以与用户已有的手套箱进行现场的集成安装。Minilab090系统样品腔(左),与手套箱集成的系统(右)总结钙钛矿材料在太阳能电池方面表现出良好的前景,真空蒸发镀膜是一种很有前途的制备方法且容易实现工业化生产。用于钙钛矿薄膜制备的沉积系统需要进行优化设计,以提高薄膜材料的品质。Moorfield Nanotechnology公司具有雄厚的专业技术基础和先进的设备解决方案,包括全套LTE蒸发源、过程控制选件和完整的沉积系统。此外Moorfield Nanotechnology还提供其他多种材料制备的专业设备,例如磁控溅射、电子束蒸发、快速制备石墨烯的nanoCVD系统。台式高精度薄膜制备与加工系统新动态Moorfield 公司在中国科学院技术物理研究所的台设备安装成功,本次在技术物理研究所安装的是台式高性能二维材料等离子软刻蚀系统—nanoETCH。该系统对输出功率的分辨率可达毫瓦量,对二维材料可实现准确的逐层刻蚀,也可实现二维材料层内缺陷制造,此外还可对石墨基材等进行表面处理。该系统目前正处于技术培训阶段,不日将正式交付使用。中国科学院技术物理研究所安装的nanoETCH系统
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制