太阳热反射隔热涂料

仪器信息网太阳热反射隔热涂料专题为您整合太阳热反射隔热涂料相关的最新文章,在太阳热反射隔热涂料专题,您不仅可以免费浏览太阳热反射隔热涂料的资讯, 同时您还可以浏览太阳热反射隔热涂料的相关资料、解决方案,参与社区太阳热反射隔热涂料话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

太阳热反射隔热涂料相关的耗材

太阳热反射隔热涂料相关的仪器

  • 便携式建筑材料涂料隔热太阳反射比测试仪JP-ATB80适用标准: GB/T25261-2018《建筑用反射隔热材料》;JG/T235-2014《建筑反射隔热涂料》附录B 技术参数 主要特点 1.强劲的仪器性能:极其优良的光学系统,先进的电子学系统,高水准的机械系统,保证了0.010%T的超低杂散光,高精度24位电压数字采样。2.稳定可靠的品质:动态反馈比例记录测光系统保证了基线稳定性,太阳光模拟、光电倍增管等关键器件均用进口件,保证仪器的稳定可靠和长寿命。3.精准的测量:进一步降低仪器的杂散光,使仪器分析更加准确。4.轻松高效的人机对话:基于Windows环境设计的JP系列智能型建筑涂料太阳光反射比、吸收比、半球发射率、等效热阻中文操作软件,提供了丰富的仪器控制和操作功能,简单易用,灵活高效,轻松满足使用者的分析需求。5.优异的可扩展性:反射光学积分球专用附件,使仪器的应用范围大大扩展。6.设备维护简单方便:独特的插座式钨灯,换灯时免去光学调试,使设备仪器调试、维护更加简单方便。7.记录功能:自动记录用户的操作;日志文件采用更为可靠的数据库格式保存;管理员可对日志进行分类查阅和其他处理。8.采用综合的光学及半球发射一体装置测试系统,性价比高,便于测试。9.质量控制功能:可根据用户的设置对测量数据进行监控;超出控制范围的数据系统将会显示提示信息、进行颜色标记或自动重新测量。10.报告输出功能:可实现与其他系统共享数据的功能;可将测量结果保存为Microsoft Word格式、Microsoft Excel格式、文本文件格式;可对报告格式进行个性化的设置;可提前预览结果报告的打印效果。设备内部配置清单 核心元器件1.紫外、可见、红外探测器(美国)2.可见红外光源(美国HACH)3.光学镜片(国家光机所科技总公司)4.传感器采集系统(日本)5.反射积分球装置(国产)6.标准镜片(国家光机所科技总公司)7.主机外壳(国产)8.系统控制上位机(国产)9.机械分光系统(国产)10.专用建筑材料涂料隔热太阳反射比、半球发射率、测试系统软件(配套+国产)11.标准白板12.数据分析电脑(联想品牌)
    留言咨询
  • 隔热材料太阳光反射比、近红外光反射比测试系统(JP-TL2800)适用标准:GB/T25261-2018《建筑用反射隔热材料》;JG/T235-2014《建筑反射隔热涂料》;GB_T 25968-2010 材料太阳透射比、太阳吸收比试验方法。主要特点 :1.强劲的仪器性能:极其优良的光学系统,先进的电子学系统,高水准的机械系统,保证了0.010%T的超低杂散光,高精度PID温度控制及24位电压数字采样。2.稳定可靠的品质:双光束动态反馈比例记录测光系统保证了基线稳定性,氘灯、光电倍增管等关键器件均用进口件,保证仪器的稳定可靠和长寿命。3.精准的测量:采用进口优质全息光栅,进一步降低仪器的杂散光,使仪器分析更加准确。4.轻松高效的人机对话:基于Windows环境设计的JP系列智能型建筑涂料太阳光反射比、吸收比、半球发射率、等效热阻中文操作软件,提供了丰富的仪器控制和操作功能,简单易用,灵活高效,轻松满足使用者的分析需求。5.优异的可扩展性:反射光学积分球可选专用附件,使仪器的应用范围大大扩展。6.设备维护简单方便:独特的插座式钨灯和氘灯,换灯时免去光学调试,使设备仪器调试、维护更加简单方便,真空压力机进行油液的检测。7.日志记录功能:自动记录用户的操作;日志文件采用更为可靠的数据库格式保存;管理员可对日志进行分类查阅和其他处理。8.采用综合的光学及半球发射一体装置测试系统,性价比高,便于测试。9.质量控制功能:可根据用户的设置对测量数据进行监控;超出控制范围的数据系统将会显示提示信息、进行颜色标记或自动重新测量。10.报告输出功能:可实现与其他系统共享数据的功能;可将测量结果保存为Microsoft Word格式、Microsoft Excel格式、文本文件格式;可对报告格式进行个性化的设置;可提前预览结果报告的打印效果。技术参数:
    留言咨询
  • 建筑隔热涂料等效热阻测试仪(JP-ARZ80)测试方法:DGJ32/J 23-2006《民用建筑节能工程现场热工性能检测》;DGJ32TJ169-2014 江苏省居住区和单位绿化标准;GBT 25261-2010 建筑用反射隔热涂料;JGJT 287-2014 建筑反射隔热涂料节能检测标准;JG/T235-2014《建筑反射隔热涂料》;GB/T9780-2013 建筑涂料涂层耐沾污性试验方法;GB/T16422.3-1997荧光紫外灯(UV)ISO4892-3_1994;GB/T1865-2009/ISO11341:2004 色漆和清漆人工气候老化和人工辐射暴露(滤过的氙弧辐射);GB/T 25968-2010 材料太阳透射比、太阳吸收比试验方法;航天部QJ1954-1999太阳电磁辐射标准;GJB2502.2-2006《航天器热控涂层试验方法》第二部分:太阳吸收比测试,光谱法(绝对法);GJB2502-1996《卫星热控涂层试验方法 光谱法(绝对法210)》。主要特点 :1.强劲的仪器性能:先进的电子学系统,高水准的机械系统,保证了高精度PID温度控制及24位电压数字采样。2.稳定可靠的品质:T型热点偶保证仪器的稳定可靠和长寿命。3.精准的测量:采用工业器件及先进个性化设计,进一步降低仪器的不确定度,使仪器分析更加准确4.轻松高效的人机对话:基于Windows环境设计的JP系列隔热涂料的太阳光反射比、半球发射率、隔热涂料的污染后太阳光反射比变化率、隔热涂料的人工气候老化后太阳光反射比变化率等中文操作软件,提供了丰富的仪器控制和操作功能,简单易用,灵活高效,轻松满足使用者的分析需求。技术参数:
    留言咨询

太阳热反射隔热涂料相关的试剂

太阳热反射隔热涂料相关的方案

太阳热反射隔热涂料相关的论坛

  • 纳米材料在隔热涂料中的应用

    当前,节能和新能源探索已经成为世界的重要课题。建筑能耗在人类整个能源消耗中所占的比例一般在30%~40%,它们绝大多数是采暖和空调造成的能耗,而通过门窗散失的热量约占整个建筑采暖及空调耗能的50%。因此,提高门窗的保温隔热性能是降低建筑能耗的有效途径。为节约能源,人们发明了多种节能方法,都是为了阻隔太阳光中多余的热辐射而达到降温的目的。但是有些产品有的隔热效果不佳,有的价格过于昂贵等多种原因在应用推广上有些困难。纳米材料由于具有宏观尺寸物体所没有的性质,能为新型涂料的研制带来意想不到的效果而成为研究的热点。透明隔热宝(UG-C06)是由优锆纳米新研发出的一种水性陶瓷类隔热保温涂料,采用最新复合陶瓷隔热技术和纳米二氧化钛材料,设计用来反射光能和辐射热能。在炎热的季节降低表面温度和内部温度;在寒冷的季节更好地保持室内温度;在使用空调的环境中降低能源消耗。不仅如此,透明隔热宝(UG-C06)独特的环保成分――液体纳米ATO,纳米二氧化钛更能消除周围环境中的异味,解甲醛和其他有害物质。透明隔热宝(UG-C06)中的4种陶瓷微珠能够产生魔术般的功效!第一种陶瓷微珠能够有效地阻隔紫外线达99%;第二种陶瓷微珠能反射90%以上的可见光;第三种陶瓷能够阻隔红外线达92.5%,而神奇的第4种陶瓷分子能够防止超量的水蒸汽进入,而允许正常数量的水分子的通过。由此极大增加整个建筑表面的防晒绝热能力。该产品采用先进的生产工艺将纳米超活性ATO ,TIO2做成适合在玻璃,瓷砖,金属,水泥、PE,PET,PC,PP,PVC等表面涂覆的纳米涂层材料。其透明性的超活性ATO,起到吸收红外线和阻隔紫外线功能。超活性ATO化学性稳定的对热,湿度等外部环境引起的物性变化小,所以能保持半永久性导电性质,能有效地阻止红外辐射和紫外线辐射,阻隔红外效果达95%,阻隔紫外效果达90%,该涂层材料与基材有极好的相容性,铺展,流平性能好,附着力强,持久不脱落。纳米隔热涂料(优锆纳米)不仅能够兼顾隔热与透光性,而且具有机械性能优异、耐老化、耐腐蚀等优点。纳米透明隔热涂料的开发应用能够很好地解决对采光玻璃既透明又隔热节能的技术要求,加上其自身的结构特点保证了该涂料的使用寿命长,因而纳米透明隔热涂料在普通玻璃、有机玻璃等透明载体表面的开发应用,不但环保节能,而且经济实用。在当今社会能源危机和环保压力日益增大的情况下,隔热涂料将具有很好的应用前景。

  • 薄织物和隔热材料的热阻及热导率测试中存在的问题

    薄织物和隔热材料的热阻及热导率测试中存在的问题

    [color=#ff0000]摘要:薄的织物和隔热材料的逐渐广泛应用,使得现有各种测试方法已经无法满足这些材料导热系数和热阻准确测试的要求。本文详细介绍了现阶段对这些低导热薄材料热导率测试中存在的错误现象,从测试方法方面分析造成这些问题的原因,为今后准确测量提供参考和借鉴。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#ff0000][b]一、问题案例[/b][/color][/size]隔热材料作为有效阻断热量散失材料在各个领域发挥着重要重要,特别是在服装行业,薄的隔热织物越来越得到了重视和发展,为人体保温抗寒提供了更轻便和更舒适的面料。随着低导热薄织物的出现和技术发展,对薄织物的隔热性能,如导热系数和热阻,就提出了严峻的挑战,现有的各种测试方法都无法满足准确测量要求。如国内某机构研制开发了一种新型隔热面料,开发目的是设法采用纳米孔技术来大幅度降低面料的导热系数。面料的厚度为0.75±0.1mm,重量为48±2g/㎡,体积密度为65±11kg/m3,孔隙率为96%以上,闭孔率为95%以上,孔径30~190微米,壁厚为20~180纳米,面料如图1所示。此面料经不同检测机构采用多种测试方法进行了测试评价,导热系数测试结果如图2所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,373]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061135481562_7545_3384_3.jpg!w600x407.jpg[/img][/color][/align][align=center][color=#ff0000]图1 新型隔热面料[/color][/align][align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,221]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136137426_2566_3384_3.jpg!w600x242.jpg[/img][/color][/align][align=center][color=#ff0000]图2 隔热面料导热系数测试结果汇总[/color][/align]从上述多种测试方法的导热系数测试结果可以看出,结果之间相差巨大,甚至出现了数量级的差别。特别是由纺织行业权威检测机构得到的超低导热系数测试结果(0.00824W/mK),严重误导了织物的提供方,织物提供方对这测试结果也表示怀疑,但检测机构也无法对测试的准确性进行核实。如图2所示,该薄织物还采用其他测试方法进行了导热系数测试,尽管没有出现太离谱的测试结果,但测试结果之间还是相差较大,测试结果显示出的是完全不同的隔热能力。鉴于上述混乱的导热系数测试结果,此织物的研发生产机构只能在官网上声明“导热系数是某某材料的核心数据。现有测试仪器和方法,无法测试出材料导热系数的绝对值。使用不同测试方法,供应用单位参考”。这是一个非常典型的无法得到准确测试结果的案例,此现象在纺织行业普遍存在。为彻底解决此问题,本文将针对薄织物的导热系数测试,从测试方法方面分析造成测量不准确的原因,为今后进一步开展新型测试方法研究提供参考和借鉴。[size=18px][color=#ff0000][b]二、薄织物和隔热材料导热系数测试方法分析[/b][/color][/size]在图2所示的导热系数测试结果中,几乎用到了现有的大多数标准测试方法,下面将对现有的已经和可能用于薄织物和隔热材料导热系数测量的各种测试方法进行分析。导热系数测试方法主要分为稳态法和瞬态法两大类,本文分析的具体路线是从稳态法和瞬态法的源头开始,然后延伸到相应的拓展方法,以期对多个测试方法的整体轮廓有一个清晰的概念。[color=#ff0000][size=16px][b]2.1 导热系数和热阻测试稳态法[/b][/size]2.1.1 稳态护热板法和稳态热流计法[/color]对于隔热材料导热系数测试,普遍采用的测试方法是经典的稳态护热板法(GB/T 10294)。稳态护热板法作为一种绝对法具有最高的测试精度,并同时用来校准相对测试方法稳态热流计法(GB/T 10295),其测量原理如图3所示。[align=center][color=#ff0000][img=薄织物热阻和热导率测量,550,358]https://ng1.17img.cn/bbsfiles/images/2022/06/202206061136309581_831_3384_3.png!w600x391.jpg[/img][/color][/align][align=center][color=#ff0000]图3 稳态护热板法测量原理示意图[/color][/align]为保证测量准确性,GB/T 10294标准文本做出明确规定,规定试件热阻不应小于0.1 m2K/W,规定用此来确定试件最小厚度。如果按照此规定,对于上述薄织物的0.75mm厚度,薄织物相应的导热系数不应大于0.0075W/mK才能符合规定。对于试件最小厚度做出规定,是因为试件太薄后试件内部热流分布不均匀和热场变形,并会造成试件上的温差很小,相应的温度传感器测量精度会在小温差测量上产生很大误差。由此,在标准文本中指出:当试件热阻低于0.1m2K/W时,表面温度的测量需要使用特殊的方法。冷板、中心量热计和护热板的表面应机械加工或切削平整、平行且不能有应力,同时它们的温度均匀性要求很高。这些要求在现实中很难实现或实现造价很高,因此对于厚度小于1mm的薄织物和隔热材料,稳态护热板法并不适合,很难满足导热系数准确测量的要求。对于稳态热流法导热系数测试,相应标准GB/T 10295给出了相同的最小热阻0.1m2K/W规定,同样需要按照此规定来确定试件最小厚度。由此可见,稳态热流计法同样存在温差测量不准确等一系列很难克服的问题,对于厚度小于1mm的薄织物和隔热材料,热流计法同样不适用。当然,在不得已的情况下,可以将多层薄织物叠加成厚试件以增大被测试件热阻来测量薄织物的导热系数。这种多层叠加形式在理论上确实能够测量导热系数,但最大问题是叠加过程中会在被测试件中产生空气隙而引入接触热阻,从而使得被测试件的热阻值变大,导致导热系数测试结果偏小,所以一般情况下不推荐采用多层叠加形式进行稳态法测量,除非被测试件比较柔软。[color=#ff0000]2.1.2 纺织品蒸发热板法[/color]纺织品蒸发热板法是一种上述稳态护热板法的一种变形,其基本原理完全基于稳态护热板法,不同之处是将图3稳态护热板法中的试件用空气层和被测试件来代替,以模拟人体散热和外部空气散热条件。 纺织品蒸发热板法目前执行的标准为GB/T 11048-2018,在具体测试中,通过从测定试件加上空气层的热阻值中减去空气层的热阻值得出所测材料的热阻值。需要特别注意的是,蒸发热板法中的热阻值与稳态护热板法中的热阻值并不能等效,这主要是因为以下不同:(1)蒸发热板法在测试热阻时,试件冷面处于空气对流传热环境;而稳态护热板法测试热阻时,试件冷面处于与冷板的导热传热环境。两种测试方法尽管原理相同,但边界条件和物理意义完全不同,蒸发热板法测试的是模拟环境下的等效热阻,稳态护热板法测试的是纯热传导环境下的导热热阻,在稳态护热板法中,根据此导热热阻和试件厚度,可以准确得到导热系数。(2)蒸发热板法中被测试件是平放在中心量热计上,试件靠自身重量与量热计接触。而稳态护热板法中试件通过上面的冷板加载一定的力与量热计接触,两者所形成的热接触效果完全不同,稳态护热板法中的接触热阻更小,即蒸发热板法中得到的试件热阻含有较大的接触热阻。(3)在蒸发热板法标准GB/T 11048中,只涉及了织物热阻的测量,并未涉及通过厚度和测量得到的热阻来计算获得织物的导热系数。这基本就意味着蒸发热板法不能用来测量导热系数。(4)另外,在蒸发热板法标准GB/T 11048中,规定可测量的最小热阻不能小于2m2K/W,与稳态护热板法和热流计法规定的0.1m2K/W最小热阻相比高了20倍,即蒸发热板法比较适合较大热阻的测量。根据上述分析,我们再来看图2得到的导热系数测试结果,就明显存在以下两大问题:(1)图2中的导热系数测量是依据GB/T 11048-2008,在此版本的蒸发热板法中,规定的热导率为热传导、热辐射和热对流的总和,是存在着三种传热形式的等效热导率,不能用此等效热导率与图2中的其他方法获得的纯导热传热过程的热导率相比较。(2)如果按照图2中的0.00824W/mK导热系数计算结果和0.75mm厚度可以反推出实际测量的热阻值,可得到热阻值为0.09m2K/W。显然此热阻值要远小于GB/T 11048-2008和GB/T 11048-2018中规定的最小可测热阻2m2K/W。从上述分析基本可以得出结论,即蒸发热板法不适合测量薄织物的热阻,更不适合测量纯导热性质的导热系数,这也是GB/T 11048-2018不再提热导率这个参数的主要原因。另外,检测机构出具图2所示的检测结果,也说明相关检测人员对标准方法GB/T 11048的适用范围还缺乏了解。[color=#ff0000]2.1.3 恒定热流法[/color]恒定热流法是上述稳态热流计法的一种变形,其测量原理与稳态热流计法完全相同,同样采用了热流计来测量流经试件厚度方向上的热流密度,不同之处在于采用了独特的技术手段来测量薄试件厚度方向上的小温差,并且可以加载压力以保证较小的接触热阻和准确控制试件厚度。恒定热流计法的相应标准为ASTM D5470,这种方法普遍用于薄型导热胶垫和固态电绝缘板材的导热系数和热阻测量。根据测量原理,恒定热流法应该比较适合薄织物和隔热材料的热导率和热阻的测量,但在具体测试过程中流经薄试件的热流密度很小,这就对热流密度测量精度提出了很高要求,现有执行标准ASTM D5470的测试仪器还无法实现如此小热流的准确测量,需要研发测量精度更高的测试设备以满足低导热薄片样品的测试要求。[color=#ff0000][b]2.2 导热系数测试瞬态法[/b]2.2.1 瞬态平面热源法(HOT DISK法)[/color]在图2所示的薄织物导热系数测试案例中,显示了采用瞬态平面热源法(HOT DISK法)的测试结果。已经有很多研究并报道了这种方法在低导热系数测试中存在测试结果偏高很多的现象,这方面的详细介绍及其解决方案可在网上搜索上海依阳编写的《气凝胶隔热材料超低导热系数测试中存在的问题及解决方案》应用报告。在瞬态平面热源法导热系数测试中,最大的问题是测量准确性无法进行考核。在稳态护热板法和热流计法中可以采用不同厚度标准参考材料来考核热阻的测量精度,而在HOT DISK法中只能测量热导率而无法测量热阻,那么对于导热系数低于标准参考材料数值0.03W/mK的低导热材料,就根本无法考核其测量的准确性。总之,瞬态平面热源法(HOT DISK法)也不适合测试低导热系数的薄织物和隔热材料。[color=#ff0000]2.2.2 闪光法[/color]闪光法作为一种应用最为普遍的绝对法,广泛用于各种固体材料的热扩散系数测量。但闪光法对于薄织物和隔热材料并不适用,主要原因如下:(1)对于低导热的薄织物和隔热材料,隔热性能比较好,热阻比较大,闪光信号很难传输到样品背面,信噪比较差,测量误差较大。(2)薄织物和隔热材料,多为多孔材料且透光,闪光加热很容易穿透被测试件。如果对试件表面进行遮光处理,遮挡涂层很容易进入试件孔隙而改变试件的导热系数。[size=18px][color=#ff0000][b]三、结论和今后工作[/b][/color][/size]通过上述薄织物和隔热材料测试案例和现有各种测试方法的分析,可以得出以下结论:(1)现有的各种导热系数测试方法,不论是稳态法还是瞬态法,都无法满足薄织物和隔热材料导热系数准确测试的需求。各种测试方法都有各自的局限性,没有一种完全适合低导热系数薄试件的测试方法。特别是目前用于纺织品热阻测量的GB/T 11048-2018测试方法,还存在很多问题,其中测量的热阻值应为等效热阻,是多种传热机理的复合作用结果,这很容易误导纺织品的开发人员。有关GB/T 11048-2018测试方法的更详尽研究分析,将在后续专文进行论述。(2)由于缺乏准确的测试方法,给新型织物材料的研究和研制带来的不便和困难,无法通过准确的热导率和热阻测量来调整材料的相应工艺。(3)对于薄织物和隔热材料的热导率测试,需要解决小温差和低热流密度精密测量难题,需要解决材料透光性的影响,这些都是今后工作的主要内容。(4)现有大多数采用稳态法的热阻和热导率测试仪器,所要求的样品尺寸太大,如大多采用面积为300mm×300mm的样品。对于薄织物和隔热材料的热导率测试,如果要实现高精度测量,如此大的样品尺寸势必会增大测试仪器的护热、机加工和热应力变形等方面的技术难度和造价。因此,对于厚度小于1mm的被测样品,完全可以采用小尺寸样品,如50mm×50mm,同样可以保证稳态下的一维热流。(5)对于难度最大的小温差准确测量,可以借鉴闪光法而避开热导率的直接测量,可通过测量热扩散率来间接获得热导率,热扩散率的测量则可以采用频域技术,通过频域技术可以非常准确的将温差信号转换为频域信号。这可能将是今后的一个重要研究方向。(6)另外,表征薄织物的热性能参数中,除了导热系数和热阻之外,还涉及到人体触摸织物的冷感或热感表征参数:吸热系数。最好有新型测试方法能将这些热性能参数进行整体考虑和测试,为织物热性能提供完整的准确测试评价。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

太阳热反射隔热涂料相关的资料

太阳热反射隔热涂料相关的资讯

  • 借助FLIR T640,意大利建筑团队成功分析和诊断外部隔热系统
    随着城市建设的高速发展,我国的建筑能耗逐年大幅度上升,建筑总能耗已达全国能源总消耗量的45%。其中空调、采暖造成的能耗约占60%~70%。因此,建筑外部隔热系统在施工领域变得日趋重要。为了检测新建或已有建筑上大面积外部隔热系统是否安装,以及评估这些隔热产品的热性能,由意大利隔热隔音协会(ANIT)在内的多家公司组成的团队,在FLIR红外热像仪的帮助下,开展了一个研究项目。ANIT与该组织的两个会员企业(即:Caparol与FLIR Systems)发起了一项关于辨识隔热系统与安装异常现象的研究。该研究由Tep srl进行统筹,该公司是一家专业从事建筑物无损能效测试的工程服务公司。01建立测试样本为了研究以外部隔热系统安装为特色的热现象,建立了一份测试样本,在样本三侧覆盖隔热面板(带有石墨添加剂的EPS)。在样本的顶部,墙体采用常见的错误铺设方法进行覆盖,而底部采用正确的铺设方法(有/无EPS合板钉)。涂层前的试样布局02主动热成像分析在太阳能蓄热与放热循环期间,对一面虚拟墙体进行监控与分析,定期记录并存储热图像。借助主动热成像技术,蓄热通过影响测试样本表面的太阳能辐射实现。在放热阶段,已聚集能量的结构在阴凉处开始释放能量时,对其进行监控。在该项测试中,ANIT选择了FLIR T640红外热像仪,经证明是最适用于本项目的工具。上图显示了在热负荷期间试样上部出现的温差,其中存在故意设置的安装错误03各种条件下的热传递为了正确分析由热成像分析突显的各种情况,掌握可能存在的铺设异常情况,需要了解不同条件下隔热表面热传递的基本知识。在不同条件下的热传递中(拥有不同的表面温度),每一种材料的热阻、传导率与厚度已不足以定义各隔热层的热性能。事实上,必须考虑材料的密度与比热。蓄热系数是一种表示不同条件下材料属性的参数,该系数与覆盖有外部隔热层结构的表面辐射率有关。呈现试样上部的温度图显示,存在热传导率低、比热容有限的隔热材料,以及热传导率高、比热容大的粘合剂和PVC合板钉。考虑到由于太阳辐射而储存的能量,保温层冷却得更快,因为储存的能量较小,即其体积比热容较小。热辐射率是衡量材料热能穿透力的一项参数:受太阳辐射影响的外部隔热层,其表面温度与材料表面向子层传导热量的方式有关,借助材料的比热来蓄热,进而得以升温。在这种条件下,热辐射率表示材料经过太阳辐射后,内部升温的容易程度:值越低,表示加热该材料需要的能量越小。测试样本包含拥有不同热发射率值(eff.)的多种材料:粘合剂(eff.=906),带有石墨添加剂的EPS(eff.=27),合板钉上的PVC(eff.=530)。04FLIR T640红外热像仪ANIT选择FLIR T640,是因为其可满足各种技术要求。样本研究需要检测温差在0.5℃的情形,在不同的时间段,能够自动记录和控制表面温度的变化。热像仪同样需要生成优质的视频图像,能够证实表面热性能的有效研究。利用平均太阳吸收系数对外墙表面放电时的热像图分析FLIR T640红外热像仪是一款性能优质的高质量产品。作为一款高性能的红外热像仪,其配备500万像素的可见光相机、可互换镜头选件、自动对焦功能,以及宽大的4.3英寸液晶触摸屏。本产品集卓越的人体工程设计以及优质成像功能于一身,提供高质量的图像清晰度与精确度,以及可扩展的通信可行性。检测完成后,使用FLIR T640还可以通过Wi-Fi连接至FLIR Tools Mobile进行图像分析和分享,或通过METERLiNK传输测试和测量数据至热像仪。05测试样本分析对材料的特性分析表明了由辐射引起的储能,以及在阴凉处进行后续放热的不同行为。对具有平均太阳吸收系数的外墙表面充电时的热成像分析热分析清楚地表明:存在两种截然不同的表面层,一类是具有低热传导率及有限比热容的隔热材料,一类是拥有较高热传导率及比热容的粘合剂和PVC合板钉。在进行热像图分析时,热像师必须清楚,哪些为表面异常现象:此外,还必须熟悉外部隔热系统,以及在合适环境条件下观测时,哪些现象可认为是存在缺陷。除此之外,FLIR T640还有助于您发现隐藏的电阻、机械磨损和其它热相关问题的迹象。FLIR T640拥有307,200(640×480)像素,提供MSX丰富细节和FLIR UltraMax增强分辨率,可达2000℃的温度校准,具有快速诊断问题和立即开始维修所需的出色图像质量和清晰度。
  • ​KLA科磊快速压痕技术对隔热涂层的测试
    KLA科磊快速压痕技术对隔热涂层的测试什么是隔热涂层?隔热涂层(TBC)是一种多层多组分材料,如下图所示,应用于各种结构性组件中提供隔热和抗氧化的保护功能1。TBC中不同的微观结构特征,如热喷涂涂层的薄膜边界、孔隙度、涂层间界面、裂纹等,通常会极大地增加测试的难度。图 1. (a)多层、多功能的隔热涂层的示意图《MRS Bulletin》(b)隔热涂层的横截面的扫描电镜图KLA Instruments的测试方法利用KLA发明的 NanoBlitz 3D 压痕技术对TBC 涂层进行测试,每个压痕点测试只需不到一秒,可在微米尺度上对涂层和热循环类的样品的粘结层、表层涂层和粘结层—表面涂层的界面区域等进行各种不同范围的Mapping成像,单张Mapping最多可达100000个压痕点。结果与分析粘结层—表面涂层的界面区域是 TBC研究的重点之一,其微观结构及相应力学性能的变化,会影响到TBC 的热循环寿命。该界面处最重要的考量就是热生长氧化 (TGO) 层的形成,TGO是在高温条件下,粘结层的β-NiAl的内部扩散铝与通过表层涂层渗透的氧发生反应而成,TGO 层可防止粘结层和下面的衬底进一步的氧化,但TGO超过一定的临界厚度,又会导致严重的应变不兼容和应力失配,从而使 TBC 逐渐损坏并最终产生剥离2、3。下图显示了典型的等离子喷涂涂层的变化过程,TGO 的厚度会随着热循环次数的增加而增大。对应的硬度和弹性模量Mapping结果也显示出类似的趋势,同时,从硬度mapping图中也可以观察到粘结层一侧的作为铝源的 β-NiAl 相随热循环次数的增加而逐渐耗尽。图 2. (a,第一列)涂层状态下的 TGO 生长状况的硬度和弹性模量 mapping 图;(b,第二列) 5 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;(c,第三列)10 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图;以及(d,第四列)100 次热循环后的 TGO 生长状况的硬度和弹性模量 mapping 图。TGO 生长引起的弹性模量差异会导致失配应力的发展,该失配应力又导致界面之上的表层涂层产生微裂纹,如上图(d,第四列)所示的mapping结果捕捉到了裂纹区域的硬度和弹性模量的降低现象。KLA的“Cluster”算法可以对不同物相的mapping数据反卷积处理并保留它的空间信息,即对相应的力学mapping图进行重构,如下图所示。图(c) 的Cluster的硬度mapping图清晰的展示出三组硬度明显不同的物相:(1)β-NiAl、(2)γ/γ‘-Ni 和(3)内部氧化产生的氧化物。图 3 .五次热循环后粘结层的(a)微结构图,(b)硬度mapping图(c) Cluster 后的结果。总结与结论KLA 的 NanoBlitz 3D 快速mapping技术可适用于隔热涂层的研究:TBC 不同膜层的界面区以及多孔的表面涂层的研究,甚至可以借助mapping技术获得的大量数据来预测 TBC 样品的剩余寿命。如想了解更多产品参数相关内容,欢迎通过仪器信息网和我们取得联系! 400-801-5101
  • 斯坦福热分析新概念 10原子厚隔热材料用于便携设备
    p  strong仪器信息网讯/strong 斯坦福大学教授Eric Pop发表在Science Advances上的最新研究,利用二维材料分层堆叠的方式制造出了10个原子厚的隔热材料,可在未来用于小型化电子设备的隔热设计问题。他们的实验已经证明了,仅用几个原子厚的材料,就可以达到比其厚 100 倍的玻璃可提供的相同隔热效果。/pp  对于这项研究的独特之处,Pop 说:“我们的研究团队正以一种全新的方式看待电子设备中的热量——将其看作声音。”电线中形成电流,是依靠电子在其中运动形成电子流。当这些电子运动时,就会与它们所经过材料中的原子相碰撞(比如电阻),每发生一次碰撞,就会引起材料中的一个原子振动。电流越大,碰撞也就越频繁,最终可能就会发展为电子像撞钟一样不断敲击原子,而这种“刺耳”的震动远高于人们的听力阈值,所以对于其产生的能量,我们的感觉是热。/pp  目前,如何更好地隔热是工程师们永恒的话题。如果参考录音室增加或增厚隔音玻璃,去增添隔热材料,那就会阻碍电子产品向着更轻薄的方向发展。所以斯坦福大学的研究人员借鉴了多层玻璃让室内更保暖的技巧(在不同厚度的玻璃之间填充一层空气),设计出一种多层结构的材料薄膜。由于纳米材料的异质结构能够集成各个结构基元的性质,可实现对原子和电子结构的调制,从而获得新的功能。研究团队通过将原子薄厚的二维材料分层堆叠的方式,开发出一种拥有超高隔热性能的超薄异质结构。他们成功地将单层石墨烯、MoS2 和 WSe2 堆叠在一起。在这个“三明治”结构中,石墨烯是单层的,而另外 3 种片状材料均为 3 个原子厚。这样就制成了只有 10 个原子厚的 4 层绝热体。该结构可以很好地抑制原子的热振动,当原子通过每一层时,都会损失大部分能量。这样形成的薄膜材料的热阻是 SiO2 的 100 倍,并且在室温条件下导热效率优于空气。/pp  对于智能手机、平板电脑等其他电子设备来说,它们是追求散热还是隔热的问题一直困扰着工程师。对于 SoC(System on Chip,系统级芯片)来说,单纯追求隔热,会导致机身内部温度过高,SoC 则需要降频 而如果只追求散热,就会导致机身“烫手”,影响用户的使用体验。而该新型隔热薄膜可能就是平衡上述问题的良方。/pp  负责人 Pop 对外表示:“作为工程师,我们已经学习了很多关于如何控制电力的知识,我们对光的掌握也变得越来越好。但是我们才刚刚开始了解如何控制在原子尺度上表现为‘热’的高频声音。”/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 183px " src="https://img1.17img.cn/17img/images/201909/uepic/8e7e24ba-ec78-45de-8e07-afab71dec595.jpg" title="拉曼激光.jpg" alt="拉曼激光.jpg" width="600" height="183" border="0" vspace="0"//pp style="text-align: center "a href="https://www.instrument.com.cn/zc/34.html" target="_self"入射拉曼激光探测下,Gr/MoSe2/MoS2/WSe2 结构的截面示意图 B ~ E. 在SiO2衬底上混合 4 层(B)和 3 层(C 到 E)异质结构的横截面截图,由于碳原子的原子数相对较低,在每个异质结构顶部的单层石墨烯很难被识别出来(图自 Science Advances)/a/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 466px " src="https://img1.17img.cn/17img/images/201909/uepic/964404f2-023e-4a50-9433-9655e8b8cc04.jpg" title="SThM 热图.jpg" alt="SThM 热图.jpg" width="600" height="466" border="0" vspace="0"//pp style="text-align: center "4 层结构的扫描热显微镜(SThM)热图,显示出通道内均匀的温度分布,证实了叠层中热层间耦合的均匀性(图自 Science Advances)/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制