物理性质

仪器信息网物理性质专题为您整合物理性质相关的最新文章,在物理性质专题,您不仅可以免费浏览物理性质的资讯, 同时您还可以浏览物理性质的相关资料、解决方案,参与社区物理性质话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

物理性质相关的耗材

  • 相对应的UPLC颗粒物理性质列表
    相对应的UPLC颗粒物理性质列表品牌 目录页 固定相 颗粒形状 粒径 孔径** 表面积 孔容 碳载量 封端 [m 2 /g] [cc/g] %ACQUITY UPLC CSH 49 C 18 球形 1.7 μm 130 185 0.70 15 Yes 苯己基 球形 1.7 μm 130 185 0.70 14 Yes 氟苯基 球形 1.7 μm 130 185 0.70 10 NoACQUITY UPLC HSS 53 T3 球形 1.8 μm 100 230 0.70 11 Yes C 18 球形 1.8 μm 100 230 0.70 15 Yes C 18 SB 球形 1.8 μm 100 230 0.70 8 No PFP 球形 1.8 μm 100 230 0.70 7 No CN 球形 1.8 μm 100 230 0.70 5 NoACQUITY UPLC BEH 51 C 18 球形 1.7 μm 130 185 0.70 17 Yes C 8 球形 1.7 μm 130 185 0.70 13 Yes Shield RP18 球形 1.7 μm 130 185 0.70 17 Yes 苯基 球形 1.7 μm 130 185 0.70 15 Yes HILIC 球形 1.7 μm 130 185 0.70 未键合 n/a Amide 球形 1.7 μm 130 185 0.70 12 n/aACQUITY UPLC BEH130 103 C 18 球形 1.7 μm 130 185 0.70 17 YesACQUITY UPLC BEH300 103 C 18 球形 1.7 μm 300 90 0.66 12 Yes 117 C 4 球形 1.7 μm 300 90 0.66 8 No
  • HPLC颗粒物理性质列表
    可无缝转换至UPLC技术的HPLC颗粒物理性质列表品牌 目录页 固定相 颗粒形状 粒径 孔径** 表面积 孔容 碳载量% 封端 [m 2 /g] [cc/g]XSelect CSH 64 C 18 球形 2.5, 3.5, 5 μm 130 185 0.70 15 Yes 苯己基 球形 2.5, 3.5, 5 μm 130 185 0.70 14 Yes 氟苯基 球形 2.5, 3.5, 5 μm 130 185 0.70 10 NoXSelect HSS 64 T3 球形 2.5, 3.5, 5 μm 100 230 0.70 11 Yes C 18 球形 2.5, 3.5, 5 μm 100 230 0.70 15 Yes C 18 SB 球形 2.5, 3.5, 5 μm 100 230 0.70 8 No PFP 球形 2.5, 3.5, 5 μm 100 230 0.70 7 No CN 球形 2.5, 3.5, 5 μm 100 230 0.70 5 NoXBridge 67 C 18 球形 2.5, 3.5, 5, 10 μm 130 185 0.70 18 Yes C 8 球形 2.5, 3.5, 5, 10 μm 130 185 0.70 13 Yes Shield RP18 球形 2.5, 3.5, 5, 10 μm 130 185 0.70 17 Yes 苯基 球形 2.5, 3.5, 5 μm 130 185 0.70 15 Yes HILIC 球形 2.5, 3.5, 5 μm 130 185 0.70 未键合 n/a Amide 球形 2.5, 3.5 μm 130 185 0.70 12 n/aXBridge BEH130 103 C 18 球形 3.5, 5, 10 μm 130 185 0.70 18 YesXBridge BEH300 103 C 18 球形 3.5, 5, 10 μm 300 86 0.66 12 Yes 117 C 4 球形 3.5 μm 300 90 0.66 8 No
  • HPLC颗粒物理性质列表(节选)
    HPLC颗粒物理性质列表(节选) 品牌 目录页 固定相 颗粒形状 粒径 孔径** 表面积 孔容 碳载量 封端 [m 2 /g] [cc/g] %SunFire 71 C 18 球形 2.5, 3.5, 5, 10 μm 100 340 0.90 16 Yes C 8 球形 2.5, 3.5, 5, 10 μm 100 340 0.90 12 Yes Silica 球形 5, 10 μm 100 340 0.90 未键合 n/aAtlantis 72 T3 球形 3, 5, 10 μm 100 330 1.00 14 Yes dC 18 球形 3, 5, 10 μm 100 330 1.00 12 Yes HILIC 球形 3, 5 μm 100 330 1.00 未键合 n/aXTerra 74 RP18 球形 3.5, 5, 10 μm 125 175 0.70 15 Yes RP8 球形 3.5, 5, 10 μm 125 175 0.70 13.5 Yes MS C 18 球形 2.5, 3.5, 5, 10 μm 125 175 0.70 15.5 Yes MS C 8 球形 2.5, 3.5, 5, 10 μm 125 175 0.70 12 Yes Phenyl 球形 3.5, 5 μm 125 175 0.70 12 YesSymmetry 75 C 18 球形 3.5, 5 μm 100 335 0.90 19.1 Yes C 8 球形 3.5, 5 μm 100 335 0.90 11.7 YesSymmetry300 120 C 18 球形 3.5, 5 μm 300 110 0.80 8.5 Yes C 4 球形 3.5, 5 μm 300 110 0.80 2.8 YesSymmetryPrep 91 C 18 球形 7 μm 100 335 0.90 19.1 Yes C 8 球形 7 μm 100 335 0.90 11.7 YesSymmetryShield 76 RP8 球形 3.5, 5 μm 100 335 0.90 15 Yes RP18 球形 5 μm 100 335 0.90 17 Yes Silica 球形 3, 5, 10 μm 80 220 0.50 n/a n/a ODS2 球形 3, 5, 10 μm 80 220 0.50 11.5 Yes ODS 球形 3, 5, 10 μm 80 220 0.50 6.2 No Delta-Pak 91 C 4 球形 5, 15 μm 100 300 1.00 7.3 Yes C 18 球形 5, 15 μm 100 300 1.00 17 Yes C 4 球形 5, 15 μm 300 125 1.00 2.6 Yes C 18 球形 5, 15 μm 300 125 1.00 6.8 YesNova-Pak 78 C 18 球形 4, 6 μm 60 120 0.30 7.3 Yes C 8 球形 4 μm 60 120 0.30 4 Yes Phenyl 球形 4 μm 60 120 0.30 4.6 Yes CN HP 球形 4 μm 60 120 0.30 3 Yes Silica 球形 4, 6 μm 60 120 0.30 n/a n/aWaters Spherisorb 77 Silica 球形 3, 5, 10 μm 80 220 0.50 n/a n/a ODS2 球形 3, 5, 10 μm 80 220 0.50 11.5Yes ODS 球形 3, 5, 10 μm 80 220 0.50 6.2 No ODSB 球形 5 μm 80 220 0.50 11.5Yes C 8 球形 3, 5, 10 μm 80 220 0.50 5.8 Yes C 6 球形 3, 5, 10 μm 80 220 0.50 4.7 Yes C 1 球形 3, 5, 10 μm 80 220 0.50 2.2 No Nitrile 球形 3, 5, 10 μm 80 220 0.50 3.1 No Amino 球形 3, 5, 10 μm 80 220 0.50 1.9 No Phenyl 球形 3, 5, 10 μm 80 220 0.50 2.5 No OD/CN 球形 5 μm 80 220 0.50 5 Yes SAX, SCX 球形 5, 10 μm 80 220 0.50 4 NoμBondapak 78 C 18 不定形 10 μm 125 330 1.00 9.8 Yes Phenyl 不定形 10 μm 125 330 1.00 9.3 Yes CN 不定形 10 μm 125 330 1.00 6 Yes NH 2 不定形 10 μm 125 330 1.00 4 NoBondapak 78 C 18 不定形 15–20 μm 125 330 1.00 10 Yes C 18 不定形 15–20 μm 300 100 1.00 3.5 Yes* 产品排列顺序:按柱产品推出的年代回溯排列**名义值

物理性质相关的仪器

  • 标准配备改良过的测量参数自动调整功能,以及简单明了的图形用户界面。因此,即使是刚刚接触SPM的人,或者测量某种全新的样品时,也能取得具有较高再现性的数据。 图标说明*RealTune是日立高新技术科学股份公司在日本的注册商标。 特点1. RealTune® II 最新的测量参数自动调整功能 提升独有的测量参数自动调整功能!此系列开发出一种全新的处理方法,可预测并调整悬臂的振动振幅、动作频率等主要参数。其通过对样品表面的形状、扫描区域、使用的悬臂及扫描仪等的综合评价,高效率、高精度地调整成最合适的测量条件。 通过新增加了振幅调整功能的测量参数自动调整功能(RealTune® II),可实现一键(One Click)测量。原来需要熟练操作的测量,现在没有经验的操作员也可以简单地操作。 也可用于很难调整参数的样品。【实例1】纤维状的碳纳米管结构体(壁虎胶带)【样品提供:日东电工股份公司】此前的方法此种样品需要对参数进行精细的调整,操作困难,并且柔软的纤维易变形产生皱痕。新处理方法自动调整成最合适的参数,可在复杂的纤维结构不变形的前提下进行测量。【实例2】用于有机薄膜晶体管的多结晶薄膜(并五苯多结晶薄膜)【样品提供:神户大学北村研究室】此前的方法此款样品表面容易损坏,易产生皱痕、step的轮廓也不明确。新处理方法自动调整为最合适的参数,稳定地测量分子级别上的step结构。2. 新图形用户界面(Graphical Use Interface)简单菜单 简单明了易懂的图标、严格筛选的显示信息,无论是无经验者还是熟练操作员,都能够方便地操作! 可通过选项卡在测量及分析作业领域之间切换,画面简洁明了。可有效地广泛使用。3. 3D覆盖功能能够将样品形状图像及物理性质图像重合起来显示,并能进一步构画出3D图像,可以通过视觉形象地感受样品的物理性质的分布。4. 凹凸分析、剖面轮廓分析功能具备凹凸分析、剖面轮廓分析等多样化的分析功能。5. 小型化设计外形更轻便、更小型化,适合各种放置场所。220mm(W)×500mm(D)×385mm(H)、約15kg
    留言咨询
  • 片剂物理性能测试 400-860-5168转3662
    一、片剂物理性能测试的介绍药品颗粒是指药物与糖粉、糊精、淀粉、乳糖等适宜辅料制成的颗粒状制剂,分为可溶颗粒剂、混悬颗粒剂和泡腾颗粒剂等,主要用于口服,可直接吞服或冲入水中饮服,药物颗粒的硬度可能会影响药物有效成分的溶解性,颗粒的崩解性或许会影响药物的吸收率。研究不同配方样品的硬度和崩解性差异对选择产品的配方和工艺有着指导意义。上海保圣药品颗粒硬度仪TA.XTC-18可以测试不同药品颗粒的硬度和崩解性差别。药品颗粒硬度仪可自主设计测试方法,获得准确数据。支持ASTM、ISO标准方法试验及种非标试验方法,是药品研发科研、材料研究的好助手。不仅仅检测药品颗粒的硬度,还可以检测致密性,以及外力搅拌等工艺是否会导致颗粒药物粉末化等。二、片剂物理性能测试的性能特点药品颗粒硬度仪TA.XTC-18用于制药行业专业物性分析仪,可以客观评价药物的力学特性,对力学指标结果给出准确的数量化描述。避免人类感官品评的局限性,可得到不同样品准确、稳定、重复性好的物性参数。通过对药品颗粒分散平铺后,进行下压实验,可以测定药品颗粒的硬度,硬度大,不容易崩解;硬度小,容易崩解,测得的样品硬度可以用来分析药品颗粒的崩解特性,为药品的配方选择和提高吸收利用率提供数据支持。药品颗粒的粘性指样品颗粒与外部产生的粘附性能,通过对药品预处理后进行下压实验,可以测定药品粘性,其可用于分析生产中颗粒是否容易成型和定型,有助于优化配方和工艺。三、片剂物理性能测试的技术参数1、应用:测定药品颗粒硬度,确认其崩解特性;测定药品颗粒粘性,分析生产中颗粒是否容易成型和定性产生影响、药物从口腔到食管中的服用体验的影响,从而可以反映药品的整体品质;2、仪器参数:测试结果显示精度:0.01g;位移精度:0.001mm;测试臂移动距离:280mm;检测速度:0.011~25 mm/s;数据采集率:不低于500组/秒,每组4个通道同时读取;3、力量感应元精度:采用高精度力量感应元,可以使用第三方标准砝码进行计量验证和校正,符合ISO 7500 Part1或ASTM E4标准;4、采用高精度力量感应元,0-100kg,可选择500g、1kg、5kg、20kg、30kg、50kg、100kg;5、设备采用三轴滚珠丝杆,结构稳固,不易变型,底部步进电机设计,位移 稳定,无共振,无噪音;6、安全措施:数据可紧急停止、上下极限控制装置、力量感应元过载保护7、结果分析:自动进行曲线的结果分析,用户只需根据自己的需要选择所要结果。同时曲线和结果可以传输到电脑备份。具有一键导出图片、Excel、PDF、原始数据等功能,可同时进行上百组数据的快速分析处理,数据可使用办公软件打开。具有检测数据保密功能;8、售后服务要求:仪器免费保修1年,免费安装调试,免费对采购人技术人员的操作、维修、保养等方面进行视频培训,直至能熟练独立操作,终身维护;9、配置药品颗粒硬度仪主机、TA/2探头、备品配件包、外置软件一套、应用方法库、操作手册。四、片剂物理性能测试的使用说明同配方和工艺的颗粒制剂在硬度、崩解性方面具有差异性,而颗粒的崩解性会影响药物的吸收率;药物颗粒的粘性也会对生产中颗粒是否容易成型和定性产生影响,粘性会影响药物从口腔到食管中的服用体验,药品颗粒的粘性的综合作用结果可以反映药品的整体品质。颗粒的硬度与颗粒的崩解性相关,当样品颗粒硬度较大时,颗粒不容易崩解,反之,颗粒硬度较小时,容易崩解。在该实验方法和参数的条件下,所测样品的变异系数较小,测试样品呈现出较好的重复性,说明检测的可靠性非常好。药品颗粒硬度仪所测得的药品颗粒硬度数值可以用来分析药品颗粒的崩解性质,测定药品颗粒的硬度、粘聚性和粘性等指标,为药品的配方选择和提高吸收利用率提供数据支持。
    留言咨询
  • 仪器概述:鼻氧馆物理性能测试仪是一款用于测试鼻氧馆和吸氧de管气流阻力、抗扁瘪性、泄露试验、耐压强度、通畅性等多项性能的设备,也称为鼻氧馆综合性能测试仪、鼻氧馆气流阻力检测仪、鼻氧馆泄漏试验机、鼻氧馆耐压强度测试仪和鼻氧馆通畅性检测仪等。鼻氧馆物理性能测试仪适用于所有鼻氧馆,不论是独立的鼻氧馆还是用于和湿化瓶、面罩连接的鼻氧馆。可测试鼻氧馆气流阻力、抗扁瘪性、泄露测试、耐压强度、通畅性等五大指标。仪器功能:鼻氧馆不同的测试项目对应的标准的测试不同测试要求:1.气流阻力—按标准8.1试验要求进行鼻氧馆气流阻力的测试。2.抗扁瘪性—按标准8.2附录B试验要求进行鼻氧馆抗扁瘪性的测试。3.泄露试验—按标准8.4试验要求进行鼻氧馆的泄露测试。4.耐压强度—按标准8.5试验要求进行鼻氧馆的通气性测试。5.通畅性—按标准试验要求进行鼻氧馆的通畅性测试。满足标准:满足 YY/T 1543-2017标准中鼻氧馆气流阻力测试、鼻氧馆抗扁瘪性测试、鼻氧馆泄漏及耐压强度测试的要求。 满足 YY/T 1543-2017标准中鼻氧馆气流阻力测试、鼻氧馆抗扁瘪性测试、鼻氧馆泄漏及耐压强度测试的要求。鼻氧馆物理性能测试仪主要技术规格:1、该仪器完全满足一次性使用鼻氧馆产品注册技术审查指导原则的检测要求;2、该仪器操作简单,连接方便。3、灵活的参数设置:仪器在满足标准流量外,用户也可以根据自身需要灵活设置气体流速,也可以自主的设置测试时间和设定合格判定标准。4、正压源及空气过率系统;5、准确度:±1%(≥35% F.S);±0.5%(35% F.S);6、线性:±0.5%;重复精度:±0.2%
    留言咨询

物理性质相关的方案

物理性质相关的论坛

  • 元素的物理性质

    元素的物理性质[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15005]元素的物理性质[/url]

  • 焦炭的物理性质

    焦炭物理性质包括焦炭筛分组成、焦炭散密度、焦炭真相对密度、焦炭视相对密度、焦炭气孔率、焦炭比热容、焦炭热导率、焦炭热应力、焦炭着火温度、焦炭热膨胀系数、焦炭收缩率、焦炭电阻率和焦炭透气性等。 焦炭的物理性质与其常温机械强度和热强度及化学性质密切相关。 焦炭的主要物理性质如下: 真密度为1.8-1.95g/cm3;视密度为0.88-1.08g/ cm3;气孔率为35-55%;散密度为400-500kg/ m3;平均比热容为0.808kj/(kgk)(100℃),1.465kj/(kgk)(1000℃);热导率为2.64kj/(mhk)(常温),6.91kg/(mhk)(900℃)着火温度(空气中)为450-650℃;干燥无灰基低热值为30-32kj/g;比表面积为0.6-0.8m2/g。

物理性质相关的资料

物理性质相关的资讯

  • 通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中
    摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,RPD为1.68。迁移后模型的预测精度、R2值、RMSE和RPD分别为0.72、6.71 g/kg和1.53。与模型直接迁移预测相比,采用基于四阶多项式和XG-Boost的土壤光谱校正模型,SOM预测结果的RMSE分别降低了57.90%和60.27%。 这种性能比较凸显了在区域尺度 SOM 预测中考虑土壤物理特性的优势。Figure 1. Framework of the proposed SOM estimation model.研究区域试验点1位于中国东北黑龙江省黑土耕地保护区,如图2所示,面积为1095 km2。该地区属温带大陆性季风气候,年降水量为450–650 mm,降水主要集中在6–9月,占全年降水量的80%。研究区地势南高北低,西高东低,大部分地区为堆积平原。该研究区是全球仅有的四个黑土区之一,耕层深厚,土壤肥沃,含腐殖质的土层厚度为25–80 cm,适合种植玉米、大豆等作物。图 2. 研究区域概览。(a)研究区域的地理位置;(b、c)分别为站点 1 和站点 2 的土壤采样点;(d、e)“裸土期”的土壤表面。试验点2 位于中国吉林省黑土耕地保护区,如图 2 所示,面积为 713 km2。站点地势平坦,海拔在 189 至 237 m 之间。该区域为东部湿润山区与西部半干旱平原区的过渡地带。研究区属温带大陆性半湿润季风气候,年平均气温 4.6 ℃,年降水量 600—700 mm。该区域河流水系丰富,农业水资源相对丰富,地表土壤空间异质性强。该区域土壤主要为黑土,腐殖质层厚度为 0.6—1.0 m。试验点2的土壤类型、地表特征等环境因素与试验点1有明显差异,可以验证本研究中SOM含量预测模型的时空可迁移性。2022 年 10 月 29 日至 30 日,共从试验点 1 采集了 104 个表层土壤样品(图 2b)。2023 年 4 月 14 日至 15 日,从试验点 2 采集了 40 个表层土壤样品(图 2c),用于测试模型的时空可迁移性。图3. 样区内土壤样品采集与参数测量示意图。(a)象限采样示意图;(b)土壤表面点云数据测量。研究过程样品运回实验室后,通过称重、烘干等方法获得每个象限9个子样本的SM和SBW,并计算子样本的平均值。然后,将9个子样本混合成复合样本,在实验室内使用(ASD FieldSpec 4地物光谱仪)进行光谱测量(取十次测量的平均值)和使用重铬酸钾加热法测定SOM含量。为保证每个样品的SBW相同,将土壤样品装入一次性培养皿中进行光谱测量。对每个测量点的土壤表面点云数据进行拼接、裁剪和滤波。利用处理后的点云数据建立三维相对坐标系(图3b),提取所有点云数据的Z坐标,计算该象限的RMSH。资源一号02D(ZY1-02D)高光谱图像数据来自中国科学院空天信息创新研究院,图像生成时间与土壤采样时间同步,所有图像的云量均小于1%。本研究选取450~1290nm、1408~1828nm和1963~2460nm波段作为光谱波段。为了验证ZY1-02D高光谱图像的可靠性,将土壤像素光谱与土壤地面光谱进行了比较(图4)。尽管土壤像素光谱的形状与土壤地面光谱相似,但在可见光-近红外(VNIR)波段范围内存在一些噪声和平滑度较低的情况。此外,土壤像素的光谱反射率略低于实验室测量的反射率。计算了像素反射率与地面反射率之间的斯皮尔曼相关系数(SCCs)和皮尔逊相关系数(PCCs)。结果表明,大多数波长范围内的PCCs低于0.5,而在480至680nm和2000至2500nm波长范围内的SCCs基本大于0.5,表明可能存在非线性关系。为了揭示影响像素光谱的因素,比较了不同物理属性梯度下土壤反射率的差异。随着SM的增加,土壤光谱反射率显著下降,尤其是在500至1300nm和1450至1700nm波长范围内(图5)。随着SBW的增加,土壤光谱反射率的下降幅度相对较小。RMSH对土壤光谱的影响最为显著,反射率随着RMSH的增加显著下降。综上所述,SM、SBW和RMSH对光谱的耦合效应是导致两组光谱数据偏差的重要原因,严重限制了成像光谱仪对土壤“纯光谱”的获取。因此,有必要在像素光谱数据中分离土壤的物理和化学信息,以提高高光谱遥感对土壤有机质(SOM)预测的准确性。图4. 成像光谱、实验室光谱及其相关系数。图5. 不同物理性质土壤的光谱特征。图6. 基于多参数估计模型的土壤物理参数与土壤像素光谱拟合的R² 值。图 7. 使用试验点 1 数据建立的 XG-Boost 模型,基于 (a) 原始像素光谱、(b) 地面光谱、(c) 四阶多项式校正光谱和 (d) XG-Boost 校正光谱和站点 2 数据测量和预测的 SOM 含量的散点图。结果本研究利用卫星和地面高光谱数据以及土壤物理参数数据,分别基于四阶多项式和XG-Boost构建了两种土壤光谱校正模型,以缓解土壤物理性质对像素光谱的耦合效应。通过使用来自两个试验点的数据,评估了土壤光谱校正模型的性能及其对SOM预测模型精度和时空可迁移性的影响。主要结论如下:土壤像素光谱反射率与土壤地面光谱反射率呈非线性关系。表面物理性质的差异是导致这两种光谱数据类型偏差的主要因素。RMSH对土壤像素光谱的影响最为显著,其次是SM和SBW。四阶多项式和XG-Boost模型具有良好的土壤光谱校正精度。基于XG-Boost的土壤光谱校正模型精度更高,时空可转移性更强,因为它考虑了所有特征,持续调整树的权重,防止结果陷入局部最优。土壤光谱校正显著缓解了土壤物理性质对土壤像素光谱的耦合效应,有效提高了SOM预测模型的准确性,更重要的是,大大增强了基于像素光谱的SOM预测模型的时空可转移性。未来,通过充分考虑更多土壤特性,可以获得更准确的SOM预测结果。本研究为预测其他区域的土壤性质参数提供了一种新的研究范式。
  • 盛奥华 | 画说污水性质与污染指标、检测仪表
    污水的类型 物理性质与污染指标污水的污染指标一般可以分为物理性质、化学性质和生物性质三类,其中物理性质分为: 工业企业排出的污水都有较高的温度,会导致水体缺氧和水质恶化; 是一项感官性指标,纯天然水清澈透明无色,污水往往五彩斑斓,污水排放对色度有严格要求; 水的易臭来源于还原性硫氮化合物、挥发性有机物和氯气等污染物质。 固体包括溶解性固体和悬浮固体,悬浮固体和挥发性悬浮固体是重要的水质指标,也是污水处理厂设计的重要参数。化学性质与污染指标有机物:生化需氧量BOD是有机物被生物分解所消耗的溶解氧量;化学需氧量COD是有机物被化学氧化剂氧化所消耗的溶解氧量;这两个参数被广泛运用于表达水中有机物的含量。此外,代表水中所有有机物含碳量总碳TOC以及氧化这些碳的总需氧量TOD也是衡量水中有机物含量的重要参数。 污水中的苯类化合物、酚类化合物、有机酸减、有机农药等,这些物质对微生物都有毒害与抑制作用,属于有毒物质。 污水中的油类污染物和表面活性剂(俗称洗涤剂)虽然无毒,但是对自然界的危害依旧很大,前者直接坑死动物;后者会让水体富营养化,间接坑死动物。 无机物:这个主要指示水样的酸碱性,正常水的pH值在6~9之间。 无机污染物也有有毒和无毒之分,重金属、砷(本身没毒,但极易氧化成砒霜)、含硫化合物、氰化物等都属于有毒物质。无毒的无机污染物主要是植物营养素氮、磷,农田里求之不得的肥料放在自然界的水里就是水生生物的大杀器,过量的氮磷造成水藻疯长、水体富营养化,严重影响鱼类生存。 生物性质与污染指标 细菌总数反映了水体受细菌污染的程度;大肠杆菌则是被视为最基本的粪便污染指示菌群;病毒则是比细菌还小还麻烦的东西。水体自净作用 水体的自净分为以挥发、稀释和沉淀为主的物理净化;以氧化、还原和分解为主的化学净化;以微生物分解为主的生物净化。污水处理就是使用自然净化的模式在小区域内人工加速这一过程,让废水达到排放标准。
  • QD公司隆重推出全新的PPMS、Versalab平台光电输运性质测量产品
    2016年美国物理学年会上,Quantum Design公司隆重推出一款全新的应用于PPMS和VersaLab平台的光电输运性质测量选件。该选件包含了一根集成有光纤及样品托的多功能样品杆以及光源和单色仪,结合PPMS和VersaLab平台的电输运测量功能,该光电输运选件将能够帮助用户实现光照下对样品电输运性质的研究。该选件的推出,进一步拓展了PPMS综合物性测量系统在光、电磁等多种环境下对样品物理性质的研究,也给用户提供更多的研究思路。PPMS、Versalab平台光电输运性质测量选件 在此次更新的光电输运性质测量选件中,光源为100W卤素灯光源,输出的波谱范围从350nm一直延伸到1850nm,通过单色仪,能够输出约为10nm线宽的单色光线,并能够在整个波谱范围进行变化。结合PPMS和VersaLab系统的变温或者变磁场样品腔环境,我们将能够在不同温度以及不同磁场条件下对样品进行不同波段光辐照下的电输运性质研究。PPMS平台正在用光电输运性质测量选件进行光电性质测量 该光电输运选件能够同时支持两个4线法测量的样品同时进行测量,方便用户在同样的物理环境下对多种不同组分样品进行更直观的对比,也大大提升了样品测试的效率。我们也期待有越来越多的用户利用PPMS系统以及我们新的选件做出更多更的科研成果。不同温度下的光电阻测量数据 相关产品PPMS 综合物性测量系统:http://www.instrument.com.cn/netshow/C17086.htm完全无液氦综合物性测量系统 DynaCool:http://www.instrument.com.cn/netshow/C18553.htm多功能振动样品磁强计 VersaLab 系统:http://www.instrument.com.cn/netshow/C19330.htm关于Quantum Design Quantum Design是的科研设备制造商和仪器分销商,于1982年创建于美国加州圣迭戈。公司生产的 SQUID 磁学测量系统 (MPMS) 和材料综合物理性质测量系统 (PPMS) 已经成为公认的测量平台,广泛的分布于上几乎所有材料、物理、化学、纳米等研究领域的实验室。2007年,Quantum Design并购了欧洲大的仪器分销商LOT公司,现已成为著名的科学仪器领域的跨国公司。目前公司拥有分布于英国、美国、法国、德国、巴西、印度,日本和中国等地区的数十个分公司和办事处,业务遍及全球一百多个和地区。中国地区是Quantum Design公司活跃的市场,公司在北京、上海和广州设有分公司或办事处。几十年来,公司与中国的科研和教育领域的合作有成效,为中国科研的进步提供了先进的设备以及高质量的服务。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制