当前位置: 仪器信息网 > 行业主题 > >

物理性质

仪器信息网物理性质专题为您整合物理性质相关的最新文章,在物理性质专题,您不仅可以免费浏览物理性质的资讯, 同时您还可以浏览物理性质的相关资料、解决方案,参与社区物理性质话题讨论。

物理性质相关的资讯

  • 通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中
    摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,RPD为1.68。迁移后模型的预测精度、R2值、RMSE和RPD分别为0.72、6.71 g/kg和1.53。与模型直接迁移预测相比,采用基于四阶多项式和XG-Boost的土壤光谱校正模型,SOM预测结果的RMSE分别降低了57.90%和60.27%。 这种性能比较凸显了在区域尺度 SOM 预测中考虑土壤物理特性的优势。Figure 1. Framework of the proposed SOM estimation model.研究区域试验点1位于中国东北黑龙江省黑土耕地保护区,如图2所示,面积为1095 km2。该地区属温带大陆性季风气候,年降水量为450–650 mm,降水主要集中在6–9月,占全年降水量的80%。研究区地势南高北低,西高东低,大部分地区为堆积平原。该研究区是全球仅有的四个黑土区之一,耕层深厚,土壤肥沃,含腐殖质的土层厚度为25–80 cm,适合种植玉米、大豆等作物。图 2. 研究区域概览。(a)研究区域的地理位置;(b、c)分别为站点 1 和站点 2 的土壤采样点;(d、e)“裸土期”的土壤表面。试验点2 位于中国吉林省黑土耕地保护区,如图 2 所示,面积为 713 km2。站点地势平坦,海拔在 189 至 237 m 之间。该区域为东部湿润山区与西部半干旱平原区的过渡地带。研究区属温带大陆性半湿润季风气候,年平均气温 4.6 ℃,年降水量 600—700 mm。该区域河流水系丰富,农业水资源相对丰富,地表土壤空间异质性强。该区域土壤主要为黑土,腐殖质层厚度为 0.6—1.0 m。试验点2的土壤类型、地表特征等环境因素与试验点1有明显差异,可以验证本研究中SOM含量预测模型的时空可迁移性。2022 年 10 月 29 日至 30 日,共从试验点 1 采集了 104 个表层土壤样品(图 2b)。2023 年 4 月 14 日至 15 日,从试验点 2 采集了 40 个表层土壤样品(图 2c),用于测试模型的时空可迁移性。图3. 样区内土壤样品采集与参数测量示意图。(a)象限采样示意图;(b)土壤表面点云数据测量。研究过程样品运回实验室后,通过称重、烘干等方法获得每个象限9个子样本的SM和SBW,并计算子样本的平均值。然后,将9个子样本混合成复合样本,在实验室内使用(ASD FieldSpec 4地物光谱仪)进行光谱测量(取十次测量的平均值)和使用重铬酸钾加热法测定SOM含量。为保证每个样品的SBW相同,将土壤样品装入一次性培养皿中进行光谱测量。对每个测量点的土壤表面点云数据进行拼接、裁剪和滤波。利用处理后的点云数据建立三维相对坐标系(图3b),提取所有点云数据的Z坐标,计算该象限的RMSH。资源一号02D(ZY1-02D)高光谱图像数据来自中国科学院空天信息创新研究院,图像生成时间与土壤采样时间同步,所有图像的云量均小于1%。本研究选取450~1290nm、1408~1828nm和1963~2460nm波段作为光谱波段。为了验证ZY1-02D高光谱图像的可靠性,将土壤像素光谱与土壤地面光谱进行了比较(图4)。尽管土壤像素光谱的形状与土壤地面光谱相似,但在可见光-近红外(VNIR)波段范围内存在一些噪声和平滑度较低的情况。此外,土壤像素的光谱反射率略低于实验室测量的反射率。计算了像素反射率与地面反射率之间的斯皮尔曼相关系数(SCCs)和皮尔逊相关系数(PCCs)。结果表明,大多数波长范围内的PCCs低于0.5,而在480至680nm和2000至2500nm波长范围内的SCCs基本大于0.5,表明可能存在非线性关系。为了揭示影响像素光谱的因素,比较了不同物理属性梯度下土壤反射率的差异。随着SM的增加,土壤光谱反射率显著下降,尤其是在500至1300nm和1450至1700nm波长范围内(图5)。随着SBW的增加,土壤光谱反射率的下降幅度相对较小。RMSH对土壤光谱的影响最为显著,反射率随着RMSH的增加显著下降。综上所述,SM、SBW和RMSH对光谱的耦合效应是导致两组光谱数据偏差的重要原因,严重限制了成像光谱仪对土壤“纯光谱”的获取。因此,有必要在像素光谱数据中分离土壤的物理和化学信息,以提高高光谱遥感对土壤有机质(SOM)预测的准确性。图4. 成像光谱、实验室光谱及其相关系数。图5. 不同物理性质土壤的光谱特征。图6. 基于多参数估计模型的土壤物理参数与土壤像素光谱拟合的R² 值。图 7. 使用试验点 1 数据建立的 XG-Boost 模型,基于 (a) 原始像素光谱、(b) 地面光谱、(c) 四阶多项式校正光谱和 (d) XG-Boost 校正光谱和站点 2 数据测量和预测的 SOM 含量的散点图。结果本研究利用卫星和地面高光谱数据以及土壤物理参数数据,分别基于四阶多项式和XG-Boost构建了两种土壤光谱校正模型,以缓解土壤物理性质对像素光谱的耦合效应。通过使用来自两个试验点的数据,评估了土壤光谱校正模型的性能及其对SOM预测模型精度和时空可迁移性的影响。主要结论如下:土壤像素光谱反射率与土壤地面光谱反射率呈非线性关系。表面物理性质的差异是导致这两种光谱数据类型偏差的主要因素。RMSH对土壤像素光谱的影响最为显著,其次是SM和SBW。四阶多项式和XG-Boost模型具有良好的土壤光谱校正精度。基于XG-Boost的土壤光谱校正模型精度更高,时空可转移性更强,因为它考虑了所有特征,持续调整树的权重,防止结果陷入局部最优。土壤光谱校正显著缓解了土壤物理性质对土壤像素光谱的耦合效应,有效提高了SOM预测模型的准确性,更重要的是,大大增强了基于像素光谱的SOM预测模型的时空可转移性。未来,通过充分考虑更多土壤特性,可以获得更准确的SOM预测结果。本研究为预测其他区域的土壤性质参数提供了一种新的研究范式。
  • 盛奥华 | 画说污水性质与污染指标、检测仪表
    污水的类型 物理性质与污染指标污水的污染指标一般可以分为物理性质、化学性质和生物性质三类,其中物理性质分为: 工业企业排出的污水都有较高的温度,会导致水体缺氧和水质恶化; 是一项感官性指标,纯天然水清澈透明无色,污水往往五彩斑斓,污水排放对色度有严格要求; 水的易臭来源于还原性硫氮化合物、挥发性有机物和氯气等污染物质。 固体包括溶解性固体和悬浮固体,悬浮固体和挥发性悬浮固体是重要的水质指标,也是污水处理厂设计的重要参数。化学性质与污染指标有机物:生化需氧量BOD是有机物被生物分解所消耗的溶解氧量;化学需氧量COD是有机物被化学氧化剂氧化所消耗的溶解氧量;这两个参数被广泛运用于表达水中有机物的含量。此外,代表水中所有有机物含碳量总碳TOC以及氧化这些碳的总需氧量TOD也是衡量水中有机物含量的重要参数。 污水中的苯类化合物、酚类化合物、有机酸减、有机农药等,这些物质对微生物都有毒害与抑制作用,属于有毒物质。 污水中的油类污染物和表面活性剂(俗称洗涤剂)虽然无毒,但是对自然界的危害依旧很大,前者直接坑死动物;后者会让水体富营养化,间接坑死动物。 无机物:这个主要指示水样的酸碱性,正常水的pH值在6~9之间。 无机污染物也有有毒和无毒之分,重金属、砷(本身没毒,但极易氧化成砒霜)、含硫化合物、氰化物等都属于有毒物质。无毒的无机污染物主要是植物营养素氮、磷,农田里求之不得的肥料放在自然界的水里就是水生生物的大杀器,过量的氮磷造成水藻疯长、水体富营养化,严重影响鱼类生存。 生物性质与污染指标 细菌总数反映了水体受细菌污染的程度;大肠杆菌则是被视为最基本的粪便污染指示菌群;病毒则是比细菌还小还麻烦的东西。水体自净作用 水体的自净分为以挥发、稀释和沉淀为主的物理净化;以氧化、还原和分解为主的化学净化;以微生物分解为主的生物净化。污水处理就是使用自然净化的模式在小区域内人工加速这一过程,让废水达到排放标准。
  • QD公司隆重推出全新的PPMS、Versalab平台光电输运性质测量产品
    2016年美国物理学年会上,Quantum Design公司隆重推出一款全新的应用于PPMS和VersaLab平台的光电输运性质测量选件。该选件包含了一根集成有光纤及样品托的多功能样品杆以及光源和单色仪,结合PPMS和VersaLab平台的电输运测量功能,该光电输运选件将能够帮助用户实现光照下对样品电输运性质的研究。该选件的推出,进一步拓展了PPMS综合物性测量系统在光、电磁等多种环境下对样品物理性质的研究,也给用户提供更多的研究思路。PPMS、Versalab平台光电输运性质测量选件 在此次更新的光电输运性质测量选件中,光源为100W卤素灯光源,输出的波谱范围从350nm一直延伸到1850nm,通过单色仪,能够输出约为10nm线宽的单色光线,并能够在整个波谱范围进行变化。结合PPMS和VersaLab系统的变温或者变磁场样品腔环境,我们将能够在不同温度以及不同磁场条件下对样品进行不同波段光辐照下的电输运性质研究。PPMS平台正在用光电输运性质测量选件进行光电性质测量 该光电输运选件能够同时支持两个4线法测量的样品同时进行测量,方便用户在同样的物理环境下对多种不同组分样品进行更直观的对比,也大大提升了样品测试的效率。我们也期待有越来越多的用户利用PPMS系统以及我们新的选件做出更多更的科研成果。不同温度下的光电阻测量数据 相关产品PPMS 综合物性测量系统:http://www.instrument.com.cn/netshow/C17086.htm完全无液氦综合物性测量系统 DynaCool:http://www.instrument.com.cn/netshow/C18553.htm多功能振动样品磁强计 VersaLab 系统:http://www.instrument.com.cn/netshow/C19330.htm关于Quantum Design Quantum Design是的科研设备制造商和仪器分销商,于1982年创建于美国加州圣迭戈。公司生产的 SQUID 磁学测量系统 (MPMS) 和材料综合物理性质测量系统 (PPMS) 已经成为公认的测量平台,广泛的分布于上几乎所有材料、物理、化学、纳米等研究领域的实验室。2007年,Quantum Design并购了欧洲大的仪器分销商LOT公司,现已成为著名的科学仪器领域的跨国公司。目前公司拥有分布于英国、美国、法国、德国、巴西、印度,日本和中国等地区的数十个分公司和办事处,业务遍及全球一百多个和地区。中国地区是Quantum Design公司活跃的市场,公司在北京、上海和广州设有分公司或办事处。几十年来,公司与中国的科研和教育领域的合作有成效,为中国科研的进步提供了先进的设备以及高质量的服务。
  • 同是三层石墨烯结构 电学性质因何大相径庭?
    p style="text-indent: 2em "近日,日本科学家研制出两种新材料,它们都是三层石墨烯结构,但由于堆叠方式不同,却各具独特的电学性能,这项研究对于光传感器等新型电子器件的发展具有重要意义。/pp style="text-indent: 2em "自从2004年,两位科学家首次利用清洁石墨晶体的透明胶带分离出了单层碳原子,石墨烯就因其迷人的特质吸引了无数研究者蜂拥而至。它的强度是钢的200倍,不仅非常柔韧,而且是一种极为优良的电导体。/pp style="text-indent: 2em "石墨烯的碳原子呈六边形排列,构成了蜂窝状晶格。在单层石墨烯上再堆叠另一单层石墨烯,就可以形成双层石墨烯结构。有两种堆叠方法:让每层石墨烯结构的碳六边形中心彼此正对在一起,就构成了AA堆叠结构;而将其中一层向前移位,使得其碳原子六边形中心位于另一层石墨烯的碳原子之上,就构成了AB堆叠。AB堆叠的双层石墨烯材料在施加外部电场时,具有半导体的性质。/pp style="text-indent: 2em "刻意堆叠三层石墨烯结构是非常困难的,但是这样做却可以帮助科学家们研究三层材料的物理性质是怎样随层与层间堆叠方式的不同而变化的,并从而对新型电学仪器设备的发展具有促进作用。现在,日本东京大学和名古屋大学的研究者已成功研制出两种具有不同电学性能的三层石墨烯结构。/pp style="text-indent: 2em "他们采用了两种不同的方式加热碳化硅,一种是在加压氩气环境下将碳化硅加热到1510摄氏度,另一种是在高真空环境将碳化硅加热至1300摄氏度。随后用共价键已被破坏成单个氢原子的氢气喷涂两种材料,两种不同的三层石墨烯结构就大功告成了。在加压氩气下加热的碳化硅形成了ABA堆叠结构的三层石墨烯,其顶部和底层的碳原子六边形精确对齐,中间层稍有移位。高真空环境下加热的碳化硅则形成了ABC堆叠结构的三层石墨烯,每一层碳原子六边形都比其下面一层稍稍向前移位。/pp style="text-indent: 0em text-align: center "img src="http://img1.17img.cn/17img/images/201805/insimg/fda047f2-d0aa-4cca-894b-6475b2f605a5.jpg" title="同是三层石墨烯结构 电学性质因何大相径庭?.jpg"//pp/pp style="text-indent: 2em text-align: center "span style="color: rgb(127, 127, 127) font-size: 14px "ABA堆叠状三层石墨烯(图a)与ABC堆叠状三层石墨烯(图b)的晶体结构示意图/span/pp style="text-indent: 2em "科学家们检测了这两种三层石墨烯结构的物理性质,发现他们电学性能差异显著。ABA型石墨烯与单层石墨烯类似,是十分优良的电导体,而ABC型石墨烯却更像AB型双层石墨烯结构,具有半导体的性质。/pp style="text-indent: 2em "“ABA型和ABC型两种不同三层石墨烯结构的成功制备,将从堆叠层数和堆叠序列的角度,拓宽石墨烯基纳米电子器件的研发可行性。” 相关研究人员在NPG Asia Materials杂志上发表的论文中这样总结道。/p
  • 差示扫描量热仪:探索物质热性质的得力助手
    差示扫描量热仪,简称DSC,是一种用于研究物质在加热或冷却过程中的热效应和物理性质变化的精密仪器。它广泛应用于材料科学、化学、生物科学等领域,为科研工作者提供了重要的研究手段。上海和晟 HS-DSC-101 差示扫描量热仪差示扫描量热仪通过测量样品与参比物之间的热流差异,揭示物质在温度变化过程中的热行为。这种仪器能够精确地测定物质的熔点、玻璃化转变温度、结晶度等关键参数,从而帮助研究者深入了解物质的性质。在材料科学领域,差示扫描量热仪发挥着举足轻重的作用。通过DSC分析,研究者可以评估材料的热稳定性,优化材料的合成工艺,以及开发新型功能材料。此外,DSC还可用于研究高分子材料的热降解行为,为材料的安全使用提供有力保障。在化学领域,差示扫描量热仪同样具有广泛的应用。它可以用于研究化学反应的热效应,揭示反应的动力学过程和机理。同时,DSC还可以用于筛选和优化化学反应条件,提高反应的效率和产物纯度。在生物科学领域,差示扫描量热仪同样发挥着重要作用。它可以用于研究生物大分子的热稳定性,为药物设计和生物工程提供重要依据。此外,DSC还可用于研究生物材料的热行为,为生物医学领域的发展提供有力支持。总之,差示扫描量热仪作为一种重要的热分析仪器,为科研工作者提供了深入了解物质热性质的有力工具。随着科学技术的不断发展,DSC将在更多领域发挥重要作用,推动人类社会的进步。
  • 太赫兹光谱有望解释水的异常性质
    p style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/ce83a30b-4cc7-4eaf-8986-3042bceab55b.jpg" title="微信图片_20180709110801.jpg"//ppbr//pp  液态水维持着地球上的生命,但其物理性质对于研究人员来说仍是个谜。最近,一个瑞士研究团队利用已有的太赫兹光谱技术测量了液态水的氢键。利用这种技术开展的工作,未来或许能帮助解释水的特殊性质。该团队在美国物理联合会(AIP)出版集团所属《化学物理学报》上报告了他们的发现。/pp  研究人员利用超短可见激光脉冲激发了溶解在水中的染料分子,从而改变了它们的电荷分布。随后,太赫兹脉冲测量了周围水分子的反应。频率相对较低的太赫兹光谱使研究人员得以分析水分子之间存在的力。观察这些分子间的力或能帮助研究人员理解水的异常现象,因为液态水分子中的氢键构成了水的很多意想不到的性质,比如水在4℃时密度最大。/pp  “我们在太赫兹频率范围内看到的反应极其缓慢。水通常被视为非常快的溶剂,能在亚皮秒量级内作出反应。但我们在太赫兹波段发现了10皮秒左右的时间尺度。”论文作者之一Peter Hamm介绍说。/pp  但Hamm警告不要对此过分乐观。“结果经常有点令人失望,因为像水一样的液体的太赫兹光谱非常宽,并且极其模糊。这导致从里面提取信息很困难。”最新研究采用的时间分辨技术,或能克服这一限制。下一步,研究人员计划利用该方法探寻水仍处于液态但低于冰点时的结构和动力学机制 。/ppbr//p
  • 拉曼光谱:让物理与材料的研究更加深入
    拉曼光谱是物质的非弹性散射光谱,能够提供丰富的材料结构信息,已经成为研究材料物理性质,鉴别材料成分的基本手段,同时也是必不可少的一种有力工具。作为科研级拉曼光谱仪的使用“大户”,物理材料领域的研究一直代表着拉曼光谱应用的前沿和高端。近年来,相关的研究成绩斐然!即将召开的第四届拉曼光谱网络会议(iCRS2022 )特别邀请了多位专家进行相关的分享,部分报告预告如下( 点击报名 )。吉林大学 刘冰冰教授《拉曼光谱在高压下低维碳及相关材料研究中的应用》(点击报名) 吉林大学刘冰冰教授现任吉林大学超硬材料国家重点实验室主任,长期从事高压下材料的基础研究,在高压新结构、新性质以及高压新材料研究方面取得了系列结果,在Science、PNAS、Adv Mater 等刊物上发表SCI论文400 余篇。本次会议中,刘冰冰教授将分享其课题组最新的研究成果,题目待定。北京理工大学 张韫宏教授《光镊受激拉曼研究单液滴化学反应动力学》(点击报名) 北京理工大学张韫宏教授课题组多年来一直致力于与环境问题密切相关的大气气溶胶吸湿性的研究,近十几年来在Atmospheric Chem Phys、Anal. Chem.、EST、J. Phys. Chem. A、Phys. Chem. Chem. Phys和化学通报等国内外高水平杂志上发表论文百余篇。利用光镊技术,捕获微米尺度的单液滴,与二氧化硫痕量气体发生非均相氧化反应,依据液滴的受激拉曼共振峰,精确测量反应过程中半径的增长,测量不同条件下二氧化硫生成硫酸盐的速率,确定pH、离子强度、过渡金属离子催化对反应动力学的影响。本次会议中,张韫宏教授将分享其科体恤在光镊受激拉曼研究单液滴化学反应动力学的工作进展。北京大学 童廉明副研究员《二维材料的圆偏振拉曼散射研究》(点击报名) 北京大学童廉明副研究员研究方向为二维材料的拉曼光谱学。目前共发表学术论文76篇,引用 2300 余次;发表英文论著章节 6 篇,合编书籍1部(出版中)。拉曼光谱已经被广泛应用于二维材料的结构和物性表征。通过对拉曼光谱的峰位、峰强和峰宽等的分析,可以获得关于二维材料的组成、层数、缺陷、边缘结构等信息。在拉曼光谱表征中,偏振态是一个重要的自由度,影响到拉曼散射过程中的光电/电声/电光等相互作用,从而决定了拉曼散射光的强度和偏振态。童廉明副研究员利用圆偏振拉曼散射研究了石墨烯、二硫化钼、二硫化铼等代表性的二维材料,结合对拉曼散射光偏振态的分析,区分了极性二维材料中的电声耦合类型,观察到了手性拉曼散射,发现了扭转双层石墨烯中新的声子模式,并提出了竖直石墨烯阵列取向的表征方法。本次会议中,童廉明副研究员介绍其在二维材料的圆偏振拉曼散射研究进展。四川大学 雷力研究员《金属的拉曼光谱》(点击报名) 四川大学雷力研究员主要从事高压物理学研究,利用极端条件谱学方法探索高能量密度物质(聚合氮、金属氢)的演化机制。金属有没有拉曼光谱?如果有,如何测量金属在热力学加载条件下的拉曼光谱信号?金属拉曼光谱能够反映金属的哪些物理性质?此次报告雷力研究员将给大家介绍一下其课题组在金属拉曼光谱方面的研究进展。高端的研究当然对仪器性能也会提出更高的要求,除了精彩的专家报告之外,奥地利安东帕应用工程师史芸、雷尼绍(上海)贸易有限公司应用经理王志芳、天美仪拓实验室设备(上海)有限公司市场部应用工程师李朝霞等也将在本会场分享最新的产品和技术。奥地利安东帕 应用工程师 史芸《安东帕拉曼光谱原位检测解决方案》(点击报名) 雷尼绍(上海)贸易有限公司 应用经理王志芳《雷尼绍拉曼光谱技术发展及其在锂电材料领域的应用》(点击报名) 天美仪拓实验室设备(上海)有限公司市场部应用工程师 李朝霞《爱丁堡仪器全新显微共聚焦拉曼光谱技术与应用》(点击报名)为了分享拉曼光谱技术及应用的最新进展,促进各相关单位的交流与合作,仪器信息网与上海师范大学将于2022年9月22-23日联合举办第四届拉曼光谱网络会议(iCRS2022) 。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/icrs2022/
  • 中科院物理所研制出原位透射电镜测量仪器
    最近,中国科学院物理研究所/北京凝聚态物理国家实验室SF1组研制出新的原位透射电镜测量装置,实现了纳米管/纳米线场效应晶体管器件单元在透射电镜中的原位表征。在确定器件材料结构的同时,原位测量电输运性质。他们将这种方法运用到双壁碳纳米管研究上,在实验上直接获得了双壁碳纳米管电输运性质与手性指数的对应关系,相关结果发表在J. Am. Chem. Soc. 131, 62 (2009) 上,这项研究对双壁纳米管基本物性的理解和未来应用均具有重要意义。  双壁碳纳米管由两个单壁碳纳米管套构而成,为纳米光电功能复合材料提供了理想的结构组元,也是研究纳米管层间原子相互作用的最简单材料体系。纳米管的电子结构唯一地决定于表征其原子结构的手性指数(n, m),在实验上测量纳米管物理性质与手性指数的一对一关系,从本征结构出发理解碳纳米管的特殊性质是一个基本的科学问题。该研究小组的博士生刘开辉、副研究员王文龙、工程师许智、研究员白雪冬和王恩哥等人用微加工工艺制作特殊衬底并构造双壁纳米管场效应晶体管,做到器件电输运测量与透射电镜表征相兼容,成功测得了手性依赖的纳米管电输运性质。双壁碳纳米管每一层可能是金属性的(M),也可能是半导体性的(S),根据两者的组合方式有四种类型的双壁碳纳米管,即M/M, M/S, S/S和S/M。他们系统研究了四种组合情况下的双壁纳米管,实现纳米管输运性质与手性指数的直接对应。并且,通过对同一种类型纳米管(S/M)做大量器件样品的研究,证明了层间距是影响双壁纳米管输运性质的主要因素。他们还采用较大电流脉冲烧蚀纳米管的外壁,将探测深入到纳米管内壁,实现了双壁纳米管的逐层测量。实现单个纳米结构单元/材料微区的结构分析与原位性质测量,建立性质与结构的一对一关系,是纳米科学和低维材料物理研究的重要课题。  自2002年以来, SF1组与Q01组和美国佐治亚理工学院王中林教授合作,将扫描探针技术与透射电镜技术结合,研发原位透射电镜实验仪器,开展纳米操纵和纳米测量研究,在单根纳米管/纳米线的操纵和测量方面已经取得了系列进展(申请仪器和方法的发明专利5项,发表多篇论文如APL 87, 163106 (2005) APL 88, 133107 (2006) APL 89, 221908 (2006) APL 92, 213105 (2008) 等)。  该工作得到国家自然科学基金委、国家科技部和中科院的资助。
  • 物理所铁基高温超导体超导能隙对称性和轨道相关性研究取得新进展
    最近,中国科学院物理研究所/北京凝聚态物理国家实验室丁洪研究组与日本东北大学高桥隆教授小组合作,在铁基高温超导体超导能隙对称性和轨道相关性研究的中取得新进展。  高温超导电性一直是一个热门的研究课题。最近发现的铁砷化合物超导体的超导转变温度达到55K,从而结束了铜氧化合物在高温超导领域内的统治地位,更是将这一课题的研究推向了一个新的高潮。和铜氧化合物超导体的情况一样,揭示出这种新型超导体的物理性质,特别是超导能隙对称性和轨道相关性成为理解这种高温超导机理和相关物理特性的最关键的问题。  丁洪及其合作者利用高分辨角分辨光电子能谱仪,对新发现的超导体Ba0.6K0.4Fe2As2 (Tc = 37 K)进行了研究。他们观察该材料具有两不同值的超导能隙:较大的能隙(Δ~12meV)处在两个小的类空穴和类电子费米面上 较小的能隙(~6meV)处在一个大的类空穴费米面上。两个能隙都在体转变温度(Tc)处同时闭合,在其各自的费米面附近无节点且几乎各项同性。随着在不同能带上耦合系数2Δ/KBTc从弱耦合变化到强耦合,各向同性的配对相互作用表现出强烈的轨道依赖性。这种相同且相当大的超导能隙归因于两个小费米面上的强配对作用,而这两费米面通过母系统(parent compound)中反铁磁自旋密度波矢量联系。这就表明配对机制源于两个相互嵌套费米面的带间相互作用(inter-band interactions)。  该项工作以发表在 Europhys. Lett 83 (2008) 47001。美国阿贡国家实验室的Michael Norman最近为美国物理学会今年创刊的Physics杂志中“trends”栏目撰写了关于铁基超导体物理研究的短评文章,重点介绍了此项工作。同时 EuroPhysics News以 Pairing symmetry of iron-based superconductors为题目选作研究亮点进行报道。2008年8月1号日本《科学新闻》以“铁系高温超导体的超导电子对对称性的成功确定对于物质结构的解析带来很大进步 ”为标题对这项工作进行了报道。  此外,他们还对多种铁基超导体进行了一系列深入的研究,其中包括母体材料、空穴型和电子型掺杂材料、欠掺杂和过掺杂材料。主要成果包括:观察到了一种可能是电子配对媒介的反铁磁性玻色子模式,同时对电子结构进行了完整描述,并发现了超导能隙和费米面随掺杂浓度变化的演变。这些成果已被写成6篇论文,即将发表在Physical Review Letters等刊物上。  以上研究工作得到中国科学院、国家自然科学基金委和科技部相关项目的资助。
  • 热烈祝贺我司用户中科院物理研究所赵忠贤院士课题组荣获2013年度国家自然科学一等奖。
    我司用户中科院物理研究所赵忠贤院士研究团队因为在“40K以上铁基高温超导体的发现及若干基本物理性质研究”方面的突出贡献获得了国家自然科学一等奖。之前,这一奖项已经连续3年空缺。 腾讯新闻报道:物理所科研人员开创性地使用了便宜而好用的液氮替代昂贵的液氦来实现超导转变温度,为超导研究和应用开辟了一片崭新的天地,大大方便和加速了全世界的高温超导研究。…[详请] 报道中所指“实现超导转变温度”的系统即我司专业团队精心定制的Cryomagnetics 公司 C-Mag无液氦超导磁体系统。C-Mag无液氦超导磁体系统具有功能全、测试准确和自动化程度高等优点的多功能桌面式测试系统,操作和维护方便。该系统可以对样品在1.8K到300K范围内进行精确控温,并且可同步对磁场进行控制。此外,赵忠贤院士研究团队已购买我司多套其他系列超导磁体系统。 Cryomagnetics公司可提供一系列高质量超导磁体系统,无需液氦即可将温度降至4.2K,大大节约使用者购买液氦的费用。由于无需液氦储槽,所以无液氦超导磁体的尺寸和重量仅是常规超导磁体的几分之一,非常适合空间受限的场合。此外由于制冷机操作简单,维护成本极低,越来越受到广大用户的欢迎。
  • 2011年纺织品物理性能实验室间比对测试邀请函
    2011年纺织品物理性能实验室间比对测试邀请函  各相关单位:  实验室检测结果的准确性,是检测实验室最为关心的核心问题之一。检测实验室需要采用各种方法来对检测结果进行质量控制,以保证结果的准确性。定期参与实验室间的比对测试,是对质量控制的有效途径之一。实验室技术人员可通过比对测试检查实验室是否处于良好的运行状态,并分析总结出本实验室当前的仪器、人员、操作手法以及环境等条件是否处于正常状态 可以了解到新的检测方法的有效性和可比性,有助于增加客户对实验室的信任,提高实验室的知名度。同时,为本实验室参加国家实验室认可及其他机构的认证活动提供参考依据。  2011年,中国纺织工业协会检测中心将组织两期实验室间比对测试:“纺织品物理性能比对测试”与“色牢度、功能性及化学性能比对测试”。其中纺织品物理性能比对于即日起开始报名。  本次比对于2011年4月30日报名截止。中国纺织工业协会检测中心将于5月10日向各参加实验室寄发比对测试样品,各实验室于5月25日之前交回实验结果,中国纺织工业协会检测中心将在收到实验结果后进行数据分析,结果分析报告与比对测试结果证书将于6月25日前寄送至各参加实验室。  中国纺织工业协会检测中心将为您提供专业的结果分析、权威的结果证书及存在问题的分析处理。欢迎广大企业的积极参与!  比对测试项目及价格列表见下表。咨询电话:010-65855509,010-65855808-8803 联系人:周美附件:实验室间比对测试报名表.doc   二零一一年二月十八日
  • 物理所高次谐波光谱中的全量子轨道映射研究获进展
    原子内部电子动力学行为的演化是物理、化学、生物以及材料等学科研究中最基本的过程。精密测量电子的动力学特性,实现对其物理性质的理解,进而控制原子内电子的动力学行为是人们追求的重要科学目标之一。具有阿秒(10-18秒)时间分辨的高次谐波由于光子能量高(10eV~keV量级)、脉宽短(亚飞秒~几十阿秒)等特点,使得它在物理、化学和生物等领域有着广泛的应用。通过其与物质的相互作用,人们不仅可以研究原子、分子和固体中的超快动力学过程,而且还可以对纳米尺度的物质进行时间分辨的衍射成像。此外高次谐波也是自由电子激光装置、具有时间分辨的极短波长角电子能谱仪等科学装置中理想的种子脉冲及光源。中国科学院物理研究所/北京凝聚态物理国家实验室(筹)光物理重点实验室魏志义研究员领导的研究组近年一直致力于阿秒激光高次谐波产生的研究,他们不仅观察到了高次谐波光谱中的复杂结构【Opt. Express 19, 17408 (2011)】,并且首次在国内测量到了单个阿秒激光脉冲 【Chin. Phys. Lett., 30(9), 093201 (2013), Opt. Express 21, 17498 (2013)】。  高次谐波的产生是一种超快超强激光场驱动下的极端非线性现象,可以看作是电子波包和母核的碰撞过程。在强激光场作用下,物质中基态电子波包被电离出母核到自由态后先得到加速,随着激光场的反向振荡,电子波包被拉回和母核碰撞,从而释放出高次谐波。根据自由态的电子在激光场中运动的时间,电子的运动可分为长轨道和短轨道,由于长短轨道的相位匹配条件不一样,在以往的实验中不能同时获得长短轨道产生的高次谐波。最近,该研究组的博士研究生叶蓬在滕浩副研究员、贺新奎副研究员及魏志义研究员的指导下,利用他们自己组建的阿秒激光装置,实现了电子波包在自由态的各条量子轨道上的直接定位,获得了全量子轨道分辨的高次谐波谱,研究结果发表在近期出版的《物理评论快报》【Phy Rev Lett, 113, 073601 (2014)】上。他们的研究结果表明,使用短于2个光振荡周期的驱动激光脉冲,通过调节驱动激光的空间相位分布和原子偶极相位的空间分布,可以令不同量子轨道产生的高次谐波在光谱中完全分开。图1为他们获得的长短轨道对应的高次谐波随驱动激光场载波包络相位CEP的调节变化而变化的实验结果,其中A、B、C对应驱动激光场的不同半周期激发出的高次谐波辐射分布角,所对应的长短轨道随发散角而分开,这样就形成了一个高次谐波谱到量子轨道的全映射图,通过该图也可以找到不同轨道对应的高次谐波光谱。这样通过改变驱动激光的CEP,就实现了利用激光场对长短轨道的控制。图2为长短轨道高次谐波谱的理论模拟与实验结果对比图。  由于驱动激光的时空分布、电子波包的时空演化和物质内部的结构信息通过碰撞过程被传递到高次谐波中,高次谐波的光谱也直接映射了电子的量子轨道信息,因此该研究结果对于深入了解高次谐波光谱所反映的物理图像,促进其在阿秒物理、原子分子物理和凝聚态物理等学科中的应用都有着重要意义。  该工作得到国家重大研究计划(量子调控)项目、自然科学基金项目和中科院科研装备项目的支持。  论文信息:P. Ye, X.-K. He, H. Teng*, M.-J. Zhan, S.-Y. Zhong, W. Zhang, L.-F. Wang, and Z.-Y. Wei*. Full Quantum Trajectories Resolved High-Order Harmonic Generation. Phys. Rev. Lett. 113, 073601 (2014).图1. 全量子轨道分辨高次谐波空间分布随不同载波包络相位变化的关系  图2. 理论模拟与实验测量结果比较图,(a)理论模拟,(b)实验测量
  • 物理所通过光学二次谐波产生揭示磁电耦合演变
    磁电耦合通常存在于多铁性体系中,即铁电有序性可以由磁场调控,同时(反)铁磁有序性可以由电场来调控,因此这一基本物理特性在多场调控、自旋电子学、传感和能源等领域中具有重要的基础研究意义和应用价值。而由于自支撑多铁性氧化物薄膜或二维体系的不稳定性和易碎性,传统方法限制了相关探测和研究,而使这些同时发生的电磁有序和耦合的表征、机制研究及耦合效应调控变得颇具挑战性。   中国科学院物理研究所/北京凝聚态物理国家研究中心光物理重点实验室研究员金奎娟与中科院院士杨国桢课题组,致力于利用光学二次谐波产生(Second Harmonic Generation,SHG)表征及探测以揭示复杂氧化物薄膜的空间反演不对称、极化耦合和铁电有序演变等物理的研究。近年来,金奎娟带领的团队,先后围绕SHG探测异质结表面和界面的空间对称破缺,SHG探测氧化物铁电薄膜的铁电相态演变、具有超高热电性能(与华中科技大学张光祖团队合作)的ClO4分子的结构对称性破缺等开展研究。科研人员自主发展了宽温区、高真空度、多气体环境SHG光学探测平台,与清华大学教授林元华和中科院院士南策文团队合作,原位实时探测了弛豫铁电薄膜Sm-doped BiFeO3-BaTiO3中的极化耦合演变,发现并证实了具有超高储能密度的超顺电态。上述成果为发展更先进的SHG方法研究多铁体系中的磁电耦合奠定了基础。   近日,中国科学院物理研究所/北京凝聚态物理国家研究中心L03组博士研究生徐帅与毕业生王洁素(现为北京量子信息科学研究院副研究员)在金奎娟的指导下,使用脉冲激光沉积法制备了多铁性的外延BiFeO3(BFO)薄膜和自支撑BFO薄膜,并利用外加磁场的宽温区SHG技术研究了多铁性BFO薄膜中的磁电耦合效应。该团队系统地探究了不同应力调控下BFO薄膜中铁电有序和反铁磁有序随着外加磁场和温度的演化,并与物理所白雪冬研究员课题组博士陈潘合作,利用透射电镜给出不同应力调控下薄膜中铁电序的演变。   研究人员定义了一个光学磁电耦合常数——表示通过磁场控制多铁性材料中光致非线性极化的能力。研究显示,应变释放以后,自支撑BFO薄膜中光学磁电耦合常数的绝对值减小,且反铁磁有序和铁电有序均被抑制。研究发现,该光学磁电耦合常数在自支撑BFO薄膜中与在衬底上外延生长的薄膜中具有相同的量级,表明磁电耦合效应对于应变释放具有鲁棒性。研究观察到外延BFO薄膜中Néel温度(反铁磁-顺磁转变温度点)为618 K的一级相变和自支撑BFO薄膜中饱和磁矩,相较于外延BFO薄膜,发生了约7倍的增强,而后者主要归因于与电子自旋-轨道耦合相关的Dzyaloshinskii-Moriya相互作用的变化。进一步,研究发现,自支撑BFO薄膜中强大的磁电耦合效应在室温下仍然存在,预示着其未来在柔性多功能器件中的潜在应用。上述成果展示了SHG方法原位无损探测自支撑等多铁性薄膜或二维体系中铁电及反铁磁有序等物理性质的灵敏性和有效性。   近日,相关研究成果以Magnetoelectric Coupling in Multiferroics Probed by Optical Second Harmonic Generation为题,在线发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。北京大学科研人员参与研究。图1.自支撑BFO薄膜的制备及铁电性能表征图2.宽温区(各向异性)SHG和外加磁场(H)的各向异性SHG测试图3.M-H和外加磁场的SHG测试
  • 跨越世界光电子能谱仪的“巅峰”——访中国科学院物理研究所周兴江研究员
    “也许在不久的将来,借助真空紫外激光角分辨光电子能谱仪,高温超导电性产生的机理将被揭示,高温超导体所表现出的许多奇异的物理性质将得到解释。” 2007年的元旦刚过不久,作为“真空紫外激光角分辨光电子能谱仪”研究项目的负责人,中科院物理研究所周兴江研究员在接受本网工作人员专访时做出如上的表述。国际首创的“火眼金睛” 2006年12月28日,由中科院物理研究所和理化技术研究所联合研制的真空紫外激光角分辨光电子能谱仪通过了中科院主持的鉴定。由龚昌德院士担任组长,包括于渌院士、甘子钊院士、夏建白院士等参加的鉴定组给予了该项目高度的评价,“真空紫外激光角分辨光电子能谱仪的主要性能和技术指标在国际上处于领先地位:它具有超高的分辨率、超高的光束流量,具备了研究体效应的可能性。” 为什么专家鉴定组特别要强调这一系统在‘体效应’研究方面的优势呢?周兴江研究员深入浅出地为笔者进行了解答: “就某些材料而言,其表面电子结构和体电子结构可能并不相同。而对先进材料,人们更关心的主要是它们的体性质。与大家比较熟悉的采用X光电子能谱仪对材料表面元素进行成分或形态分析相比,真空紫外激光的使用,使光电子能谱技术真正测量材料的体性质第一次成为可能,这也是使用真空紫外激光的最显著特点。如果说前者是一种材料表面化学表征工具的话,那么后者则是对材料的物理性质进行基础研究的一种科学手段。” 在真空紫外激光光源被应用之前,传统的同步辐射光源或气体放电光源存在一个长期困扰光电子能谱的问题——也就是所测量的光电子只来自样品表面5~20埃的深度,对于众多先进的材料而言,仅表面几个原子层的电子能否反应材料的体性质?这一直是个未知数。而使用紫外激光,在光电子能量为6.994eV时,预计对应的光电子逃逸深度约为200埃,所以和同步辐射光源或气体放电光源相比,这时所得到的测量结果更代表材料的体性质。 “我是在美国工作期间偶尔读到一篇文献,其中介绍了可采用激光作为光电子能谱仪光源,并且发现文章的作者是中国人。由于我在美国一直是从事角分辨光电子能谱的研究,因此,当读到这篇文献时,激动的心情实在是难以用语言表达。我立刻向我的导师,中科院物理所的赵忠贤院士发去了电子邮件,希望能通过他与文章作者取得联系。”周研究员回忆道。 此外,由于真空紫外激光的使用,使得这一系统还具有一些独特的优势,从而把现有的技术提高到一个新的台阶。如采用的真空紫外激光能量分辨率为0.26meV,整体系统的能量分辨率达到0.68meV,是目前国际上角分辨光电子能谱达到的最佳能量分辨率,比通常的同步辐射光源提高了一个量级。动量分辨率也有显著的提高。真空紫外激光产生的光束流量则比通常的同步辐射光源提高两到三个量级。 周研究员告诉笔者,初步的实验结果表明,该系统工作正常,测量的数据精确,对高温超导体Bi2212的测量,获得了线宽为12meV的能量分布曲线,这是目前所有文献中测量的最窄线宽。对LSCO等高温超导体的初步测量,表明该真空紫外激光角分辨光电子能谱仪适合于开展复杂体系的精细电子结构的研究。人工晶体点亮新一代激光光源 “这一项目是由三个课题组合作完成的:中国科学院理化所陈创天院士领导的研究组发明了一种新型紫外非线性光学晶体——KBBF晶体,这是目前可匹配倍频波长最短的晶体;但由于KBBF晶体具有层状习性,无法按照相位匹配方向切割,不能直接实现六倍频相位匹配。而六倍频深紫外激光对于开拓深紫外光谱学、能谱学等领域的研究具有重要意义。因此,陈创天院士和中国科学院物理所许祖彦院士共同提出了一种棱镜耦合方法,用两个棱镜通过光胶耦合在KBBF晶体两面,将光耦合进晶体实现相位匹配,解决了六倍频匹配问题。这一技术已获得中国、美国、日本三国的发明专利;我本人领导的课题组则负责能谱仪部分的搭建,以及整个系统的整合。” “如果把我们的工作比喻成一部交响乐的话,那么陈、许两位院士所完成的部分应当说是这部交响乐中最华采的乐章。可以这样认为,没有KBBF晶体和棱镜耦合技术就不可能有这样一台超高分辨率光电子能谱仪。”周研究员诚恳地表示。 通过查阅相关资料,笔者了解到,在我国863等相关科技计划支持下,我国自主研制并在国际上首次成功生长出了具有实用价值的器件级KBBF单晶体,成功研制出了由KBBF晶体和CaF2晶体组成的棱镜耦合器件。 具有完全自主知识产权的氟硼酸铍钾(KBBF)连同硼铍酸锶(SBBO)等新型深紫外非线性光学晶体的成功研制,使得深紫外波段的直接倍频输出和宽调谐成为可能。 “这就表明我们可以获得真空紫外光谱区准连续波(QCW)的激光,而这正是使光电子能谱仪的能量分辨率优于1meV的核心技术。”周研究员向笔者道出了其中的关键。 “借助这台激光光电子能谱仪的超高分辨率,我们能够更仔细地了解固体的特性。例如,奇异的超导体在超导态时,超导电子态密度分布的测定需要光电子能谱仪的能量分辨率优于1meV。”周研究员说,“然而,以前的光电子能谱仪其分辨率均达不到1meV,因此,观察不到超导体在超导态时的超导电子态密度的变化。而通过这台仪器,我们就可以直接观察到超导体在超导态时的超导电子态密度的变化。”基础研究与仪器研发 作为一名长期从事高温超导材料和其它先进材料中奇异量子现象的微观机理研究的物理学家,笔者很感兴趣周兴江研究员是如何与仪器研发打上交道的? “我想应该是有两方面的原因:一方面,作为一种尖端基础研究的科学手段,到目前为止紫外光电子能谱仪(UPS)是没有现成的商品化仪器的,这一点和X光电子能谱仪(XPS)有很大不同。一般是由研究者根据自己实际工作的需要,提出设计思路,确定性能指标,然后自己动手采购零部件进行仪器装置的搭建;另一方面,可能和我曾经长期在美国工作,所受到的熏陶有关。我在美国斯坦福大学同步辐射实验室以及美国Berkeley国家实验室工作了七年,在那里,我感觉到一个与国内最大的不同是,他们经常是一年到头在搭建仪器、改造仪器。基础研究不同于一般的技术开发和技术应用,它的特点决定了在这个领域里只有世界第一,没有世界第二。而要想做到第一,一个很重要的条件就是他所使用的科研手段必须要有独到的创新之处,而商品化仪器或装置却很难满足这一点。” 对于基础研究与仪器研发之间的辨证关系,周研究员侃侃而谈。 “作为全国基础研究方面最高等级的科研院所,中国科学院在提高本院科学仪器的研制创新水平方面同样下了很大工夫,中科院综合计划局专门为此设立了‘仪器设备研制和改造专项’。以我们这个项目为例,从2004年10月正式立项到2006年底通过专家组鉴定,共得到这一专项以及中科院‘百人计划’给予的四百余万元专项经费的支持。” 现在,国外许多一流的科研机构对于光电子能谱领域的这一重大科研成果,均表现出了浓厚的兴趣。特别是这一成果中的多项关键技术的专利均掌握在中国人手中,因此国外如果想利用紫外激光光电子能谱进行新型材料基础研究方面的工作,就不得不寻求与中国人的合作。应当说,在精密科学仪器方面,我国长期处于受制于人的尴尬境地,而中科院此次在光电子能谱领域的重大突破,终于使国人长出了一口郁积在胸中多年的闷气。 笔者从周研究员处获悉,2005年3月,日本东京大学借助中国的技术力量制造了一台分辨率为0.36meV的激光光电子能谱仪。 不过周研究员同时指出,“那是一台角积分光电子谱仪,它只能给出费米面附近电子的能量分布而没有动量空间的信息。而我们此次研制成功的是角分辨光电子谱仪,它可以同时获得费米面附近电子的能量和动量分布信息。也就是说后者所能得到的信息远远超过前者。”采访后记: 2006年7月,周兴江研究员毅然放弃了国外优越的生活和工作条件,携家人回到祖国,回到中科院物理所。当笔者与这为已在国际顶级科技期刊《Science》和《Nature》上发表了五篇论文的年青学者聊起此事时,他只是淡淡地一笑,“除了物理所的实验室条件不错,更重要的是这里的科研氛围适合于我,更和我投缘。另外就是对物理所的这份感情,如果不回来觉得对不起物理所前辈们对我的提携。” 确实如此,为了营造一个良好的学术氛围,近些年来,中科院物理所不断规范和完善学术活动。除了定期举办学术论坛、学术讲座外,物理所还有一个非常独特的学术活动——“星期四工作午餐会”,这是物理所举办的一个高层的小型学术沙龙。参加人员为院士、实验室主任、研究组负责人、“百人计划”入选者和杰出青年基金获得者。它采用午餐会的方式,每一位成员都有当主持人的机会,旨在营造更为自由、宽松、和谐的学术氛围和环境,激发、活跃创造性思维,增进情感交流。 目前,一批像周兴江研究员这样40岁上下的科学家已经在物理所挑起了大梁,在物理研究的某些前沿领域,他们中的许多人已经可以在国际学术交流中和国外的同行平等地对话。 “细推物理须行乐,何用浮名绊此生”。能够放眼世界科学前沿,敢于提出“只争一流”的目标并付诸实践,这在基础研究的学科领域,都是需要相当的实力和一定的勇气以及顽强的拼搏精神。从周兴江研究员身上,我们不但感受到我国科技工作者在“挑战第一”过程中表现出的沉稳与自信,也感受到他们用自己的聪明才智报效祖国的拳拳之心。单位地址:北京市中关村南三街8号(100080)
  • 物理所在对称性失配诱导的界面铁磁性研究方面取得进展
    4d钌酸盐(ARuO3)作为复杂氧化物体系中一个重要家族,表现出巡游铁磁性、磁性Weyl费米子、磁单极、非常规超导、非费米液体等一系列丰富多彩的物理性质。SrRuO3作为唯一天然具有铁磁性和强自旋轨道耦合(SOC)的钙钛矿氧化物,成为该体系研究的明星材料。 SrRuO3高达160K的铁磁居里温度和良好的金属导电性使它在自旋电子学器件研究中具有巨大潜力,而由铁磁性和强SOC共存所导致的巨大反常霍尔效应、拓扑霍尔效应甚至量子反常霍尔效应等新奇物性也备受人们关注。然而,在各种4d、5d过渡金属氧化物中,SrRuO3的巡游铁磁性似乎成为一个特例,给以此为基础的新型自旋/轨道器件设计带来局限性。 4d、5d氧化物虽然具有较强的SOC,但由于d轨道能带的扩展导致电子关联性下降,通常难以形成长程磁序。人工设计出更多集强SOC和时间反演对称性破缺(即铁磁性)于一体的新材料体系,是目前自旋电子学研究中高度关注的问题。  CaRuO3的块体材料具有与SrRuO3完全相同的GdFeO3型正交晶体结构和电子构型。但由于Ca离子半径较小,使得CaRuO3的Ru-O-Ru键角仅为148°,远低于SrRuO3的 163°。因此CaRuO3体材料或薄膜材料在整个温区中均表现为顺磁金属性。中国科学院物理研究所研究团队近年来致力于氧化物异质界面物性设计及调控方面的研究工作,希望利用异质界面晶体场、应力场、电荷重组、轨道重构等效应,诱导出完全不存在于体相材料的界面新物态。 近日,团队研究人员等成功利用结构近邻效应在CaRuO3体系中诱导出了长程铁磁序。他们利用脉冲激光沉积技术在衬底基片上交替生长抗磁SrTiO3 (a0a0a0)和顺磁CaRuO3(a-a-c+)两种对称性失配薄膜,获得了高质量的外延超晶格样品;利用界面氧八面体的耦合畸变,成功抑制了CaRuO3层中RuO6八面体的倾斜/旋转。 扫描透射电镜的结果表明,界面处约3个晶胞厚度的CaRuO3层的RuO6八面体的扭转度被大幅度地调控,其Ru-O-Ru键角从~150°增加至~165°,与SrRuO3薄膜中的Ru-O-Ru键角较为接近。这种界面结构耦合的调控必然会带来电子结构的改变。第一性原理计算表明,RuO6八面体的倾斜/旋转的抑制将大幅提高CaRuO3费米面处的态密度【N(EF)】,最终使得界面3个晶胞层CaRuO3层将满足巡游铁磁性的Stoner判据【IN(EF) 1,I为Stoner系数】,由块体的顺磁态进入铁磁有序态。 霍尔输运测量以及宏观磁测量给出了该体系出现界面铁磁相的充分证据,其最高居里温度约为120K,最大饱和磁化强度为~0.7μB/f.u.。各向异性磁电阻测量进一步表面CaRuO3界面铁磁相的磁易轴在面内方向。该工作报道了一种完全基于界面氧八面体耦合畸变设计产生界面铁磁性的示例,特别是构成异质界面的两种氧化物各自均不具备长程磁序,其部分原理也将适用于其他具有类似对称失配的氧化物体系,为探索多功能氧化物材料和器件提供了新思路。   相关成果以Symmetry-mismatch-induced ferromagnetism in the interfacial layers of CaRuO3/SrTiO3 superlattic为题发表在《先进功能材料》 (Advanced Functional Materials)上。相关研究工作得到科学技术部、国家自然科学基金委项目、中科院战略性先导科技专项和中科院重点项目的支持。
  • 当物理材料携手拉曼光谱,科研有哪些新突破?——第五届拉曼光谱网络会议报告推荐
    作为物料材料领域重要的分析技术之一,拉曼光谱,特别是科研拉曼已经成为研究材料物理性质,鉴别材料成分的基本手段,同时也是必不可少的一种有力工具。从成分、结构、到性能……在拉曼光谱技术的助力下,物理与材料领域的研究一直在不断挑战前沿。当然,从一方面来说,拉曼光谱与物理材料也在不断“相互成就”的过程中,随着材料领域的研究越来越深入,其对拉曼光谱仪的性能也会提出多方面的要求,在一定程度上推进着仪器性能的提升。当物理材料携手拉曼光谱技术,能解决哪些关键问题,有哪些最新的研究进展呢?仪器信息网与上海师范大学联合举办的第五届拉曼光谱网络会议(iCRS2023,2023年10月24-25日)中特别开设“拉曼光谱在物理与材料领域的应用” 报告专场。该专场的报告由上海大学尤静林教授主持,届时,东南大学倪振华教授、首都师范大学王培杰教授、中国科学院物理研究所赵继民研究员、河南大学刘仁明教授、山东师范大学张超教授等5位专家将在线分享最近的研究进展。不仅如此,HORIBA、鉴知技术、奥谱天成也会在本专场分享最新的仪器技术和解决方案。部分报告预告如下,点击报名 》》》报告人:东南大学 倪振华教授报告题目:二维材料光谱学与光电器件(点击报名)东南大学物理学院院长、电子科学与工程学院院长倪振华教授,主要研究方向为光电半导体与器件物理,发表SCI论文160余篇,他引17000余次,H-index=61,授权专利10余项,起草国家标准4项,入选科睿唯安“高被引学者”。本次会议中,倪振华教授将分享《二维材料光谱学与光电器件》的主题报告。 二维半导体材料具有独特的电子结构、新颖的物理性质、低温异质集成等特点,已成为新型电子、光电子器件的理想材料。其中,缺陷与表界面态问题是影响材料与器件性能以及异质集成的关键因素。本报告将介绍二维材料缺陷与表界面的光谱学表征、调控与器件应用方面的研究进展,包括:利用拉曼、荧光、超快光谱等谱学手段实现微量缺陷的精确、原位表征,以及对载流子动力学的影响机制分析;通过超低密度等离子体改性技术,实现二维材料发光量子效率提升、单原子层无损刻蚀、结构相变等精准调控;提出了界面态束缚与光增益机制,实现了兼具快速与高灵敏特性的硅基-石墨烯异质集成光电探测器,并且具备光强、位置、轨迹等多参量探测功能。报告人:首都师范大学 王培杰教授报告题目:等离子体纳米颗粒与J聚体及激子的强耦合研究(点击报名)首都师范大学物理系王培杰教授主要研究光与物质强相互作用(等离子体激子耦合),等离子体增强光谱学,二维材料(TMDs)、石墨烯新奇物性及光致发光光谱特性,其中等离子体激子耦合及等离子体增强光谱学研究是重要特色。近年来,王培杰教授正在开展单个空心纳米颗粒同J聚体及二维半导体材料(MXS2, X=Mo,W单层)的激子的强耦合研究。本次会议中,王培杰教授将分享《等离子体纳米颗粒与J聚体及激子的强耦合研究》主题报告,介绍等离子体纳米空心结构的制备及其与J聚体的强耦合,进一步研究了单个空心纳米颗粒与二维半导体材料(MXS2, X=Mo,W单层)激子的强耦合, 同时实现不同共振峰位处激子的双拉比劈裂 ,并探讨相应的产生机理。报告人:中国科学院物理研究所 赵继民研究员报告题目:关联量子材料中的声子瓶颈效应:超快光谱与超快动力学研究(点击报名)中国科学院物理研究所赵继民研究员,主要研究方向为量子材料的超快光谱与超快动力学,在PRL、PNAS、Adv. Mater.、Nano Lett.等期刊发表文章50余篇,为多个期刊编委和青年编委。本次会议中,赵继民研究员将分享《关联量子材料中的声子瓶颈效应:超快光谱与超快动力学研究》的主题报告。报告人:河南大学 刘仁明教授报告题目:等离激元纳腔与确定性单激子的室温强相互作用(点击报名)河南大学物理与电子学院刘仁明教授长期从事超小模体积等离激元纳米结构设计与制备及光-物质强耦合作用量子调控方面的研究,共发表学术论文40余篇,其中以第一或通讯作者在Phys. Rev. Lett.、Nano Lett.、Phys. Rev. B等重要学术期刊发表论文20余篇。本次会议中,刘仁明教授将分享《等离激元纳腔与确定性单激子的室温强相互作用》的主题报告。近年来,河南大学刘仁明与中山大学王雪华教授研究团队合作围绕超小模体积等离激元模式调控及其与单量子系统室温强耦合作用开展了一系列有意义的探索。本次报告的内容包括:1)高效等离激元-单激子室温量子强耦合作用的实现与调控;2)确定性单量子点/单分子激子与等离激元纳腔的室温强耦合作用。以上研究有望为基于单激子强耦合作用的室温量子器件的开发和研究提供一定的理论与实验参考。报告人:山东师范大学 张超教授报告题目:表面增强拉曼光谱调控策略(点击报名)山东师范大学张超教授长期从事表面等离激元增强光谱研究。先后主持国家自然科学基金面上项目、青年项目、应急管理项目、山东省优秀青年基金、国家博士后面上项目及山东省高等学校科技计划项目(重点项目)等。在Opto-Electronic Advances、Nano Energy等领域主流期刊以第一作者或通讯作者发表论文50余篇,其中6篇论文入选ESI“高被引论文”,4篇论文入选ESI“热点论文”。本次会议中,张超教授将分享《表面增强拉曼光谱调控策略》的主题报告。表面增强拉曼光谱技术借助表面等离激元效应,可实现检测极限突破,对等离激元光谱学、凝聚态物理学及表界面科学具有深远意义。不过,由于光谱检测过程中涉及光-表面等离激元纳米材料-探测分子,三者之间的相互作用异常复杂,导致可靠性不高、普适性不强。为了从根本上解决可靠性和普适性问题,张超教授课题组系统分析等离激元耦合机理,构筑高效均一增强热点,进而精准操控分子,使分子位向与增强性能有效关联,最终实现复杂体系痕量分析,推动表面增强拉曼光谱发展成为下一代先进光谱学技术。报告人:HORIBA 周琰博士报告题目:拉曼光谱&TERS在材料研究中的应用(点击报名)HORIBA科学仪器事业部拉曼应用工程师周琰博士,博士期间主要从事非金属材料的表面增强拉曼光谱研究,在Angewandte Chemie International Edition、Nano Research,Analytical Chemistry等期刊发表论文数篇,在材料分析和增强拉曼技术应用领域具有丰富的经验。本次会议中,周琰博士将分享《拉曼光谱&TERS在材料研究中的应用》。报告将介绍HORIBA Scientific拉曼光谱/TERS技术在材料分析领域的解决方案,以及为多种材料成分-结构-性能关系提供微米-纳米级见解的应用案例。报告人:北京鉴知技术有限公司应用工程师/高级工程师 司星宇报告题目:超高灵敏度拉曼光谱仪研究及应用(点击报名)北京鉴知技术有限公司应用工程师/高级工程师司星宇,清华大学与同方威视技术股份有限公司联合培养博士后,十余年拉曼光谱和有机质谱研究经历,目前从事高灵敏度拉曼光谱仪在材料化学和生物制药方向的应用研究。在Anal. Chem.等学术期刊发表学术论文9篇,申请国内发明专利5项,参编学术专著1部。本次报告将介绍鉴知研发团队在超高灵敏度拉曼光谱仪研发及应用方面的最新进展。痕量组分分析要求拉曼光谱仪具备更高的检测灵敏度和更低的背景干扰。鉴知技术通过在激光器、光学探头、光谱仪、光路等多方面的特殊光学设计,实现了ppm量级的超高灵敏度拉曼直接检测,并开展了痕量物质表征、气体原位分析等多项应用研究。报告人:奥谱天成(厦门)光电有限公司总经理 刘鸿飞博士报告题目:国产共聚焦显微拉曼光谱成像仪(点击报名)奥谱天成(厦门)光电有限公司总经理刘鸿飞博士入选俄罗斯自然科学院院士、国家“万人计划”、科技部“创新人才推进计划”,福建省级高层次人才A类,厦门市双百人才计划“A类人才”,是《拉曼光谱仪通用规范》、《基于拉曼光谱技术的危化品检测仪》《近红外地物光谱仪》等国家或行业标准的主要起草人。本次会议中,刘鸿飞博士将分享《国产共聚焦显微拉曼光谱成像仪》的主题报告。 共聚焦显微拉曼光谱有着极高的光谱分辨率和空间分辨率,在生命科学、材料分析、化学成分、分析科学、SERS等领域有广泛应用,拉曼成像技术同时实现微区与宏观的最佳测试,为判定物质成分的空间分布提供一种优秀的分析方法。本报告将主要介绍奥谱天成公司生产的ATR8800型共聚焦显微拉曼光谱成像仪及其在相关领域的应用。为了分享拉曼光谱技术及应用的最新进展,促进各相关单位的交流与合作, 仪器信息网与上海师范大学将于2023年10月24-25日联合举办第五届拉曼光谱网络会议(iCRS2023)。以上仅是部分报告嘉宾的分享预告,更多精彩内容请参加会议页面:https://www.instrument.com.cn/webinar/meetings/icrs2023/
  • 普优米德发布粉体湿度调节仪新品
    粉体平衡:动态流量法测定水活度和水含量 水含量对于粉体的物理性质,诸如流动性和压缩性等都有着重大的影响。所以,测量粉体在一定水含量下的物理性质,对于避免加工、存储和运输过程中出现问题,是非常关键的。 无论采用何种物理性质检测仪器,如粉末流变仪、流动检测仪还是旋转剪切力仪等,都需要粉末在一定的相对湿度达到平衡。一般的方式是,将物料置于恒湿箱,或放置了饱和盐溶液的干燥器中保持一段时间,来确保达到含水量平衡,但是这些传统方法无法显示是否达到平衡,也不会给出任何关于水分吸收量和平衡状态下物料含水率的信息。 粉体湿度调节仪适用于粉末,颗粒或小球型微粒在受控相对湿度条件下的水分平衡。 该粉体湿度调节仪与MHG32湿度发生器相连,提供流速和相对湿度受控的气流。 用于材料体性质分析的样品预处理,例如流变仪、流量计、粘结测试器或流体剪切实验等。 特点:全自动平衡过程;水活度测定;水分吸收量/失去量的计算;可放置于一个温度控制腔内;可持续搅拌粉末的旋转单元; 创新点:1. 该仪器适用于粉体材料的含水率控制:使得粉体样品在一定湿度下达到水分平衡状态,用于众多物理性质检测仪器的前处理工作,如粉末流变仪、流动检测仪还是旋转剪切力仪等,都需要粉末在一定的相对湿度达到平衡。2. 传统方式是,将物料置于恒湿箱,或放置了饱和盐溶液的干燥器中保持一段时间,来确保达到含水量平衡,但是这些传统方法无法显示是否达到平衡,也不会给出任何关于水分吸收量和平衡状态下物料含水率的信息。3. 粉体湿度调节仪采用全自动的方式,将微粒系统(如粉末、颗粒或小球)在受控的相对湿度下调节至水分平衡;同时具有强大的软件功能,能够实时计算样品的水活度和含水率变化,得到样品的吸附解吸等温线。是粉体材料的精确加湿和干燥的利器。特点:质量流量和湿度可设置全自动平衡过程水活度的测定水分吸收/失去量的计算
  • 生物物理所基于光致电子转移扩展荧光蛋白的传感性质
    9月11日,美国化学会杂志JACS 在线发表了中国科学院生物物理研究所王江云研究组的最新研究成果&mdash &mdash 《基因编码非天然氨基酸作为光致电子转移探针扩展荧光蛋白的传感性质》。该研究利用基因密码子扩展技术,实现了在活细胞中编码一系列卤代酪氨酸(3-氯代酪氨酸(ClY)、3,5-二氯代酪氨酸(Cl2Y)、3,5-二氟代酪氨酸(F2Y)、2,3,5-三氟代酪氨酸(F3Y)、2,3,5,6-四氟代酪氨酸(F4Y)),在荧光蛋白中实现了大分子中的光致电子转移现象,基于光致电子转移原理发展了对pH及Mn(III)敏感的荧光传感器。  基因编码和荧光蛋白传感器是生物学研究中的重要技术手段。在过去的几十年中,人们已经开发出多种荧光蛋白传感器,用于监测金属离子,pH值,第二信使和翻译后修饰,这对于解析它们在体内信号转导网络中的作用是至关重要的。这些荧光蛋白传感器通常依赖于荧光共振能量转移或者绿色荧光蛋白GFP荧光团酚基的质子化/去质子化来发挥作用。尽管它们现在已被广泛应用,但是在分析物结合前后,这些荧光蛋白传感器的荧光强度变化通常都在两倍以内。相比之下,光致电子转移(photo-induced electron transfer,简称PET)机制开始越来越广泛地被引用到荧光传感器设计中来,最重要的原因在于分析物结合前后,荧光蛋白传感器可以展现出显著的荧光强度变化(通常可以增强10至100倍)。PET同时也是光合作用中的主要反应,PET过程广泛存在于生物系统中,如细胞色素c氧化酶、核苷酸还原酶、DNA光解酶等,其对磁感应等生物过程也具有非常重要的意义。  该研究将一系列卤族元素取代的酪氨酸通过基因密码子扩展的手段定点插入到荧光蛋白(iLov2)中,发现在非天然氨基酸与荧光蛋白发光中心FMN之间的发生了快速的光致电子转移,并测量到电子转移发生在0.2 纳秒。通过荧光检测科研人员得到了一系列对pH具有不同响应能力的荧光蛋白突变体,利用该传感器他们检测了细胞质的酸化过程,该传感器将适用于研究活细胞中的pH值变化过程。同时科研人员首次得到了可以基因编码的对Mn(III)敏感的荧光蛋白,这将有利于检测与生物和环境相关的Mn(III)的浓度,为筛选高效的锰过氧化物酶提供了平台,为实现高效的木质素降解及生物质转化提供了研究工具。该研究为蛋白动态构象变化研究提供了新的研究手段,为利用合成生物学手段生产可再生能源提供了新的研究思路,为蛋白设计提供了新的工具。  该研究得到科技部国家重点基础研究&ldquo 973&rdquo 计划、国家自然科学基金委员会的资助。   图示:基因编码非天然氨基酸作为光致电子转移探针扩展荧光蛋白的传感性质
  • 薛其坤院士团队:打造低维量子研究的“航母”
    “这就好像一艘航空母舰,把研究低维量子物质需要的各种技术和设备集成在一个平台上。有了它,我们就能攻克在这个领域研究中盲人摸象的问题,从更高、更全面的站位开展探索。”中国科学院院士薛其坤用这样一个比喻,来形容“低维量子物质非平衡态物理性质原位综合实验研究平台”的特点和作用。低维量子物质是目前物理学研究内容最丰富的领域之一,也是凝聚态物理当前最重要的课题之一。对这个领域的深入探索,将直接推动信息和能源等技术的发展和变革。近年来,在国家自然科学基金国家重大科研仪器研制项目的支持下,薛其坤带领团队以解决重大科学问题为目标,发展相应的精密实验技术,打造了世界上第一个“低维量子物质非平衡态物理性质原位综合实验研究平台”,为相关领域的研究打开了新局面。薛其坤(左一)与学生讨论仪器项目实验数据。 项目组供图打造一个前所未有的平台低维量子物质体系包括半导体异质结界面的二维电子气、石墨烯、铜基和铁基超导体、拓扑绝缘体、氧化物界面等。这些体系展现了自然界中最神奇的量子态。对这个领域的探索,很有可能推动信息、清洁能源、电力和精密测量等技术的重大革新。然而,这类体系的研究中除了需要精密的实验手段外,更加棘手的是,它们在物理上可以简化至厚度为1到几个原子层/单位原胞的准二维体系,几乎无法在空气环境下直接进行研究。这对技术手段提出了极高的要求。在此之前,国际上并没有类似的能够全面测量低维量子物质物理性质的系统。要想实现零的突破,就只能摸着石头过河。依托国家自然科学基金国家重大科研仪器研制项目,研究团队将原子尺度上精确控制低维材料生长的技术与高灵敏实验探测技术结合,发展出了原位研究低维量子物质动力学行为的精密尖端实验技术。此前,人们对电子结构的拍照测量大多是静态的。现在,科研人员可以在飞秒水平上拍摄动态过程。“就像从照片到视频的飞跃。”薛其坤对《中国科学报》说,“这让我们可以捕捉一种材料在瞬间发生的变化,特别是从一种性质转化为另一种性质时的变化。比如,我们知道一些材料在特定温度下电阻会突然消失,这个变化发生时材料内部发生了什么,我们现在可以捕捉并研究它。”“一种材料从非超导状态变成超导状态、从非拓扑状态变成拓扑状态,变化过程是非常重要且非常有趣的。”项目组成员、清华大学物理系教授周树云说,“这些过程的研究还处于早期阶段。薛老师带领我们研制的仪器设备,对相关前沿科学问题的探索非常重要。”作为一个“航空母舰”式的平台,“低维量子物质非平衡态物理性质原位综合实验研究平台”将超高真空极低温强磁场原位输运测量技术、超高真空低温原位局域电势测量技术、低温原位微波阻抗显微镜、原位微区和时间分辨角分辨光电子能谱技术等集合在一起,在每个维度上都保证了世界领先的测量精度,达成了“全而精”的目标。“过去,我们对低维量子物质的探索就像盲人摸象,现在我们可以对低维量子物质的不同物理性质进行多方面研究,最终给出一个相对完整的画像。”薛其坤说。迎难而上 不打折扣这个项目于2015年1月立项,执行期5年。按照原计划,应该在2019年12月结项,但他们又延期了近2年。其中一个关键难题,是把对材料物理性质的控制和探索进一步拓展到皮秒甚至飞秒的超快时间领域。“我们在研发过程中,需要产生能量连续可调的深紫外探测光源,而且是一个在时间上非常窄的超短脉冲,脉冲的宽度要小于100飞秒。”周树云对《中国科学报》说,“为此我们需要采用一种国产KBBF晶体,但这种晶体产生的光源时域很宽,不能直接用到实验中,所以我们花了几年时间攻关,把光源压缩为一个特别短的脉冲。”其实,早在项目进行到第4年的时候,他们的工作成果就已经很接近目标了。但这个数值总在一百零几上徘徊,并没有真正进入100飞秒以内。“当时几位老师感觉,这个数字基本已经到头了,再往前突破的余地并不是很大。而且,达到这个水平,测量效果还不错。这个时候,一些畏难情绪和‘差不多’心态出现了。”薛其坤回忆道。但此时,基金委的监理专家组却坚持必须达到100飞秒以内。在这种高标准、严要求下,周树云等人迎难而上,超额完成任务,最后达到了惊人的“84飞秒以内”。“可见基金委设立的监理专家组,从科学和技术上给予指导和监督是非常有必要的。”薛其坤说,“专家组中的一些成员,平时也是关系很好的同行和朋友,但在这个时候,他们铁面无私、严格要求,敦促我们在技术上实现了飞跃和突破。”薛其坤认为,这一生动案例体现了国家自然科学基金委如何从机制设计上保证项目的质量。时间分辨角分辨率光电子能谱既打造成果也培育人才国家重大科研仪器的研制不仅需要前沿的理论知识、精湛的技术水平,还需要不同团队之间密切的协作。这个项目汇集了清华大学和中科院武汉物理与数学研究所的至少5个独立课题组。不同领域的科学家相互协作,产生了非常好的交流碰撞。“薛其坤老师是一位经验丰富,也很有远见的科学家。他把我们大家集结在一起,让我们每个人都做成了过去做不到的事情。”周树云说,“不管是老师还是学生,在这个过程中都获益匪浅。目前在清华大学物理系做博士后的鲍昌华,曾经在项目核心问题的解决中作出重要贡献。他还凭借这些成绩,拿到了清华大学博士研究生特等奖学金,这是作为清华学子的最高荣誉之一。“这个项目贯穿了我整个博士阶段的学习和成长,对我来说具有非常重要的意义。”鲍昌华说。在项目研制中,他曾遇到很多困难。比如在寻找转瞬即逝的超快电子信号时,需要调节两束飞秒激光不仅在空间上实现微米级精度的完美重合,还要同时保证它们在万亿分之一秒的超快时间尺度上重合,非常具有挑战性。鲍昌华尝试了很久,一直无法找到这一信号。后来在老师的建议下,他从根本的物理原理出发,把每个细节都做到极致,最终成功找到了信号,拍出了第一段电子结构在万亿分之一秒时间尺度上的动态“电影”。“这个项目的很多关键技术指标都处于国际领先水平,对我们每个人来说,都是很大的挑战,也是成长的机遇。”他说,“我在这个项目中,完成了从一名学生到一名基础科学研究工作者的蜕变。”“国家重大科研仪器研制项目支持的这种联合攻关机制,更好地磨炼了科研人员的本领,锻造了他们直面挑战的精神。”薛其坤说,“在这个过程中,我们不仅打造出了世界上唯一的实验平台,也培养出了一批优秀的年轻科研工作者。”《中国科学报》:当前科研范式正在发生深刻变革,这一点在综合实验研究平台的研发上得到了怎样的体现?薛其坤:科研范式的变革取决于不同时期的科学发展阶段。我们当前的使命是努力实现高水平科技自立自强。我们在这个过程中遇到的一个突出问题,就是科学仪器自主化程度不够,特别是高端仪器比较依赖进口。国家自然科学基金国家重大科研仪器研制项目,支持高端科研仪器研发,这本身就是科研范式变革中的应有之义。而且,在这样的项目组织下,不同团队、不同领域的人才能够更有效地联合在一起,协同攻坚克难,这也是一种新的范式。《中国科学报》:未来对于综合实验平台的应用与推广,团队有什么计划与期待?薛其坤:第一,按照国家、基金委的要求,只要是省级单位、兄弟级部门需要的某些技术,我们会在国家允许的知识产权范围内,毫无保留地服务国家其他部门、单位和个人。第二,我们现在有很多想法,除了自己的团队利用好这些设备器材外,我们乐于与其他个人、单位甚至国外同行,针对一些重大科学问题开展合作。
  • TA仪器免费2011技术讲座邀请函
    该系列讲座将介绍来自TA仪器强大的最新技术。在过去的12个月里,TA仪器研发或并购了在热分析、热物性测量、流变系统、微量热领域多项新技术。欢迎您光临并了解我们最新仪器如何帮您进行更好的测量,如何使用最新的测量方法以及如何使您的实验室更具生产力!热分析上午第一节:热分析技术及准确定量方法该部分将介绍进行准确定量热分析实验的技术和方法。其中将包括介绍和讨论热分析中使用的各 种定量标准,如测量热流,热焓,热容,重量变化。同时将介绍和讨论优化与验证这些测量仪器性能 的技术和建议。Discovery系列产品的特定应用可以体现精确热分析测量。日程8:30-9:15 测量和量化热分析仪器性能9:15-10:00 Discovery 系列: 提高热分析准确性的技术和方法10:00-10:15 茶歇10:15-11:15 Discovery 系列:热分析方法的定量应用11:15-11:45 Discovery 系列:精确数据分析和测试结果管理的解决方案11:45-12:00 讨论下午第二节:热物理性质的测量:技术和应用热物理性质,可以简单定义为不改变材料化学特性条件下,材料随温度变化的性质。更确切地说,这些性 质包括导热和扩散,热容和热膨胀性质。在该部分,我们将介绍专门设计用来测量这些热物性的技术, 并讨论如何在多种材料的表征应用上使用这些技术。日程1:15-2:00 热物理性质测量介绍2:00-2:45 热物理性质仪器和技术2:45-3:00 茶歇3:00-4:00 使用热物性仪器解决材料表征问题流变上午第一节:流变仪的新技术,新设计和强大附件流变分会场将介绍TA仪器公司最新的旋转流变仪和固体流变仪。作为全球流变技术的领导者,TA仪器最 新推出了Discovery系列流变仪(DHR)。哪些创新技术使DHR流变仪傲视群雄呢?这些创新有已经获得 专利的拖杯马达,第二代磁悬浮轴承,力再平衡传感器和即将获得专利的双读取头的光学编码器,真实位 置传感器等最新技术。因此,DHR流变仪具有卓越的性能和领先的技术指标,还可进行直接应变控制或直 接应力控制测试和精确的法向力测试。RSA-G2是TA仪器最新推出的固体流变仪。多种多样的表征手段和测试附件的组合应用将帮助您更加全面 深入的了解材料的结构与性能。日程8:30-10:00 流变仪、新技术和附件:第一部分10:00-10:15 茶歇10:15-11:45 流变仪、新技术和附件:第二部分11:45 午餐微量热下午第二节:微量热技术进展及数据采集和准确的定量分析方法将介绍最新的等温滴定量热(ITC),差示扫描量热(DSC)和等温量热技术。此次演讲将针对仪器和各 种实验设计和数据采集方法进行介绍与讨论。同时将介绍优化和验证仪器性能的技巧和建议。还将使用Nano Analyzer和TAM Assistant分析软件来演 示用在ITC、DSC和等温量热数据分析上的专用工具和技巧。日程1:00-2:00 Nano ITC, Nano DSC和TAMIII介绍2:00-3:00 保证仪器最佳性能的测量方法3:00-3:15 茶歇3:15-4:30 ITC 和DSC 使用技巧和等温量热数据分析地点中国上海9/20/11上海光大国际大酒店1楼光韵厅7号厅和8号厅(上海市徐汇区漕宝路66号)杭州9/21/11杭州梅地亚宾馆5楼5A和5C会议室(杭州市上城区长生路18号)南京9/22/11南京晶丽大酒店B1层行政厅和晶丽厅(南京市鼓楼区北京西路7号)武汉9/23/11武汉珞珈山国际大酒店3楼多功能厅2号厅(武汉市洪山区武珞路723号)北京10/26/ 11北京外国专家大厦2楼第一会议室/第五会议室(北京市朝阳区北四环中路华严北里8号院)沈阳10/28/11沈阳国际皇冠假日酒店三楼米兰厅(沈阳市黄姑区黄河南大街88号)西安10/31/11西安市西安宾馆2楼芙蓉苑(西安市长安路北段58号)成都11/02/11成都加州花园酒店八楼锦江厅(成都市金牛区沙湾路258号)重庆11/04/11重庆万友康年大酒店1楼琥珀厅(重庆市渝中区大坪长江二路77号)该系列交流会全程免费,请尽快报名参加!座位有限,先到先得!详情请垂询:TA仪器市场部王小姐 电话:021-34182128 / 传真:021-64951999 / Email:vwang@tainstruments.com或线上报名http://www.taias.com/calendar/201109/1/index.asp
  • 埃及发布玩具安全的强制性标准
    2010年5月4日,埃及标准化与质量组织发布G/TBT/N/EGY/16号通报,宣布关于“玩具安全”的标准。按规定,玩具必须符合涉及机械和物理性质、可燃性和某些元素迁移的安全要求。主要内容如下:  第1部分规定玩具的机械和物理性质的特殊要求和测试方法   第2部分覆盖禁止在所有玩具中使用的易燃材料,以及涉及在遇火时某些玩具的可燃性要求   第3部分规定从玩具原料和玩具部件中迁移元素锑、砷、钡、镉、铬、铅、汞和硒的特殊要求和测试方法。  这些标准是强制性的,并且遵守了欧洲标准(EN)和EN 71-1、2、3。该通报的批准和生效日期待定,通报评议截止日期自分发日期起60天。
  • QD中国首套新一代X射线单晶定向系统顺利落户复旦大学,15s高效测试!
    众所周知,单晶材料由于原子在各个方向的排列不同,往往表现出各向异性的物理性质。因此,对单晶样品进行晶体定向,是深刻理解材料各向异性物理性质的重要步骤。近期,我们非常荣幸将QD中国首套s-Laue单晶定向系统安装于复旦大学物理学系,我们期待该系统的引入能助力用户李世燕教授在量子材料领域的科研工作! 日本Pulstec公司研发推出的新一代X射线单晶定向系统(型号:s-Laue),采用新型的圆形全二维面探测器技术,使得设备的构造大大简化,具有操作简单、测试效率高(典型X射线曝光时间仅15秒)、占地面积小等诸多技术特色。同时,s-Laue可提供台式和便携式(待发布)两种类型的单晶定向系统,台式机可满足实验室对小样品进行单晶定向的需求,便携式设备可以用于大型零件的现场晶体定向应用需求。 Quantum Design中国工程师安装调试设备复旦大学物理学系用户操作设备 复旦大学物理学系用户表征得到的Laue衍射图片相关产品1、新一代X射线单晶定向系统-s-Lauehttps://www.instrument.com.cn/netshow/SH100980/C514004.htm
  • 他们,正用科学默默改变世界——2016马丁· 伍德爵士中国物理科学奖获奖者访谈录
    p  strong仪器信息网讯/strong 2016年11月16日上午,在第十五届全国低温物理学术研讨会的开幕式上,2016马丁· 伍德爵士中国物理科学奖获奖者公布,并举行了颁奖仪式。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201611/noimg/be16c535-57c7-4b33-8fe7-34927d09fd10.jpg" title="1.jpg"//pp  马丁· 伍德爵士中国物理科学奖由牛津仪器在2013年设立,旨在发掘和奖励国内年轻科学家在低温或强磁场环境下做出的突破性研究工作。该奖项每2年颁布一次,奖励1到3名获奖者。2016年奖项经过评奖委员会的严格评审,确定了最终3位获奖者——北京大学量子材料科学中心林熙副教授、中国科学院物理研究所程金光研究员,以及复旦大学物理系张远波教授。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201611/insimg/af9a6abe-4670-4cd3-99a6-3d3e838d3fb5.jpg" title="2.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong颁奖现场/strong/span/pp style="text-align: left "span style="color: rgb(0, 112, 192) "  (左一:马丁· 伍德爵士中国奖评委会秘书长雒建林研究员,左二:牛津仪器公司的中国区总经理张鹏,左三:韶关学院校长廖益,左四:张裕恒院士,右一:中国物理学会低温物理专业委员会主任吕力研究员,右二:张远波教授,右三:程金光研究员,右四:林熙副教授学生)/span/pp  为了揭开这一“高大上”低温物理学科的神秘面纱,大会茶歇间隙,仪器信息网编辑现场采访了此次三位获奖人中的程金光研究员、张远波教授,以及设立此奖项的牛津仪器公司的中国区总经理张鹏先生。/pp span style="color: rgb(112, 48, 160) "strong “我们关注于极端条件下物质中丰富的物理性质,国家仪器设备共享提供了便利”/strong/span/pp  当谈及低温物理学与传统学科的区别时,张远波讲到,“就拿我所研究的石墨烯材料为例,我们关注的不是其自然环境条件下的性能,而是极端条件下材料表现出的丰富物理性能,比如1K低温下的量子霍尔效应等。”接着,程金光补充说,“另外,我们用到的设备与大部分高校院所使用的常规手段不同,我们对设备追求压力、温度、磁场等条件的极端性。比如我们有的实验需要设备提供十几万个大气压的高压(相当于地表以下500公里处的压强),在此条件下原子间距离改变,物质物理性能可能发生变化,比如由绝缘体变成超导体等。”/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201611/insimg/f856a478-1510-4123-a7eb-591ff1136f04.jpg" title="3.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong采访现场/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "(左一:牛津仪器纳米科学部亚太区副总裁李俊云博士,左二:程金光研究员,/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "左三:张远波教授)/span/pp  获得极端条件离不开高端的低温、强磁场等设备,这时,拥有相关设备就会为科研带来很大便利。张远波表示,对于他们而言,常规测量时,实验室中牛津仪器等厂商提供的商业低温设备就可以满足需求。如果需要极端条件,他们可以去国家实验室(如美国国家强磁场实验室)、刚建成的合肥和武汉强磁场实验室的共享平台进行实验。/pp  程金光也表示,对于一些需要低温、强磁场等集成的多极端条件时,很难在单独的实验室实现。同时还透露,目前在北京怀柔有一个投资十几亿的综合极端实验条件研究中心已经国家立项,该平台也将共享,将对广大科研者带来很大便利。/pp  strongspan style="color: rgb(112, 48, 160) "高端仪器设备生产新模式:科研用户发现需求,与厂商合作设计,实现共赢/span/strong/pp  由于低温物理学相关设备的需求具有差异性,商业化的设备并不多,许多设备都是科研用户从设备厂商定制的。张远波以自身科研遇到的问题为例讲到,他们针对研究中二维材料不稳定性、易损的问题,设计出在真空环境条件下进行实验的思路,但是市面上是还没有他们需要的高真空设备。于是他们便开始尝试自己搭建设备,拟验证思路可行后,再以与设备厂商合作的方式来实现共赢。在一旁的牛津仪器纳米科学部亚太区副总裁李俊云博士闻此,也表示,“我们也得到其它科学家的类似需求,正在做相关研究工作,希望能与张老师进一步合作”,随后还表示,“仪器厂商需要与科学家们保持密切交流,以确保未来的仪器设备最符合科学研究的需求,这也是公司长远发展的根本”。/pp  span style="color: rgb(112, 48, 160) "strong中国低温物理学:蓬勃发展、以点带面/strong/span/pp  关于当下中国低温物理学的发展现状,程金光表示,“正如张远波刚才在获奖感言中所说,中国低温物理正在蓬勃发展。近来,国家在物理科学科研方面投入大量人力物力,物力方面国家投入大量资金配置稀释制冷机等相关设备 人力方面,国家实施多项计划引进人才,大批人才回归,科研队伍不断壮大。另一方面,我国目前也已经有很多领域处于世界领先。”/pp  张远波也表示赞同,同时认为:“科研最重要是人才,随着人们重仪器轻人才观念的改变,人才得到了更大重视。从而,在设备硬件与人才软件兼具的大好环境之下,我国物理学科的发展已开始呈现出以点带面的蓬勃发展。”/pp  span style="color: rgb(112, 48, 160) "strong他们,正用科学默默改变世界/strong/span/pp  此次已是马丁· 伍德爵士中国物理科学奖第三届授奖,对于三届以来评选过程的最大变化,张鹏先生表示,“随着中国物理科学的发展与马丁?伍德爵士中国物理科学奖知名度的提升,参选人才可谓才俊辈出,整体水平也大大提升,在很难取舍的众多优秀参选人中我们也很自豪将此次获奖人增至三位。”/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201611/insimg/17ffced9-e87a-4495-bc57-d9f75ad95eee.jpg" title="4.jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong采访现场/strong/span/pp style="text-align: center "span style="color: rgb(0, 112, 192) "  (右:牛津仪器公司的中国区总经理张鹏)/span/pp  科研的发展离不开像林熙、程金光、张远波这样的青年学者。如张远波在获奖感言中所说:“我只是众多青年里面一个小小的代表”,正是这些“小小代表”筑起了中国物理科学发展的希望。最后以张鹏先生大会发言中的一句话结束,“改变世界的方式有很多种,有的人通过政治,有的人通过商业,有的人通过艺术,也有的人通过文化,但我觉得对世界改变贡献最大的是来自科学,因为我们举目所见的一切几乎都是科学的成功。”/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201611/insimg/623d6088-607f-4250-9e46-f6da086fa949.jpg" title="5 (2).jpg"//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strong全体合影留念/strong/span/phr style="border:3 double #987cb9" color="#987cb9" size="3" width="80%"/pbr//pp  您在使用牛津仪器的设备吗?欢迎参加牛津仪器的原创影像和应用案例征集大赛。/pp style="text-align: center"img style="width: 450px height: 153px " src="http://img1.17img.cn/17img/images/201611/insimg/35f55b27-958f-4fd5-9534-96ebdcdb76a3.jpg" title="0.jpg" height="153" hspace="0" border="0" vspace="0" width="450"//pp  您可以分享和牛津仪器设备的合照,也可以分享采用牛津仪器设备做出的漂亮实验结果照片,还可以提交做出的应用案例。/pp  电脑、手机均可参与,奖品丰厚,来投稿吧!/pp span style="color: rgb(0, 0, 0) " /spana style="text-decoration: underline color: rgb(192, 0, 0) " title="" target="_self" href="http://oishow.instrument.com.cn"span style="color: rgb(192, 0, 0) "strong点击这里,立即参加“秀一秀”赢大奖/strong/span/a/p
  • 长春光机所在多色拉曼微流控稀有细胞分选研究获得进展
    近期,长春光机所吴一辉研究员团队在国际顶级期刊《Biosensors and Bioelectronics》以“Multistage microfluidic cell sorting method and chip based on size and stiffness”为题发表了研究论文,报道了他们在基于微流控芯片的肿瘤细胞无标记分选领域的重要研究进展。   这项研究建立了细胞在侧向位移芯片内的流体动力学模型,定量分析了基于细胞体积、杨氏模量等物理参数下的微流控芯片无标记高通量、无堵塞分选方法,优化了芯片阵列,研制出了一种多物理参数分级分选的微流控阵列分选芯片,解决了高通量与高准确性的矛盾;这项研究将细胞刚度有效地纳入分类依据,给出了一种控制流体流速使癌细胞与正常细胞间微小刚度差得以在微流动中体现和放大的细胞分离方法和理论依据,构建了从外周血细胞中捕获和分析肿瘤细胞的分选分析系统,并进行了实际临床血液样本测试,这是目前报道的全微流体无标记CTCs较为完整的分选分析系统,结合拉曼光谱分析系统,该系统有可能发展成一站式无标记高性能CTCs分类分析设备。这项工作为利用多种物理性质来分选CTCs提供了一个新的视角,这些物理性质的组合使用可以提高分离特异性并减少细胞异质性的影响。图1 多级侧向位移微流控分选及拉曼光谱无标分析系统研究人员使用液滴形微柱新开发了临界尺寸为8μm和13μm的两级阵列DLD芯片,该芯片结构简单,重复性好,对CTCs的分选纯度为98.25±2.48%,回收效率为96.30±2.10%,通量高达2mL/min,性能达到国际先进水平。该文研究的相关内容是在国家自然科学基金国家重大科研仪器研制项目《多色拉曼光谱微流控芯片高通量稀有细胞分选系统》的支持下,联合清华大学、吉林大学团队于今年3月完成。
  • MPMS协助北大谢灿课题组发现磁感应蛋白:或揭开“第六感”之谜
    2015年11月16日,北京大学生命科学学院的谢灿课题组在Nature Materials(Nature Materials 15, 217–226 (2016) | doi:10.1038/nmat4484)杂志在线发表论文,次报道了一个全新的磁受体蛋白(MagR),该突破性进展或将揭开被称为生物“六感”的磁觉之谜,并推动整个生物磁感受能力研究领域的发展。 在该文章中作者提出了一个基于蛋白质的生物指南针模型(Biocompass model)。该模型认为,存在一个铁结合蛋白作为磁感应受体(Magnetoreceptor,MagR),该蛋白通过线性多聚化组装,形成了一个棒状的蛋白质复合物(Magnetosensor),就像一个小磁棒一样有南北,通过MPMS综合物性测量系统对该MagR受体的微弱磁性进行了检测。蛋白质的生物指南针模型(图片来源:Siying Qin et al. Nature Materials 15, 217–226 (2016)) 生物物理学和物理学实验证明,MagR蛋白复合物具有很明显的内禀磁矩,能通过磁场在实验室富集和纯化得到。作者不仅从物理性质上测量了该蛋白在溶液状态下的磁性特征,还通过电镜观察到MagR蛋白质复合物能感应到微弱的地球磁场(在北京大致为0.4高斯),并沿着地球磁场排列。人工增强磁场强度可以导致这种排列更加有序。实验中也观测到了蛋白质晶体呈现强的磁性,能明显被铁磁物质吸引,当外界磁场突然反向时,蛋白质棒状复合物会发生180° 跳转。作者推测该蛋白质复合物磁性的物理基础可能基于MagR蛋白在棒状多聚复合物的轴线上铁原子的有序排列以及在由铁硫簇形成的平行“铁环”中可能存在环形电流。在MPMS磁学性质测量系统上测得的MagR磁学数据(图片来源:Siying Qin et al. Nature Materials 15, 217–226 (2016)) 值得一提的是该MagR的其微弱亚铁磁性在Quantum Design MPMS XL-1 1T的主机系统上检测出来,给磁感应蛋白的理论提供了强有力的实验数据支撑。MPMS磁学性质测量系统为此次生物医学的突破做出了巨大贡献,同时也意味着MPMS磁学测量系统的将拓展到更多更广泛的应用领域,为广大科研工作者提供更多帮助。相关产品MPMS3-新一代磁学测量系统 :http://www.instrument.com.cn/netshow/SH100980/C17089.htm关于Quantum Design Quantum Design是的科研设备制造商和仪器分销商,于1982年创建于美国加州圣迭戈。公司生产的 SQUID 磁学测量系统 (MPMS) 和材料综合物理性质测量系统 (PPMS) 已经成为公认的测量平台,广泛的分布于上几乎所有材料、物理、化学、纳米等研究领域的实验室。2007年,Quantum Design并购了欧洲大的仪器分销商LOT公司,现已成为著名的科学仪器领域的跨国公司。目前公司拥有分布于英国、美国、法国、德国、巴西、印度,日本和中国等地区的数十个分公司和办事处,业务遍及全球一百多个和地区。中国地区是Quantum Design公司活跃的市场,公司在北京、上海和广州设有分公司或办事处。几十年来,公司与中国的科研和教育领域的合作有成效,为中国科研的进步提供了先进的设备以及高质量的服务。
  • 科学岛团队在高压调控CrSiTe3结构和层间耦合方面获新进展
    近期,中科院合肥物质院固体所计算物理与量子材料研究部丁俊峰团队联合南开大学王维华教授等,实现了二维磁性材料CrSiTe3的高压结构及层间耦合调控,并利用超低频高压拉曼光谱阐明了其高压相的空间群信息。相关结果发表在Journal of Physical Chemistry Letters上。   二维磁性材料因具有高度可调的物理性质以及在自旋电子学中的潜在应用价值,近年来引起了研究者的广泛关注。二维层状材料由于层间只靠微弱的范德瓦耳斯力(vdW)作用连接, 可通过机械剥离法将其减薄至原子级厚度。具有磁各向异性的二维磁性材料, 其物理性质与层数、堆叠形式等密切相关且可被多种外场调控。其中,CrSiTe3作为一种二维铁磁半导体,由 CrTe6 八面体单元形成六角蜂窝晶格, 剥离后仍能保持长程磁序等诸多优异的物理性能,同时也是一种带隙可调的拓扑磁性材料。虽然,已有研究发现了CrSiTe3中压致超导电性和磁性的增强,但是其高压结构尚不清楚,这不利于分析和理解压力诱导的新奇现象和机制。为了解决这一难题,研究团队结合超低频高压拉曼光谱实验和第一性原理计算,明确了高压下CrSiTe3的结构。   研究团队采用机械剥离法获得了少层的CrSiTe3薄片,并将其置于金刚石对顶砧装置(DAC)中进行高压实验,利用超低频高压拉曼光谱技术系统地研究了二维层状铁磁半导体CrSiTe3的压力诱导结构相变。该实验首次在CrSiTe3中中观测到位于42.1 cm-1左右的层间呼吸模式。结合理论计算,发现CrSiTe3在大约5.0 GPa到8.2 GPa之间经历了从R-3到R3空间群的结构相变,并伴随着居里温度(Tc)的显著提高。该研究明确了CrSiTe3的高压结构,提供了一种调节及探测二维vdW材料层间耦合的有效途径,并表明层间耦合的增强可以显著提高CrSiTe3的铁磁性,这有助于进一步理解CrSiTe3的构效关系,为设计具有高性能二维vdW铁磁体提供了指导。   合肥物质院丁俊峰研究员、博士生程鹏和南开大学王维华教授为论文共同通讯作者,硕士生潘孝美和博士生辛保娟为论文共同第一作者。上述工作得到了国家自然科学基金,中科院创新项目和山西省科技创新团队专项资金的支持。图1. CrSiTe3分别在常压下和高压下的晶体结构图和拉曼光谱图。图2. (a)室温下CrSiTe3的高压拉曼光谱图; (b)压力下的拉曼光谱强度变化三维图,其中LP代表低压相,HP代表高压相;(c) 压力下的拉曼峰位置变化图; (d) 压力下的拉曼峰强度变化图;(e) 压力下的拉曼峰半峰宽(FWHM)变化图。
  • 日立TA7000系统提供完美的热分析解决方案
    热分析是指在程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术总称,它主要用于定性、定量表征材料的热性能、物理性能、机械性能以及稳定性等。因此,热分析技术被广泛应用于物理、化学、石油、冶金、地质、建材、纤维、橡胶、高分子、食品、药品、生物化学等各个领域。根据测定的物理性质的不同,热分析方法有很多种,其中应用最为广泛的热分析方法是以下五种:差示扫描量热分析(DSC),差热分析(DTA),热重分析(TG),热机械分析(TMA),动态热机械分析(DMA)。从热分析到粘弹性测试,日立拥有丰富的产品线,为热性能的评价提供完美的解决方案。下面就随我来了解一下日立TA7000系列热分析产品线: 通常,热分析过程由于把样品放置在加热炉内部,看不到样品变化的状态,通过热分析曲线只能凭经验判断或者想象:物质是发生了玻璃化转变、结晶化、熔融或者分解等现象。日立热分析独有的新技术:实时观察(Real View TA)技术,通过采用CDD摄像头进行光学观察,使目前只能想象的世界变得可视化。 日立分别在DSC,STA和TMA上面配备了实时观测系统。日立热分析产品自1974年在日本国内实现了产品化以来,持续受到广大客户的青睐。我们将一如既往地继续为客户提供可信赖地热分析仪器。 关于日立TA7000系列热分析仪详情,请见:日立 DSC7020/DSC7000X差示扫描热量仪https://www.instrument.com.cn/netshow/SH102446/C313721.htm日立 STA7000Series 热重-差热同步分析仪https://www.instrument.com.cn/netshow/SH102446/C313727.htm日立 TMA7000Series 热机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313737.htm日立 DMA7100 动态机械分析仪https://www.instrument.com.cn/netshow/SH102446/C313739.htm关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注日立高新官方网站:http://www.hitachi-hightech.com/cn/
  • 可用于预测分子特性!人工智能公司DeepMind开发出化学界最有价值的技术之一
    原文作者:Davide Castelvecchi机器学习算法利用电子密度预测材料性质伦敦人工智能公司DeepMind的科学家领导的一个团队开发了一种机器学习模型,该模型能通过预测分子中电子的分布来预测分子的特性。这种方法发表于12月10日的《科学》杂志上[1],它可以比现有技术更准确地计算一些分子的性质。人工智能预测单个分子中电子的分布(示意图),并利用它来计算物理性质。来源:DeepMind维也纳大学的材料科学家Anatole von Lilienfeld说,“能做到如此精确是一项壮举。”波兰罗兹理工大学的计算化学家Katarzyna Pernal说,这篇论文是“一项扎实的工作”。但她补充说,在能为计算化学家所用之前,机器学习模型还有很长的路要走。预测性质原则上,材料和分子的结构完全由量子力学决定,特别是由支配电子波函数行为的薛定谔方程(Schrödinger equation)决定。这些数学工具能描述特定电子在特定空间位置出现的概率。但是DeepMind的物理学家James Kirkpatrick说,因为所有的电子之间都存在相互作用,所以根据这样的第一性原理(first principle)计算结构或分子轨道异常棘手,仅能对最简单的分子进行计算,比如苯。为了避开这个问题,那些依赖新分子的发现或开发的研究人员——从药理学家到电池工程师,几十年来一直使用一套被称为密度泛函理论(DFT)的技术来预测分子的物理性质。该理论并不模拟单个电子,而是计算电子负电荷在分子中的总体分布。“DFT着眼于平均电荷密度,所以它不知道单个电子的状态。”Kirkpatrick说。物质的大多数性质可以根据该密度轻易地计算出来。自20世纪60年代DFT建立以来,它已经成为物理科学中应用最广泛的技术之一:2014年,《自然》新闻团队的一项调查发现,在被引次数最多的100篇论文中,有12篇是关于DFT的。材料性质的现代数据库,如Materials Project,很大程度上由DFT计算的数据组成。但是这种方法有局限性,而且现在已经知道它会对某些类型的分子给出错误的结果,甚至包括氯化钠这样简单的分子。尽管DFT已经比基于基本量子理论的计算要高效得多,但它们仍然很耗时,并且通常需要超级计算机。因此,在过去的十年里,理论化学家越来越多地开始用机器学习进行实验,特别是用在材料的化学反应活性或导热能力等性质的研究上。理想问题DeepMind团队可能做出了迄今为止最具野心的尝试,他们利用人工智能来计算电子密度,这是DFT计算的最终结果。“在某种程度上这属于理想的机器学习问题:你知道答案,但不知道想用什么计算公式。”理论化学家Aron Cohen说。他长期从事DFT研究,目前在DeepMind工作。该团队用薛定谔方程导出的1161个精确解数据训练了一个人工神经网络。为了提高其准确性,他们还将一些已知的物理定律硬连接进了神经网络中。von Lilienfeld说,他们随后用一组DFT计算常用的标准分子测试了训练好的系统,结果很出色。“这是研究群体目前能得到的最好结果了,而他们大获全胜。”他说。von Lilienfeld补充说,机器学习有个优点是,尽管训练模型需要海量的计算能力,但这个过程只要做一次,之后就能在普通笔记本电脑进行独立的预测运算。与每次都从头开始计算相比,机器学习模型大大降低了成本和碳足迹。Kirkpatrick和Cohen说,DeepMind正在发布他们训练好的系统供任何人使用。作者表示,目前该模型主要适用于分子,而不适用于材料的晶体结构计算,但之后的版本也可能会适用于材料。参考文献:1. Kirkpatrick, J. et al. Science374, 1385–1389 (2021).原文以DeepMind AI tackles one of chemistry’s most valuable techniques为标题发表在2021年12月10日《自然》的新闻版块上
  • 使用电动移液器时遇到问题?来看看是不是这些原因
    电动移液器是科研、生物科技、制药和其他实验室中常见的手持设备,用于将的液体量从一个容器转移到另一个容器。它的模式大致分为以下几类:(1)样品混匀模式。(2)反向吸液模式:该模式专为吸高黏度,高蒸汽压或发泡液体所设计。(3)电泳上样模式:以设定的移液量会以较快可调的速度进行吸液,然后以较慢的速度进行排液,以免扩散。该模式在1000ul量程移液器时。(4)分级移取模式:专为连续移取液体所设计,电动移液器根据设定的移液次数和移液量进行连续移取液体。在使用过程中,可能会出现一些误差或不准确的情况,这些误差可能会影响到实验结果的准确性和可靠性。下面介绍几种可能的影响因素:1.校准问题电动移液器的精度和准确性取决于其内部的校准系统。如果校准不当或者长时间未进行校准,就会导致移液器的读数不准确。因此,定期对电动移液器进行校准是非常重要的。2.操作不当使用电动移液器时,需要遵循正确的操怍步骤和技巧。例如,在吸液和排液过程中,需要保持移液器的垂直度和稳定度 在吸液和排液时,需要控制好速度和力度等。如果操作不当,就会导致液体的转移量不准确。 3.液体性质不同的液体具有不同的粘度、密度和表面张力等物理性质。这些性质会影响液体在移液器内的流动情况,从而影响到移液器的读数。因此,在使用电动移液器时,需要注意液体的性质,并根据需要进行相应的调整。 4.温度变化温度的变化会对液体的物理性质产生影响,从而影响到电动移液器的读数。因此,在使用电动移液器时,需要注意环境温度的变化,并根据需要进行相应的调整。 5.污染问题电动移液器内部和外部的污染会影响其性能和准确性。例如,如果移液器内部有残留物或者外部有灰尘等杂质,就会影响液体的流动情况和读数的准确性。因此,在使用电动移液器之,需要对其进行清洗和消毒。 6.磨损问题 使用电动移液器会导致其内部的机械部件磨损,从而影响到其性能和准确性。因此,在使用电动移液器时,需要注意其使用寿命和维护情况,并及时更换磨损的部件。 7.气压变化气压的变化会影响液体的流动情况和读数的准确性。因此,在使用电动移液器时,要注意环境气压的变化,并根据需要进行相应的调整。 8.电子元件故障电动移液器内部的电子元件可能会出现故障或损坏,从而影响到其性能和准确性。因此,在使用电动移液器时,需要注意其电子元件的工作情况,并及时进行维修或更换。茂默科学力求解决行业内客户对科学仪器选型难、维护难的处境。欲了解更多电动移液器相关的产品,Welcome to consult~咨询有惊喜哦!
  • iCEM 2016特邀报告:透射电镜制样技术
    p style="TEXT-ALIGN: center"strong第二届电镜网络会议(iCEM 2016)特邀报告/strong/pp style="TEXT-ALIGN: center"strong透射电镜制样技术/strong/pp style="TEXT-ALIGN: center" img title="鞠晶.jpg" src="http://img1.17img.cn/17img/images/201610/noimg/2153692b-1eb1-4c81-904b-d9616cdf580e.jpg"//pp style="TEXT-ALIGN: center"strong鞠晶 高级工程师/strong/pp style="TEXT-ALIGN: center"strong北京大学化学学院/strong/ppstrong报告摘要:/strong/pp  介绍透射电镜中常用的几种制样技术,如超薄切片技术,离子减薄技术等等。结合电镜拍摄的具体要求介绍各种制样技术的注意事项和操作细节。/ppstrong报告人简介:/strong/pp  鞠晶,北京大学化学学院分析测试中心高级工程师。/pp  教育背景/pp  9/1999-7/2003 Ph.D., Chemistry, Peking University, Beijing, China/pp  9/1996-7/1999 M.S., Chemistry, Jilin University, Changchun, China/pp  9/1992-7/1996 B.S., Chemistry, Jilin University, Changchun, China/pp  职业经历/pp  9/2003 – 4/2007 COE Fellow, Low Dimensional Quantum Physics Group, Department of Physics, Graduate School of Science, Tohoku University, Japan/pp  5/2007-10/2009 Assistant Professor, WPI, Tohoku University, Japan/pp  研究兴趣/pp  涉足材料科学的多元交叉,包括无机固体材料和纳米孔道材料的设计和制备,并在其原有结构基础上进行化学修饰,探索其固体化学和固体物理方面的性质的改进,旨在更加深入地理解物质的结构与其物理性质之间的关系,进而最终设计出符合21 世纪技术要求的先进材料。/pp  * 对新型过渡金属氧化物,硫属化合物,金属间化合物以及磷系化合物进行设计、合成、结构研究以及物理性质研究。/pp  * 设计合成新型的超导体,磁性材料,透明电子导体,介电材料,热电材料,以及相关的具有新颖结构的电子体系。/pp  * 纳米孔道材料的设计,合成,自组装和集成功能化。/pp  * 在传感器,成像和药物输运方面进行新一代功能器件的创新。/ppstrong报告时间:/strong10月25日下午/pp style="TEXT-ALIGN: center" a title="" href="http://www.instrument.com.cn/webinar/icem2016/index2016.html" target="_blank"img src="http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width="600" height="152"//a/p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制