酒石酸唑吡坦杂质标准品

仪器信息网酒石酸唑吡坦杂质标准品专题为您提供2024年最新酒石酸唑吡坦杂质标准品价格报价、厂家品牌的相关信息, 包括酒石酸唑吡坦杂质标准品参数、型号等,不管是国产,还是进口品牌的酒石酸唑吡坦杂质标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合酒石酸唑吡坦杂质标准品相关的耗材配件、试剂标物,还有酒石酸唑吡坦杂质标准品相关的最新资讯、资料,以及酒石酸唑吡坦杂质标准品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

酒石酸唑吡坦杂质标准品相关的资料

酒石酸唑吡坦杂质标准品相关的论坛

  • 求购 胆碱酒石酸氢盐标准品

    询问下各位,《GB 5413.20—2013婴幼儿食品和乳品中胆碱的测定》中提到的胆碱酒石酸氢盐标准品在哪里能买到。问了好多地方,包括sigma的得到的答复都是试剂级别的,不是标准品。

  • CNS_01.111_L(+)-酒石酸

    CNS_01.111_L(+)-酒石酸

    闫丽洁[align=center]关于食品添加剂L(+)-酒石酸的研究[/align]摘要:[size=13px]L(+)-酒石酸是一种天然有机酸,它的酸味值约是柠檬酸的1.25倍,可用于清凉饮料,它和柠檬酸、氧化亚铁产生鲜绿色作为食用色素用于糕点。本文主要介绍了L(+)-酒石酸的检测方法及生产方法。[/size]关键词:[size=13px]L(+)-酒石酸,检测,生产[/size]1 引言L(+)-酒石酸广泛存在与自然界的多种植物果实中,其中成熟葡萄中L-酒石酸含量较多。L-酒石酸时一种用途非常广泛的天然有机酸,主要作为食品添加剂和医药拆分剂应用于食品、医药和化学工业等领域,据报道,L-酒石酸还可以用于纳米材料的制备及作为染料经济性改性剂和抗磨剂。2 L(+)-酒石酸简介2.1 L(+)-酒石酸基本结构L(+)-酒石酸又称为L(+)-2,3-二羟基丁二酸,分子式是C4H6O6,结构简式HOOCCH(OH)CH(OH)COOH。有两个不对称的碳原子,有3个立体异构体,即:右旋型(D型,L型)、左旋型(L型,D型)、内消旋型。通常,外消旋型酒石酸又称为葡萄酸。右旋型酒石酸以游离的或K盐、 Ca盐、Mg盐的形态广泛分布于高等植物中,特别是多存在与果实和叶中。2.2 L(+)-酒石酸的发现酒石酸氢钾存在与葡萄汁中,此盐难溶于水和乙醇,在普通纸酿酒过程中沉淀析出,成为酒石,酒石酸的名称由此得来。在制造葡萄酒时,会沉积大量酒石(氢钾盐)。另外,在霉菌和地衣类中也常见到它的存在。分离到的酒石酸发酵细菌,在体内是通过葡萄糖氧化分解,经由5-酮葡萄糖酸,在形成羟基乙酸的同时形成酒石酸。酒石酸铵受微生物作用,可编程琥珀酸。因此,工业中用酒石酸作为生产琥珀酸的原料。酒石酸主要以钾盐的形式存在于多种植物和果实中,也有少量是以游离态存在的。L(+)-酒石酸在某些植物果实如葡萄、罗望子果等中有较高的含量。1769年舍勒首次从葡萄汁的发酵液内得到游离的无色酒石酸结晶。它的各种立体异构体和外消旋体具有不同的物性。自然界存在的多为右旋体,葡萄汁和其他浆果汁中尤多,故又叫果酸。如用丁烯二酸控制氧化得到的是外消旋体。将上述反应过程中产生的酒石以石灰乳处理生成酒石酸钙,再酸化则得内消旋体。酒石酸盐在历史上对建立有机立体化学起了作用。1848年法国化学家巴斯德从事酒石酸钠铵结晶学研究工作时,看到一种前人未曾注意的有趣现象:无旋光性的酒石酸钠铵是由二种不同结晶组成的混合物,它们的外形互为Chemicalbook镜像关系,实际上是外消旋体。他用放大镜和镊子将混合物细心分成小堆。一堆是右旋体晶体,一堆是左旋体晶体,它们犹如一堆是右手套,一堆是左手套。两堆晶体溶于水都有旋光性。他首次发现了分子的立体异构和旋光的关系,提出了对映异构概念,为有机立体化学的发展奠定了基础。酒石酸常用于制药物、媒染剂和鞣剂等,也常用作拆分外消旋碱性化合物的试剂。它也是食品添加剂中的酸味剂,酸感优于苹果酸、乳酸等。它的几种盐都有重要应用,例如实验室中用酒石酸钾钠配制斐林试剂,用于鉴定有机分子结构中醛基官能团。它的钾钠盐又叫罗谢尔盐,其晶体在压力作用下发生极化而使两端表面产生电势差(压电效应),借此可以制成压电元件,用于无线电和有线电广播的受话器和拾音器。医疗上将酒石酸锑钾(俗称吐酒石)用于治疗血吸虫病。2.2 L(+)-酒石酸的理化性质外观为无色半透明晶体或白色细至粗结晶粉末,有酸味,熔点为170-172°C,比旋光度12°(c=20,H2O),沸点191.56°C,密度1.76,蒸汽密度5.18,蒸气压 5Pa(20°C),折射率12.5°(c=5,H2O),在室温下进行储存,溶解度1M(20℃)无色溶液。毒性:小鼠经口LD50为4.36 g/kg ;ADI 0~30 mg/kg(酒石酸及其盐类)。3 L(+)-酒石酸的检测3.1 国标检测3.1.1 范围本标准适用于以顺丁烯二酸酐和过氧化氢为原料经氧化、酶法水解而制得的食品添加剂L(+)-酒石酸。3.1.2 检测方法以酚酞为指示剂,用氢氧化钠标准滴定溶液滴定干燥试样的水溶液,根据氢氧化钠标准滴定溶液的用量,计算以C4H6O6计的总酸含量为L(+)-酒石酸含量。3.1.3 试剂和材料氢氧化钠标准滴定溶液:c (NaOH) = 1.0 mol / L酚酞指示剂:10 g / L3.1.4 分析步骤称取2.0 g 干燥样,精确至0.0002 g,加40 mL 无二氧化碳的水溶液,加2滴酚酞指示剂,用氢氧化钠标准滴定溶液滴定至微红色,保持30 s 不褪色为终点。在测定的同时,按与测定相同的步骤,对不加试样而使用相同数量的试剂溶液做空白试验。3.1.5 数据计算L(+)-酒石酸(以C4H6O6计,以干量计)的质量分数ω1,数值以 % 表示,按式1计算: ——————————式1式中:V——试料消耗氢氧化钠标准滴定溶液体积的数值,单位为毫升(mL);V0——空白试验消耗氢氧化钠标准滴定溶液体积的数值,单位为毫升(mL);c——氢氧化钠标准滴定溶液浓度的准确数值,单位为摩尔每升(mol/L);m——试料质量的数值,单位为克(g);M——酒石酸(1/2 C4H6O6)的摩尔质量的数值,单位为克每摩尔(g/mol)(M=75.04).取两次清醒测定结果的算术平均值为报告结果。两次平均测定结果的绝对差值不大于0.2 % 。3.2 高效液相色谱3.2.1 检测原理采用高效液相色谱分析测定酒石酸的含量以及与标准酒石酸的分析对比,高效液相色谱分析法是主要具有高压、高速、高效、高灵敏度等特点,对试样进行分析测定。流动相与固定相都是液体,流动相与固定相之间应互不相溶(极性不同,避免固定相流失),有一个明显的分界面。当试样进入色谱柱,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]在两相间进行分配。达到平衡时,服从于高效液相色谱计算公式:式中,Cs——[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]在固定相中的浓度; Cm——[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]在流动相中的浓度; Vs——固定相的体积; Vm——流动相的体积。3.2.2 试剂和仪器试剂:80%乙醇,酒石酸,磷酸二氢铵均为分析纯,实验用水均为二次蒸馏水。仪器:高效液相色谱仪C18色谱柱(250*4.60nm)3.2.3 色谱条件固定相为Phencmenex luna 5μm C18 色谱柱(250*4.60nm),流动相为 0.01 mol/L(NH4)2HPO4溶液,流速1mLmin-1,检测波长为210 nm,柱温为30℃。3.2.4 分析步骤精确称取酒石酸标准品0.25 g,置于烧杯中用二次蒸馏水完全溶解,转移至100 mL容量瓶中加二次蒸馏水稀释并定容,然后用移液管移取分别稀释成2.5 μgmL-1、2.0 μgmL-1、1.5 μgmL-1、1.0 μgmL-1、0.8 μgmL-1 等不同质量浓度的标准品,并用0.45 μm的滤膜过滤,然后超声处理。采用电子天平准确称取1.3206 g (NH4)2HPO4 晶体,于小烧杯中加入二次蒸馏水完全溶解,然后转移到1000 mL容量瓶中稀释并定容至刻度线,最后用0.45 μm的滤膜过滤,超声15 min处理作为流动相。3.2.5 数据处理依次对不同浓度的标准品进行色谱分析,并拟合标准曲线,对样品进行色谱分析,并进行定量计算。3.2.6 方法优点色谱分析法检测线性范围宽,具有操作简便,快捷,选择性好等优点。4 L(+)-酒石酸的生产4.1 L(+)-酒石酸的生产方法一个方法是,以制造葡萄酒时生成的酒石为原料,将其转化为钙盐,再用稍过量的稀酸使其分解而得。或以顺丁烯二酸和过氧化氢为原料,在一定温度下转化为环氧丁二酸,再水解得D L-酒石酸。也可由化学合成法制得的环氧琥珀酸,经琥珀酸诺卡氏菌所含的开环酶的作用而得L(+)酒石酸。另一个方法是,将蒸馏水加到工业品酒石酸中,通蒸气加热并搅拌使之溶解。加入适量活性炭,充分搅拌后静置,过滤,滤液加热浓缩至表面结膜时,趁热抽滤,滤液冷却结晶,待完全后,结晶用少量蒸馏水洗淋后于30~40℃下平铺干燥至不沾勺即可。若控制活性炭脱色温度为80℃,过滤后于80℃减压浓缩,冷却结晶,将得到的结晶在非铁质容器中重结晶精制低温下烘干,可得右旋酒石酸 [ L(+)-酒石酸 ] 成品。4.2 酒石酸的生物合成途径酒石酸的生物合成途径如图1所示:[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251428084146_7015_1608728_3.png[/img][/align][align=center]图1 酒石酸的生物合成途径[/align]直接发酵法生产酒石酸异性物质多,提取困难,收率低,经济上目前还没有吸引力。4.3 酶法生产L-酒石酸1974年佐藤英次等人首先报道了采用Achromobater lartarogenes 和Alcaligenes epoxylyticus 水解顺式环氧琥珀酸生产L-酒石酸的前体发酵,过程如图二所示:[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251428086957_2391_1608728_3.png[/img][/align][align=center]图2 酒石酸生产[/align]以无水马来酸(顺丁烯二酸酐)为原料经水解得到马来酸,再以钨酸钠(Sodium tungstate)作为催化剂将马来酸与过氧化氢反应制得顺式环氧琥珀酸。培养具有L-酒石酸外氧化酶的微生物作酶源将顺式环氧琥珀酸转化为酒石酸。具有L-酒石酸外氧化酶的微生物主要是细菌,目前报道的有无色杆菌、产碱杆菌、醋酸杆菌、不动杆菌、土壤杆菌、诺卡氏菌、根瘤菌、假单胞菌和棒杆菌。酒石酸外氧化酶是一种诱导酶,在培养这类微生物生产酒石酸时通常在培养基中需加入少量顺式环氧琥珀酸进行诱导培养。这种酶的分子量在25000~45000之间,在pH5~9范围内稳定,最适pH 为7.5~8.5,作用温度范围为25~55℃。酶法生产L-酒石酸的工艺流程大致如图3 :[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251428088052_2948_1608728_3.png[/img][/align][align=center]图3 酶法工艺流程图[/align]4.4 棒状杆菌固定化细胞生产L-酒石酸采用卡拉胶将含环氧琥珀酸水解酶的诺卡氏菌细胞包埋固定,利用固定化细胞转化底物环氧琥珀酸生成L-(+)-酒石酸,以将环氧琥珀酸水解酶反复多次使用。采用卡拉胶作为载体制得固定化微生物细胞生产L-酒石酸,这种方法具有较高的酶活性回收率和良好的化学和机械稳定性。固定化细胞经过底物活化处理后顺式环氧琥珀酸水解酶酶活性回收率在100%以上。另外此固定化细胞的贮藏稳定性较好,经0.2 molL-1底物溶液浸泡,在4℃冰箱中贮藏90d酶活性基本不变。底物和表面活性剂能大幅度提高固定化细胞的酶活性回收率,这主要是增加了细胞膜对底物的渗透性或造成菌体的自溶,当菌体自溶时,酶被截留在凝胶腔内,不会由凝胶溢出,而底物和产物则易由凝胶网溢出,维持了固定化细胞较高的稳定性。4.5 糖质发酵法[color=#333333]制造L-(+)-酒石酸[/color]在L-酒石酸的生物代谢途径中,认为葡萄糖经过Gluconobater suboxydans 发酵形成葡萄糖酸,继而氧化为2-酮基-D-葡萄糖酸(2-KGA)和5酮基-D-葡萄糖酸(5-KGA),5-KGA在金属催化剂的作用下,可以形成羟基乙酸和L-酒石酸。1972年,Kotera等在研究5-KGA转化为L-酒石酸的过程中,发现了一种能与AbdelAkhel和Smith试剂形成紫红色的物质,并对这种物质进行了分离纯化,通过红外光谱及质谱分析,证实该物质为1,2-二羟乙基氢酒石酸,并命名为“前酒石酸”,同时提出了相关机理如图4,5-KGA通过烯醇化,转化为4-KGA,再形成“前酒石酸”。通过该物质的过渡,5-KGA被催化分解为L-酒石酸和羟基乙酸。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251428090793_95_1608728_3.png[/img][/align][align=center]图4 L-酒石酸形成机理[/align]1995年,Klasen等认为5-KGA主要在氧化葡萄糖酸杆菌的细胞质中合成,并在G.oxydans DSM3503中过表达了依赖NADP的GNO,该酶在细胞质中催化葡萄糖酸形成5-KGA,最终酶活提高了85倍;1999年,Shinagawa等通过对G.suboxydans IFO12528静息细胞培养和膜结合部分催化实验发现,5-KGA的形成主要是膜结合蛋白PQQ-依赖的葡萄糖酸脱氢酶,并考察了该酶翠花形成5-KGA的最适pH 为4.0和温度15℃,在此条件下,膜结合蛋白部分催化转化形成5-KGA为110 mmol/L ;因此,在氧化葡萄糖酸杆菌中,酮基葡萄糖酸催化合成途径如图5所示,PQQ-依赖的葡萄糖酸脱氢酶是主要的5-KGA合成酶,而FAD-依赖的葡萄糖酸脱氢酶是合成2-KGA的主要酶,从代谢流上分析为5-KGA的主要分流节点。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107251428091768_3741_1608728_3.png[/img][/align][align=center]图5 氧化葡萄糖酸杆菌中酮基葡萄糖酸的催化反应[/align]糖质发酵法生物制造L-酒石酸因利用可再生生物质资源而日益备受关注。但是,要提高其相对于酶法合成L-酒石酸的竞争力,就必须使用现代生物技术,包括分子生物学、代谢工程以及合成生物学等手段,提高L-酒石酸的前体——5-KGA的发酵水平以及5-KGA到L-酒石酸的转化水平。5 用途及应用5.1 食品添加剂方面首先,L(+)-酒石酸广泛用作饮料和其他食品的酸味剂,用于葡萄酒、软饮料、糖果、面包、某些胶状甜食。其次,可以作为食品中添加的抗氧化剂﹐可以使食物具有酸味。酒石酸最大的用途是饮料添加剂。5.2 药物方面利用其光学活性,作为化学拆分剂,用于制造抗结核病药物中间体DL-氨基丁醇的拆分;还可以作为手性原料用于酒石酸衍生物的合成;利用其络合性,用作电镀、脱硫、酸洗以及化学分析、医药检验中的络合剂、掩蔽剂、螯合剂、印染的防染剂;也是药物工业原料。5.3 工业方面利用其酸性,作为涤纶织物树Chemicalbook脂整理的催化剂,谷维素生产的PH调节剂;利用其还原性,用作化学制镜的还原剂。照相的显影剂。还能与多种金属离子络合,可作金属表面的清洗剂和抛光剂;在制镜工业中,酒石酸是一个重要的助剂和还原剂,可以控制银镜的形成速度,获得非常均一的镀层;金属离子掩蔽剂;防染剂;用于天然产物的手性砌块,也与化合物 TiCl2(O-i-Pr)2形成Diels-Alder 催化剂。最后,可用作生化试剂、掩蔽剂及啤酒发泡剂,也用于鞣革工业。6 结语L(+)-酒石酸是天然的有机酸,应用十分广泛,在食品、医药、纳米材料等各个方面具有显著的应用,L(+)-酒石酸的检测方法主要有滴定法、液相色谱法等。以前L(+)-酒石酸主要从葡萄酒酿造的副产物酒石中提取,但由于酒石供应量有限,来源不稳定,近年来采用化学合成和生物转化相结合的方法来生产L(+)-酒石酸。7 参考文献袁建锋,吴绵斌,林建平,岑沛霖.基于5-酮基-D-葡萄糖酸生物制造L-(+)-酒石酸的研究进展[J].现代化工,2013,33(09):13-16.张建国,黄滕华.微生物转化法生产L-(+)-酒石酸的研究[J].工业微生物,1990,2(2):7-12.刘斌,须辑.半生物合成法合成酒石酸[J].化学世界,1996,8(10):527-531.[color=black]郑璞,孙志浩.用诺卡氏菌酶法转化顺式环氧琥珀酸生产L(+)-酒石酸的研究[/color][J].化工业微生物,1994,3(24):12-17.张建国,钱亚娟.棒状杆菌固定化细胞生产L(+)-酒石酸[J].生物工程学报,2000(02):72-76.万屹东, 蒋志清, 顾松林,等. 一种L(+)酒石酸的生产方法:, CN102093208B[P]. 2015.楼锦芳, 张建国. 酶法合成L(+)-酒石酸的研究进展[J]. 食品科技, 2006, 31(011):162-164.杨阳, 李文鹏, 陆鲁生,等. L(+)-酒石酸发酵法生产工艺改进的研究[J]. 生物工程学报, 2001, 17(3):345-348.柯昌武, 蔡水洪, 叶勤. 卡拉胶固定化Nocardia sp.生产L(+)酒石酸[J]. 华东理工大学学报(自然科学版), 2006.Yamada K. Kodama T. Obata T, et al.Microbial formation tartaric acid from glucose 1 Isolation and identification tartaric acid producing microorganisms[J].Journal of Fermentation Technology, 1971. 49 (2) :85-89.Kotera U, Kodama T, Yamada к, et al.Microbial formation of tartaric acid from glucose 5 lsolation and chemical structure of new oxidation product of 5-ketogluconic acid, and a hypothetical pathway from glucose !o tararic acid through this new compound[J]Agricultural and Biological Chemistry. 1972. 36 (8) 1315-1325.Klasen R. Bringerneyer s, Sahm H.Biochemical characterization and sequence analysis of the gluconate-NADP 5-oxidoreductase gene from Gluconobacter oxydans[J].Journal of Bacteriology, 1995, 177 (10) :2637-2543.Shinagawa E, Matsushita K, Toyama H, et al.Production of 5-ketod-gluconate by acetic acid bacteria iscatalyzed by pyrroloquinoline quinone (PQQ) -dependent membrane-bound d-gluconate dehydrogenase[J].Journal of Molecular Catalysis B:Enzymatic, 1999, 6 (3) :341-350.

酒石酸唑吡坦杂质标准品相关的方案

酒石酸唑吡坦杂质标准品相关的资讯

  • 食品中糖类物质国家标准检验方法的探讨
    一、背景介绍  糖类物质是多羟基醛和多羟基酮及其缩合物,或水解后能产生多羟基醛和/或多羟基酮的一类有机化合物。根据分子的聚合度,糖类物质一般分为单糖(如葡萄糖、果糖)、低聚糖(含2~10个单糖结构的缩合物,常见的是双糖,如蔗糖、乳糖和麦芽糖等)和多糖(含10个以上单糖结构的缩合物,如淀粉、纤维素、果胶等) 根据其还原性可分为还原糖(如葡萄糖、果糖、半乳糖、乳糖、麦芽糖)和非还原糖(蔗糖、淀粉) 根据其结构可分为醛糖(如核糖、葡萄糖、半乳糖、乳糖、甘露糖、麦芽糖)和酮糖(如果糖、木酮糖、核酮糖、辛酮糖)。糖的还原性主要基于分子中含有还原性的醛基,所以醛糖是还原糖。有些酮糖在碱性溶液中可发生差向异构化反应转化为醛糖,也具有还原性,属还原糖,比如果糖。单糖分子缩合为双糖或多糖后,若失去了还原性的醛基,就不具备还原性,称为非还原糖,如蔗糖(双糖)和淀粉(多糖)。蔗糖水解后生成1:1的葡萄糖和果糖,产物不是单一分子,称为转化糖。淀粉完全水解后产物为单分子葡萄糖。蛋白质、脂肪、碳水化合物(主要指糖类化合物)、钠是食品的4种核心营养素,所以食品中糖类物质的含量是食品检验的主要内容之一。  二、检验标准的探讨  现行的国家标准中糖类物质的检验方法一般涉及3个标准:GB/T 5009.7-2008 《食品中还原糖的测定》、GB/T 5009.8-2008《食品中蔗糖的测定》、GB/T 5009.9-2008《食品中淀粉的测定》。其中,蔗糖和淀粉含量的测定是基于测定二者水解后产生的还原糖,所以这3个标准实际上是有着密切联系,并且以还原糖容量法测定为基础的方法体系。  (一)样品的前处理  食品样品的组成相当复杂,对食品中某成分测定的策略是基于分离复杂背景和除去测试干扰物质后选择适宜的方法进行检测。食品中最普通的糖类物质包括葡萄糖、果糖、蔗糖和淀粉。葡萄糖和果糖是还原糖,易溶于水。食品样品用水充分浸提后,葡萄糖和果糖进入提取液,提取液中当然含有其他能溶于水的胶体物质,如蛋白质、多糖及色素等。这些胶体物质会干扰后续碱性铜盐法还原糖的测定或影响终点判定,所以必须加以分离。标准中是使用澄清剂共沉淀法除去胶体物质,过滤后的澄清液用于还原糖的测定。常用的食品澄清剂有多种,包括醋酸锌和亚铁氰化钾配合溶液、硫酸铜、中性醋酸铅、碱性醋酸铅、氢氧化铝、活性碳等。  (二)还原糖测定和结果计算  GB/T 5009.7-2008 《食品中还原糖的测定》直接滴定法的原理如下:碱性酒石酸铜甲液与乙液等量混合后,Cu2+与OH-生成天蓝色的Cu(OH)2沉淀物,该沉淀物与酒石酸钾钠反应,生成可溶性的酒石酸钾钠铜深蓝色络合物,该络合物遇还原糖反应后,产生红色Cu2O沉淀。为了便于终点的观察,直接滴定法在蓝—爱农法的基础上进行了改进,碱性酒石酸铜乙液中的亚铁氰化钾与Cu2O沉淀反应生成可溶性的淡黄色络合物。最终反应的终点由碱性酒石酸铜甲液中的亚甲蓝作为指示剂显示,亚甲蓝的氧化能力比Cu2+弱,故还原糖先与Cu2+反应。当碱性酒石酸铜甲液中的Cu2+全部被逐渐滴入的还原糖耗尽后,稍过量的还原糖立即把亚甲蓝还原,溶液颜色由蓝色变为无色,即为滴定终点。  直接滴定法首先由还原糖标准溶液(1.0mg/ml,即0.1%)标定来自碱性酒石酸铜甲液中的已知量的Cu2+,建立该已知量的Cu2+与还原糖的定量关系。试样测定时亦取等量的Cu2+溶液与试样中的还原糖反应。反应终点时,试样中的还原糖总量与标定步骤中加入的标准样液中的还原糖总量相同(A = CV,C为葡萄糖标准溶液的浓度,mg/ml V为标定时消耗葡萄糖标准溶液的总体积,ml)。由此,可以建立结果计算公式(1):  X=  其中,X:试样中还原糖的含量(以某种还原糖计,如常用的葡萄糖,g/100g) A:终点时加入的还原糖总量,mg m: 试样质量,g V: 试样消耗的体积,ml 1000:毫克换算成克的系数。  (三)计算公式的正确表达  1.还原糖计算公式。公式(1)中的250 ml是GB/T 5009.7-2008 《食品中还原糖的测定》样品处理过程中样液的最终定容体积。显然,该计算公式的建立与滴定方法的原理和操作过程密不可分。对于含大量淀粉的食品,根据样品的处理过程,公式(1)的适用性存在疑问。为了清楚地解释问题的根源所在,现将“含大量淀粉的食品”试样处理过程依标准摘录如下:“称取10g~20g粉碎后或混匀后的试样,精确至0.001g,置250ml容量瓶中,加水200ml,在45℃水浴中加热1小时,并时时振摇。冷后加水至刻度,混匀,静置,沉淀。吸取200ml上清液置另一250ml容量瓶中,慢慢加入5ml乙酸锌溶液及5ml亚铁氰化钾溶液,加水至刻度,混匀。静置30分钟,用干燥滤纸过滤,弃去初滤液,取续滤液备用。”问题出在样液的分取过程:“吸取200ml上清液置另一250ml容量瓶中,”照此,最后定容的250ml样液中仅含有原样品总量的4/5 ,即200ml/250ml,这一点在计算公式(1)中未有显示,由此会造成计算结果比实际结果低20%。综上所述,对于“含大量淀粉的食品”试样,公式(1)中试样质量应该乘以样品分取因子(等于 4/5),以保证计算公式(1)与实际操作过程相符和计算结果的正确性。  2.蔗糖标准中的计算公式。GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法还原糖计算公式的错误更加严重。其错误在于样品的水解过程中溶液的分取体积未在计算公式中体现。按照标准的操作过程,正确的计算公式(2)应为:  X = (2)比较上述公式(2)与现行GB/T 5009.8-2008《食品中蔗糖的测定》的第二法酸水解法中还原糖的计算公式可知,现行国标的计算结果比正确结果小了整整一倍。如果国标的使用者未注意到该错误,报出的检验结果将会出现很大错误的。  (四)还原糖滴定法的注意事项  1.该法原理是基于还原糖标液与试样溶液滴定等量的碱性酒石酸铜甲乙混合液,因此,每次测定时,碱性酒石酸铜甲液(含Cu2+)的移取量(5.0ml)一定要精确,以保证结果的准确性和平行性。  2.滴定应按标准操作在沸腾条件下进行。其一,高温可以加快还原糖与Cu2+的反应速度,确保滴定反应正常进行 其二,保持反应液沸腾可防止空气进入,避免还原态的次甲基蓝和氧化亚铜被氧化而影响终点判定和增加还原糖消耗量。达终点后还原态的次甲基蓝(无色)遇空气中氧时又会被氧化为氧化态(蓝色)。同样,氧化亚铜也易被空气氧化回到二价态。因此,滴定时也不应过分摇动锥形瓶,更不能把锥形瓶从热源上取下来滴定,以防空气进入反应液中。  食品中糖类物资国标还原糖滴定法,其优点是快速、方便、准确,对仪器设备的依赖程度较低,所以它是实验室普遍采用的方法。现行的GB/T 5009.7-2008《食品中还原糖的测定》和GB/T 5009.8-2008《食品中蔗糖的测定》在标准转换过程中出现了计算公式的严重错误,中初级检验人员很难发现和自行纠正。因此,笔者建议国家相关部门尽快组织对现行食品中糖类物质(还原糖、蔗糖)国家检验标准的两个方法的修订工作,完善检测方法和标准,确保检测的准确度。
  • 浅谈药物质量标准中杂质的确定、限度制定、杂质测定
    一、对于杂质检查,需要有针对性的确定各原料药或辅料中需要测定的杂质,药品标准中的杂质检查项目,应包括以下几点:药物在研究中和稳定性考察中产生的;药物在生产中产生和降解的杂质。综上,药物在整个周期的杂质检查,应研究起始物料、生产工艺、药品稳定性这三个环节把控杂质检出,从而制定严格的内控质量标准,确保药品安全性。尤其是降解杂质和毒性杂质,通常为必检项目,除降解产物和毒性杂质外,在原料药中已控制的杂质,在制剂中一般不再控制。对于对映体药品,与之相关的异构体应作为杂质来检查。对于消旋体药品,质量标准中,除订入异构体标准外,还需定入旋光度。二、讲述杂质限度相关问题首先明确杂质限度中涉及到的以下术语:报告限度:超出此限度的杂质均应在检测报告中报告,并应报告具体的检测数据; 鉴定限度:超出此限度的杂质均应进行定性分析,确定其化学结构; 质控限度:质量标准中一般允许的杂质限度,如制定的限度高于此限度,则应有充分的依据; TDI:药品杂质的每日总摄入量。注:上表摘自2020版中国药典四部9102药品杂质分析指导原则创新药杂质制定:根据已进行的临床安全性数据获得。仿制药杂质制定:根据已有的标准,制定适应自研产品的杂质内控质量标准。研究杂质过程中,必要研究杂质的LOQ,LOQ浓度不得大于该杂质的报告限浓度(容易忽略项)。对于药品中的杂质检查,有薄层色谱法、高效液相色谱、气相色谱法,最常用的就是高效液相色谱方法和薄层色谱法,现介绍如下:对于采用高效液相色谱法测定杂质检出量,有以下几种办法:外标法(也称杂质对照品法)加校正因子的主成分自身对照法不加校正因子的主成分自身对照法面积归一化法下面一一讲述这几个方法,请耐心看完,表格形式汇总,易查看三、对于采用薄层色谱法测定杂质检出量,有以下几种办法:杂质对照品法;供试品溶液自身稀释对照法;杂质对照品法与供试品溶液自身稀释对照法;对照物法。下面一一讲述这几个方法,请耐心看完,表格形式汇总,易查看!
  • LGC:标准品的定义、分类、正确使用及杂质标准品的合规标定
    p  药物杂质是活性药物成分或药物制剂中不希望存在的化学成分。药品在临床使用中产生的不良反应除了与药品本身的药理活性有关外,有时与药品中存在的杂质也有很大关系。规范地进行杂质的研究,并将其控制在一个安全、合理的限度范围之内,将直接关系到上市药品的质量及安全性。/pp  因此,杂质的研究是药品研发的一项重要内容,它包括选择合适的分析方法,准确地分辨与测定杂质的含量并综合药学、毒理及临床研究的结果确定杂质的合理限度,这一研究贯穿于药品研发的整个过程。/pp  2017年7月19日,仪器信息网将组织举办“化学药物杂质研究及检测技术”网络主题研讨会, 会议中,LGC医药标准品资深专员杨学林将介绍《标准品的定义、分类、正确使用及杂质标准品的合规标定》。/pp strong 报告摘要/strong/pp 概括介绍2015版药典中对标准品的定义及杂质标准品的新要求;深入解析标准品的定义、特性及生产体系;着重对医药产品生产及研发过程中使用的一级标准品、二级标准品、药典标准品及杂质标准品进行介绍,并指导如何正确使用;由于一致性评价的深入开展及国家对杂质研究的逐渐重视,对于一些合成工艺复杂,购买困难的杂质如何合规的标定同样是在工作中急需解决的问题。对于以上提到的热点问题,我们会在本次报告中一一为您解答。/pp strong 报告人简介/strong/pp 杨学林,LGC医药标准品资深专员,主要负责医药标准品的市场推广及售前售后的技术支持工作,曾受邀2015版《中国药典》进行关于标准品知识方面的讲座,同时在国内多家百强企业如扬子江、罗欣药业、鲁南制药等做过关于标准品使用方面的专场介绍。2009年获得沈阳药科大学药物化学博士学位,在BMCL、LDDD等学术期刊以第一作者发表多篇研究论文及多篇授权专利;曾参与863、973、国家自然科学基金等重点项目的研究工作,拥有5年以上药物研发相关经验。曾先后就职于Bioduro、神威药业研究院,担任组长、室主任等职务。/pp  欲了解本次会议的详细日程请点击:/pp  a title="" href="http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/" target="_self"http://www.instrument.com.cn/webinar/meetings/ChemicalDrug//a/pp style="text-align: center "a title="" href="http://www.instrument.com.cn/webinar/meetings/ChemicalDrug/" target="_self"img title="点击参会.gif" src="http://img1.17img.cn/17img/images/201707/noimg/f3ddf4d4-6b54-41b5-a520-8d1a1ef40f63.jpg"//a/p

酒石酸唑吡坦杂质标准品相关的仪器

  • FTIR 葡萄酒分析仪:Lyza 5000 Wine葡萄酒分析的优选Lyza 5000 Wine 是用于葡萄酒生产、葡萄酒实验室和灌装工厂进行快速葡萄酒分析的高级解决方案。将傅里叶变换红外 (FTIR) 光谱与化学统计模型结合使用,可同时测定葡萄酒必要参数,包括酒精含量、糖和有机酸。与现有测量系统连接、自动化和短测量时间可保证立即得到结果。通过创新型集成软件,可立即操作 Lyza 5000 Wine,无需经过任何培训。Lyza 5000 Wine:安东帕专为葡萄酒市场定制的 FTIR 仪器。安东帕是您在葡萄酒行业可信赖的仪器提供商。创新点:适用于葡萄酒的FTIR多参数分析仪——测量参数包括乙醇,葡萄糖+果糖,果糖,葡萄糖,滴定酸度,酒石酸,挥发性酸,苹果酸,乳酸,甘油,浸出物,密度,pH,酵母可吸收氮,葡萄汁重量等葡萄酒市场上的高精度测量仪器——经过12次反射的ATR测量池(高强度,受浊度影响小);密封的测量单元;精确的测量池温度控制(± 0.03°C)连接自动进样器——通过Xsample520(可选24位进样盘)实现自动化,测量过程中样品顺序可调主要特点Lyza 5000 Wine 兼具操作简单和功能强大的特点直观设置和不到 1 分钟的最短测量时间,可获得即时结果使用受现代智能手机界面外观启发的用户界面浏览您的日常操作通过最直观的 Xsample 设置复杂测量程序参考值测量和仪器运行状况综合测定的指导工作流程可确保结果始终可靠Lyza 5000 Wine 配备 10.1 英寸高分辨率触摸屏,无需外部电脑,可自动执行所有数据分析用途最广的葡萄酒分析系统手动进样使其可以在小型葡萄酒实验室快速轻松地进行独立操作。通过 Xsample 进样器实现的自动化,提高样品处理量。Lyza 5000 Wine 可连接到葡萄酒实验室的基准仪器上:从 DMA M 密度计到全套 Alcolyzer Wine 分析系统。由于这些设置可同时进行测量,因此可获得超过 15 个参数,而不延长总体测量时间。将一份显示所有连接仪器结果的综合报告导出到 LIMS 或直接从 Lyza 5000 Wine 中打印出来。专为葡萄酒市场设计Lyza 5000 Wine 的 ATR 样品槽专为葡萄酒市场进行的质量控制而量身定制。与常用的传输单元相比,12 跳设计提供的信号强度较少受到混浊或气体样品的影响,可达到理想状态。对任何葡萄酒分析仪均可实现最准确的测量池温度控制 (±0.03 K),为您提供优佳再现性。密封的 FTIR 光谱仪核心将环境影响降低,实现无与伦比的重复性。检查和校正只需要水和二元乙醇溶液 – 无需专门的专用参考标准物质。通过遵循指导工作流程,可将全球实施的有效葡萄酒模型轻松适应于您的本地需求 – 这使所有用户组都可进行模型校正。
    留言咨询
  • 货号适用仪器型号说明参数分析方法包装量程2199432酒石酸钾钠(罗谢尔盐ROCHELLE)PVA溶液,100mL,MDB-氮8075 1-150mg/L N;氨8038 0.02-2.50mg/L NH?-N100mL0
    留言咨询
  • 禾工科仪 AKF-V6酒石酸氢胆碱专用容量法卡尔费休水分测定仪检测生物医药行业水分含量包括不限于以下样品:原料与辅料、医用胶、手术缝合线、冻干粉、体外诊断试剂、医药用溶剂、成品药、眼药水等样品;PLA、PGA、PVA、蛋白类冻干、血清类冻干等、钆布醇、依替菲宁、甲苯、乙腈、三氯甲烷、冰乙酸、六水合氯化镁、聚维酮K30、乳糖、淀粉、软胶囊壳、硬胶囊壳、阿莫西林颗粒、布洛芬胶囊、钙片、酒石酸氢胆碱、软胶囊、502/504、地夸磷索 等等生物医药行业样品水分测定禾工科仪 AKF-V6酒石酸氢胆碱专用容量法卡尔费休水分测定仪产品简介AKF-V6卡尔费休水分测定仪是禾工科学仪器出品的全新一代全自动容量法卡尔费休水分测定仪。仪器在备受客户认可的AKF系列卡尔费休水分仪的基础上,汇总各行业客户反馈,集HOGON工程师多年应用技术积累经历了全新升级。合理紧凑的结构,清新简洁的UI界面设计,全新架构的控制算法与终点识别技术,仪器性能全面提升,高精度、宽量程,可以替代同类进口产品。快速准确!智能控制,智能终点识别,适应各种类型样品的快速准确测定!操作简单!“一键滴定”自定义,非专业人员也能轻松完成检测工作!安全稳定!试剂监测,故障自检,密封防漏,保证人员与环境的安全!溯源追踪!三级用户权限,全面审计追踪,遵循各类实验室数据管理规范!禾工科仪 AKF-V6酒石酸氢胆碱专用容量法卡尔费休水分测定仪产品特点:1、7寸彩色触摸屏操作面板,中英文双语种操作界面;多种测试参数实时显示,滴定结果自动计算、滴定曲线实时显示2、全封闭滴定系统,耐腐蚀,更加安全稳定3、HOGON高精度滴定计量技术(精度高,故障率低)4、全自动滴定分析,自动吸液、排液、自动清洗,自动分析、自动计算,大幅降低人工测定误差5、智能滴定、通过“一键检测”自动测定、非专业人员也可轻松完成检测工作6、多种终点识别模式,配合禾工专业的行业应用服务能力,选配卡式加热顶空进样器、加热搅拌装置、微量反应杯以应对复杂特殊样品的分析;可广泛应用于气体、液体、固体、易溶样品、难溶样品、不溶性样品的痕量、微量、常量含水率样品测定7、检测参数数据、样品测量结果自动计算存储,实时查询显示1000条详细检测数据;可扩展存储更多检测结果8、手动操作功能表可供用户手动吸液、注液、回液、排废液、计量管清洗、定量馈液、电极去钝化等功能9、三级权限管理,具备全面审计追踪溯源功能,支持中文,英文和数字输入,符合多种标准及药典的GLP规范要求禾工科仪 AKF-V6酒石酸氢胆碱专用容量法卡尔费休水分测定仪技术参数:
    留言咨询

酒石酸唑吡坦杂质标准品相关的耗材

  • 酒石酸(Tartaric acid)酶法分析试剂盒
    1、产品介绍产品名称:酒石酸(Tartaric acid)酶法分析试剂盒英文名称:Tartaric acid Assay Kit货号:RP040 产品规格:50T/100T酶法分析是利用酶的专一性、催化效率高等特点来进行食品生化分析的分析方法。常用于复杂组分中结构和物理化学性质比较相近的同类物质的分离、检测和分析,目前主要广泛应用于医药、临床、食品和生化分析检测中。 饲料中淀粉含量检测的酶法,可以测定旋光法不适用的饲料样品,是对饲料中淀粉含量的检测方法的有力补充。2、PriboFast检测试剂盒可提供如下产品:试剂盒产品检测范围D-葡萄糖(D-Glucose)酶法分析试剂盒135T0-5g/L淀粉总量(Total Starch)酶法分析试剂盒100T0-1000mg/gL-苹果酸(L-Malic acid)酶法分析试剂盒135T0-3g/LL-乳酸(L-Lactic acid)酶法分析试剂盒135T0-1.5g/L乙酸(Acetic acid)酶法分析试剂盒135T0-1g/L甘油(Glycerol)酶法分析试剂盒135T0-1g/L酒石酸(Tartaric acid)酶法分析试剂盒130T0-12g/LD一葡萄糖酸(Gluconic acid)酶法分析试剂盒135T0-4g/L柠檬酸(Citric acid)酶法分析试剂盒135T 0-1g/LL一抗坏血酸(L-AScorbic acid)酶法分析试剂盒80T0-0.3g/L 3、关于普瑞邦 普瑞邦(Pribolab)专注于食品检测产品的研发与应用,以认证认可的检测实验室为技术依托,先后建立四个专业性技术研发与产品应用平台,产品覆盖真菌毒素、蓝藻/海洋毒素、食品过敏原、转基因、酶法食品分析、维生素、违禁添加物等领域。尤其在生物毒素类标准品、稳定同位素内标(13C,15N)、免疫亲和柱、多功能净化柱、ELISA试剂盒/胶体金检测试纸及样品前处理仪器等产品在不同行业得到广泛应用和认可。 Pribolab始终以持续创新的态度,致力于食品安全每一天!4、联系我们:电话:400-6885349/0532-84670748官网:https://www.pribolab.cn/邮箱:info@pribolab.cn
  • 柠檬酸 富马酸 酒石酸、苹果酸分析柱BP-OA 250*4.60mm -北京绿百草科技
    柠檬酸 富马酸 酒石酸、苹果酸分析柱BP-OA 250*4.60mm -北京绿百草科技 USP L17; BP-OA, 8%交联度的磺化苯乙烯-二乙烯基苯树脂;稳定的pH值0-14;应用于电导率检测器、UV检测器和RI检测器;水或稀酸做流动相。 应用:生物液体,饮料,食品,工业化学品和发酵过程 BP-OA色谱柱用于确定弱有机酸和无机酸阴离子,有机酸阴离子包括乙酸,甲酸,草酸等,无机酸阴离子包括氟化物,碳酸氢盐,硼酸盐,硅酸盐等。 柱尺寸:300*7.8;250*7.8mm;100*7.8mm;250*4.6.
  • 柠檬酸 富马酸 酒石酸、苹果酸分析柱BP-OA 250*4.60mm -北京绿百草科技 各种规格
    柠檬酸 富马酸 酒石酸、苹果酸分析柱BP-OA 250*4.60mm -北京绿百草科技 USP L17; BP-OA, 8%交联度的磺化苯乙烯-二乙烯基苯树脂;稳定的pH值0-14;应用于电导率检测器、UV检测器和RI检测器;水或稀酸做流动相。 应用:生物液体,饮料,食品,工业化学品和发酵过程 BP-OA色谱柱用于确定弱有机酸和无机酸阴离子,有机酸阴离子包括乙酸,甲酸,草酸等,无机酸阴离子包括氟化物,碳酸氢盐,硼酸盐,硅酸盐等。 柱尺寸:300*7.8;250*7.8mm;100*7.8mm;250*4.6.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制