地塞米松磷酸钠对照品

仪器信息网地塞米松磷酸钠对照品专题为您提供2024年最新地塞米松磷酸钠对照品价格报价、厂家品牌的相关信息, 包括地塞米松磷酸钠对照品参数、型号等,不管是国产,还是进口品牌的地塞米松磷酸钠对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合地塞米松磷酸钠对照品相关的耗材配件、试剂标物,还有地塞米松磷酸钠对照品相关的最新资讯、资料,以及地塞米松磷酸钠对照品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

地塞米松磷酸钠对照品相关的资料

地塞米松磷酸钠对照品相关的论坛

  • 迪马产品应用有奖问答10.24(已完结)——地塞米松磷酸钠注射液

    迪马产品应用有奖问答10.24(已完结)——地塞米松磷酸钠注射液

    10,抽取5个版友);中奖名单:夏天的雪(注册ID:bingwang228)捌道巴拉巴巴巴(注册ID:v3082413)sixingxing(注册ID:v2889187)yifan1117(注册ID:yifan1117)dahua1981(注册ID:dahua1981)http://ng1.17img.cn/bbsfiles/images/2016/10/201610241505_614864_1610895_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/10/201610241505_614865_1610895_3.jpg【注意事项】同样的答案,每人只能发一次PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。=======================================================================地塞米松磷酸钠注射液方法:HPLC基质:药品应用编号:101419化合物:地塞米松磷酸钠固定相:Diamonsil C18色谱柱/前处理小柱:Diamonsil C18, 250 x 4.6mm样品前处理:【有关物质】 取本品,加流动相定量稀释制成每1ml中约含地塞米松磷酸钠0.5mg的溶液,作为供试品溶液;精密量取1ml,置100ml量瓶中,用流动相稀释至刻度,摇匀,作为对照溶液。另取地塞米松对照品,精密称定,加甲醇溶解并定量稀释制成每1ml中约含0.5mg的溶液,精密量取1ml,置100ml量瓶中,用流动相稀释至刻度,摇匀,作为对照品溶液。 【含量测定】 精密量取本品适量,用水定量稀释制成每1ml中约含地塞米松磷酸钠0.4mg的溶液,精密量取5ml,置50ml量瓶中,流动相稀释至刻度,摇匀,测定。色谱条件:检测波长:UV 242 nm 流动相:三乙胺溶液(三乙胺7.5ml,加水稀释至1000ml,用磷酸调pH至3.0±0.05)-甲醇-乙腈(55:40:5) 洗脱方式:等度 进样量:20 ul文章出处:迪马科技关键字:地塞米松磷酸钠,钻石二代,diamonsil C18(2),《中国药典》2010版,摘要:地塞米松磷酸钠注射液检测谱图:http://www.dikma.com.cn/Public/Uploads/images/12334(1).JPG

  • 地塞米松磷酸钠的检测!

    地塞米松磷酸钠的检测!

    关于溶剂效应是HPLC实验过程中经常遇到的问题,不仅影响峰形,而且对柱效的影响也是很明显的。在2010版药典中,地塞米松的检测,溶剂是甲醇,而现在2015版药典中的溶剂是流动相,实验室做了对比,和大家分享一下!!!http://ng1.17img.cn/bbsfiles/images/2016/03/201603301354_588606_1987954_3.pnghttp://ng1.17img.cn/bbsfiles/images/2016/03/201603301354_588607_1987954_3.png

地塞米松磷酸钠对照品相关的方案

地塞米松磷酸钠对照品相关的资讯

  • 日立应用|兽药疫苗如何选择
    地塞米松磷酸钠注射液中有关物质测定地塞米松磷酸钠是一种糖皮质激素类药。具有抗炎、抗过敏、和影响糖代谢的作用。在兽药临床上也应用广泛。本文参考《中国兽药典》2015版第一部,应用日立Primaide高效液相色谱仪,对兽药用地塞米松磷酸钠注射液中有关物质进行了测定,建立了该样品有关物质方法。实验准备色谱柱:inserSustain C18(5μm), 4.6 mm×250 mm流动相:PH3.0三乙胺溶液/甲醇/乙腈=55:40:5流 速:1.0mL/min柱 温:40℃;进样量:20μL检测波长:242nm 实验结果空白对照品溶液(5mg/ml)对照溶液(5mg/ml)杂质1供试品溶液供试品测定结果实验结论该实验使用日立Primaide高效液相色谱仪,配有紫外检测器,对地塞米松磷酸钠注射液的有关物质进行了检测,样品中杂质1与其它杂质的和超过限量,说明该注射液杂质超标。实验中空白未测到杂质峰,供试品溶液微量峰检测明显,可将不合格产品准确检出。兽药典规定杂质1与主峰比值为0.3,实测为0.29,结果可靠,符合兽药典。日立高效液相色谱仪 Primaide追求可靠性和耐用性,确保您能长时间稳定使用,为您日常分析工作提供强有力的支持。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 一招直接检测赛马毛发中的违禁药物——成像质谱显微镜技术应用大解析
    p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/1b29067b-1fd8-40e4-ad30-65ef06707ece.jpg" title="微信截图_20200619185620.png" alt="微信截图_20200619185620.png"//pp style="text-align: center "由 Equine Racing Co. Co.,Ltd. 的首席执行官 Masaru Sese 先生提供/pp style="text-align: justify line-height: 1.75em text-indent: 2em "1.简介/pp style="text-align: justify line-height: 1.75em text-indent: 2em "在法医学领域,除尿液作为药物测试样品外,毛发样品也在不断引起研究者注意。由于通常药物作为尿代谢产物接收检测时,如果没能在药物清除前采集到尿液样品,就无法检测出来。而毛发中的药物则不会代谢掉,并且停留时间很长。换言之,尿液中的药物可能会在最后一次摄入后几天内,由于代谢和排泄的关系排除体外,而毛发样品的特点在于只要不修剪,即可长期保留摄入历史。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  目前,已将气相色谱质谱(GC-MS)和液相色谱质谱(LC-MS)等常规手段作为检测毛发样品的新方法,投入实际使用。采集的毛发经洗涤、干燥后,切割为约 5mm 至 1cm 长度,经提取、纯化后,进行分析。人类毛发平均每月增长 1cm,如果可以确定所测毛发的位置,即可确定“何时使用过药物”、“使用过何种药物”以及“用量多少”。请关注 Ono、Mizuno 等人的文献,该文献作为法医学领域的毛发分析提供参考,包括上述样品预处理方法sup(1) - (3)/sup。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  当前此类毛发分析方法不仅在人来源样品,同时在赛马药物检测领域引起了极大关注sup(4)(5)/sup。迄今报告用于马毛分析的测试样品均来自马鬃毛(以下简称“马毛”)。但是,马毛通常较长,需要充分洗涤和干燥来去除样品表面的污染物。另外,由于切割后所得样品数量很多,前处理过程也会十分麻烦。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  鉴于此,目前除 GC-MS 或 LC-MS 方法以外,已有报道使用质谱成像(MSI)技术进行毛发分析的新方法。利用 MSI,经预处理的毛发样品可被直接分析。近年来,Kamata 等发表使用 MSI 检测人类毛发中药物摄入史的开创性论文sup(6) (7)/sup。使用 MSI 检测毛发中的药物摄入史,则必须沿纵向去除毛发角质层,露出髓质。该过程十分困难, 因此如参考文献 6 所述,尽管制造专用装置进行该步骤,依然无法去除长度超过约 1-2cm 的角质层。与人的毛发不同,马的鬃毛很长,从而导致这一过程变得更加麻烦,因此目前尚未有在马毛中进行检测药物摄入的报道。本文将介绍使用MSI 技术检测马毛中甾体抗炎药磷酸地塞米松的应用实例,该马毛样品长 4cm,经手动方式去除角质层。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  2. 质谱成像/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  在质谱分析时,分子被离子化,根据其在电场和磁场中的位移差来测量其质量(实际为 m/z 值,将质量除以离子所带电荷数)。如前所述,MSI 与使用现有 GC-MS 和LC-MS 方法的不同之处在于,无需进行提取,可直接分析样品表面,获得待测药物空间分布信息。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  通常的实验步骤包括准备样品切片,并将其放置在ITO 导电玻璃上。随后样品被电离并进行质谱分析。在分析时,确定样品检测区域和测量点间的间隔, 获取每个测量点的质谱图及对应位置信息。获取所有测量点质谱图后,选择与目标分子对应的m/z, 并根据其强度分布获得目标分子的定位信息。与常规成像技术不同,IMS 不需要进行免疫化学染色或span style="text-indent: 0em "GFP 标记等。由于直接获得分子量信息,可区分目标化合物的原型及其代谢物 由于能够同时电离多种化合物并进行质谱检测,可在一次分析中获得多种不同物质的定位信息。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  3. iMScope iTRIO/i 的开发理念/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  目前,可以在多种质谱仪上进行 MSI 实验,可选择的离子源以及质谱种类也是各种各样。自 2004 年以来,作者与岛津株式会社(8)合作开发iMScope TRIO™ 成像质谱显微镜,目前正在大阪大学岛津分析创新研究实验室(9)进行各种相关应用研究。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  iMScope TRIO 的开发理念如图 1 所示。尽管普通显微镜可以观察组织结构,但很难获取相关各种组分的信息。另一方面,iMScope TRIO 将对样品的显微观察和基质辅助激光解吸电离(MALDI)技术相结合从而进行成像质谱分析。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/2029d9c6-f5b4-43f7-b811-16f72c0baad9.jpg" title="1.png" alt="1.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 1 iMScope iTRIO/i™ 成像质谱显微镜的理念/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  使用常规显微镜,可区分样品结构上的差异,但是难以获取相关化学成分的信息。相比之下,iMScope iTRIO/i™ 可同时进行光学显微观察和质谱检测,获得对应组分的强度分析信息。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/a181f299-6dcb-4cff-a093-46608a9dd1f2.jpg" title="2.png" alt="2.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 2 本研究中使用的分析设备/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A) iMLayer™ :基质升华仪,(B)iMScope iTRIO/i ™ :成像质谱检测,以及(C)iMScope iTRIO/i ™ 系统的示意图。该系统在大气压下进行样品的显微镜观察,并使用 MALDI 电离方式,生成的离子引入离子阱并由飞行时间质谱仪进行检测。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  4. 实验方法/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本研究使用 iMLayer™ 基质升华仪进行 MALDI 基质涂敷(图 2(A))。所用基质为 α-氰基-4-羟基肉桂酸(α-CHCA,Merck)和 9-氨基吖啶(9-AA, 东京化学工业有限公司),分别用于正离子模式分析和负离子模式分析,通过 iMLayer 涂敷在样品表面上厚度为 0.5 μm。正离子模式分析中,基质升华后,使用喷枪手动喷涂 α-CHCA 溶液(10 mg/ml, 使用 30%乙腈/0.1%甲酸溶液)sup(10)/sup。负离子模式分析中,9-AA 升华后,将 5%的甲醇蒸气喷覆于样品表面 3 秒钟,进行重结晶sup(11)/sup。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  使用iMScopei TRIO/i 进行检测(图 2(B),(C))。如上所述,iMScope TRIO 配有光学显微镜,可在大气压下获得样品表面图像,同时配置大气压MALDI 离子源。MALDI 所用激光器为 Nd:YAG 激光器,频率为 1 kHz。在大气压下产生的离子通过差级真空系统导入质量分析单元,并由离子阱飞行时间质谱仪检测。质量范围(m/z)在 50-3000 之间,本次目标药物磷酸地塞米松为小分子药物,质量范围设定至m/z1000。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  图 3(A)显示该样品的的分析流程。基本过程:span style="text-indent: 0em "采集马毛、去除角质层、涂覆基质、使用 iMScope /spani style="text-indent: 0em "TRIO/ispan style="text-indent: 0em " 检测成像。用浸有蒸馏水的布擦拭所采集每一束马毛的表面。该方式仅针对 MSI 可行,因为MSI 无需提取即可直观分析样品。相反,在已有方法中,如清洗不充分,在提取过程中会发生污染问题。清洁马毛表面后,立即干燥马毛。将干燥后的马毛固定于黏贴导电双面胶带的 ITO 载玻片(Matsunami Glass Ind.,Ltd.)上,并使用切片刀在立体显微镜下从毛囊末端开始去除角质层,如图3(B)所示。由于马毛的直径约为人类毛发直径的两倍(约 200μm),因此即使通过手动操作,也可轻松去除表面。除去角质层后,将剩余附着于 ITO 玻璃载玻片上的毛发作为待测样品,涂覆基质并进行检测。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本研究所使用药物为地塞米松磷酸钠(DexaSP),为一类甾体类抗炎药。DexaSP 可使用 9-AA 基质直接以负离子模式进行检测。或者,通过用吉拉德T 试剂(GirT)对DexaSP 进行衍生化,提高正离子模式的离子化效率(图 4)sup(12)/sup。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/6d74094f-3a75-4167-8954-e714ae6c80a0.jpg" title="3.png" alt="3.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 3(A)分析流程和(B)马毛表皮去除方法/pp style="text-indent: 0em line-height: 1.75em text-align: center "在立体显微镜下使用冷冻切片机刀片去除角质层,暴露出髓质/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/60fdbd8b-a130-43a6-87b2-c4fd636464d0.jpg" title="4.png" alt="4.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 4 地塞米松磷酸钠(DexaSP)是靶向药物/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  如进行正离子模式检测,将以 Gir T 试剂作为衍生试剂生成的 DexaSP 衍生物作为检测目标。对于负离子模式检测,将无变化的 DexaSP 作为检测目标。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  5. 结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  图5 显示使用标准品在正离子模式和负离子模式获得的检测结果。span style="text-indent: 0em "如前所述,在正离子模式检测中,将 GirT 衍生后的 DexaSP 衍生物作为检测目标,而在负离子模式检测中,将无变化 DexaSP 作为检测目标。正离子模式下, 使用α-CHCA 检测,DexaSP 衍生物的质荷比为 m/z 586.267,对应[GirT-DexaSP-2Na + 2H] +离子。另一方面,负离子模式中,使用 9-AA 检测, [DexaSP-H]- 的质荷比为 471.160。两种模式下均观察到 DexaSP 由来的峰,但鉴于前处理所需时间且负离子模式强度约高出正离子模 式 100 倍,决定使用 9-AA 在负离子模式下对马毛进行检测。/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  分析可疑马毛样本时,需进行对照实验,检测未给予 DexaSP 的马毛样品,确认没有 m/z 471.160 离子的出现(图 6(A))。图 6(B)显示地塞米松磷酸酯给药后马毛的质谱成像结果。该测试样品于 2017 年 7 月 13 日采集的马毛,该马匹在 2017 年 6 月上旬,连续 3 天注射 15 至 20 mL 0.1%的地塞米松磷酸钠水溶液(Fujita Pharmaceutical Co)。iMScope TRIO 的测量间隔在 x 方向上为 80 μm,在y 方向上为 5 μm,激光斑点大小为 2(系统参数)。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  在该实验中,测量总长为 4cm 的马毛,将其划分为1cm 的区间分别进行检测。在图 6(B)中,所得数据虽然分为 4 个部分,但马毛样本并未被分割: 4cm 长的马毛被固定在 ITO 载玻片上。从毛囊向尖端进行扫描,并在距毛囊约 16.48 mm 处,检测到较高强度地塞米松磷酸酯信号。该结果是首次从毛发中直接检测到原本会于体内迅速代 谢的磷酸酯,具有重要意义。此处质谱成像结果使用绝对强度来表示峰强度,并在 300-1500 强度范围内以多色带显示。在这一结果中暖色表示较高的峰强度。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/d2a0f5a7-7467-4895-8488-c1387c81251f.jpg" title="5.png" alt="5.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 5 标准品的检测结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  正离子模式和负离子模式均可获得信号,但考虑前处理的简便性和离子强度的差异,选择负离子模式进行检测。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/f4d9af67-3298-4f85-9e23-22c90acd07f8.jpg" title="6.png" alt="6.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 6 马毛中 DexaSP 分布检测结果/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)是未给药马匹的马毛检测结果,作为阴性对照 (B)给药后马匹的马毛中检测结果(注射 15-20 mL 由 Fujita Pharmaceutical Co.提供的 0.1%地塞米松磷酸钠水溶液,浓度 1.315 mg/mL, 连续注射 3 天。)用 iMScope TRIO™ 扫描从毛囊开始 4 cm 长度的马毛样本。记录每 1 cm 马毛的检测结果。在距毛囊 16.48 mm 处观察到目标药物最大强度。由于马毛平均每月以 2.0 cm 的速度生长,可判断在采样日期前 25 天给药。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  6. 讨论/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  本实验中,根据目标化合物离子化效果选择负离子模式进行分析,成功在马毛中检测出目标药物。给药后的马毛样本中,在距毛囊 16.48 mm 位置处观察到药物的强大信号。马毛的平均生长速度为每月2cm,是人类的两倍。 基于该生长速率以及最大强度信号距离毛囊的位置估算给药时间,大约在24-25 天前。根据给药记录,该药物在采集毛发前约一个月给药,通过对比该信息,认为药物定位正确。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  另一方面,尽管离子强度较低,但是在毛囊附近依然检测到一些信号。经确认质谱图,发现该信号源自噪声,由此认为进一步提高离子化效率和信噪比对分析实际样品十分重要。为达到这一目标,可能需要进一步改进基质涂覆方法或选择其他基质。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  7. 总结与展望/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  地塞米松磷酸钠是一种经获准使用的抗炎药,但禁止在比赛前使用sup(13)/sup。最近一次在 2016 年 12 月东京大奖赛上,冠军赛马阿波罗肯塔基在赛后发现使用过这一药物的事件依然记忆犹新。本次结果是将iMLayer 基质升华与iMScopei TRIO /i成像质谱分析相结合,应用于违禁药物检测领域的首个示例。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  此外,由于磷酸酯可在体内迅速代谢,直接在毛发中检测到未变化药物同样是一项十分重要的成果。另一方面,由于在成像结果中存在大量噪声,有必要对毛发预处理流程进行进一步优化,提高离子强度。从该检测结果来看,探索对可检测药物(包括合成类固醇类)定量分析方法的建立也是必不可少的。尽管该应用仍存在许多问题以待解决,但我们依然认为iMScope iTRIO/i 的潜力十分值得期待。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  8. 马毛分析的可能性/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  当前,世界范围内关于赛马违禁药物控制的讨论很多, 讨论赛马违禁药物检测和赛马伤害保护(ICRAV:国际赛马分析专家和兽医会议)的国际会议每两年召开一次。2018 年,在阿拉伯联合酋长国的迪拜举行该会议,作者首次参加并介绍了这项研究结果。图 7 显示了会场和 Meydan 赛马场的景色。能够在世界顶级赛马场之一的 Meydan 赛马场旁会议厅中展示这项研究,是迄今为止作者一生中最难忘的事件之一。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  通常,来自日本的参会者均为 JRA 相关人员或赛马化学实验室的研究人员,而作者则是大学中唯一的参会者。不仅如此,来自香港赛马会、澳大利亚赛马会和其他地方的研究人员对使用 IMS 进行药物检测产生了浓厚兴趣并寄予厚望,讨论非常活跃。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  2018 年 11 月,在撰写本文时,岩手赛马比赛中参赛的赛马 Ubatouban 被检测出使用禁用药品去氢睾酮(14)。今后,我将继续改进和优化该检测方法(包括简化毛发前处理技术),使这种来自日本的新型检测方法在世界赛马领域中用以进行违禁药品检测。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  作者同时还得到岛津制作所的大力支持, 并与Equine Racing Co., Ltd.的全体员工进行广泛合作,其中来自Equine Racing Co., Ltd.的代表人也是本文的合著者。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  作者将在图8 中展示马毛采样图片以及作者和合著者的最新照片作为本文的结尾。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/ee91fa21-88d0-4e07-a965-a1df9ad924ef.jpg" title="7.png" alt="7.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 7 ICRAV2018/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)、(B)ICRAV 2018 会场的场景,(C)举行 ICRAV 的 Meydan 赛马场。Meydan 赛马场景色壮观,其规模和完备程度在日本也数一数二。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/6a43445f-916c-4ab3-9fb7-890880d85bf3.jpg" title="8.png" alt="8.png"//pp style="text-align: center text-indent: 0em line-height: 1.75em "  图 8 参观 Equine Racing Co., Ltd./pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (A)Equine Racing Co., Ltd.的工作人员介绍马匹。(B)在马腿上可以看到的称为“栗子”的部分:角质化的退化拇指(C) 鬃毛采样 (D)作者(右)和合著者(左)的近期照片。/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  参考文献/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (1) Masahiro Ohno (2005) Asahi Law Review, 32, 144-199/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (2) Dai Mizuno (2017) Analysis, 12, 589-590/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (3)Shima N et al. (2017) Drug. Metab. Dispos., 45, 286-293, https://doi.org/10.1124/dmd.116.074211/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (4)Wong JKY et al. (2018) J. Pharm. Biomed. Anal., 158, 189-203,a href="https://doi.org/10.1016/j.jpba.2018.05.043" _src="https://doi.org/10.1016/j.jpba.2018.05.043"https://doi.org/10.1016/j.jpba.2018.05.043/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(5) Madry MM et al. (2016) BMC Vet. Res., 12, 84, /spana href="https://doi.org/10.1186/s12917-016-0709-5" _src="https://doi.org/10.1186/s12917-016-0709-5" style="text-indent: 0em "https://doi.org/10.1186/s12917-016-0709-5/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(6)Kamata T et al. (2015) Anal. Chem., 87, 576-81, https://pubs.acs.org/doi/10.1021/acs.analchem.5b00 971/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (7)Hang W, Ying Wang (2017) Anal. Chimica Acta, 975, 42-51, a href="https://doi.org/10.1016Zj.aca.2017.04.012" _src="https://doi.org/10.1016Zj.aca.2017.04.012"https://doi.org/10.1016Zj.aca.2017.04.012/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(8)Harada T et al. (2009) Anal. Chem., 81,9153-7, https://doi.org/10.1021/ac901872n/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (9) https://www.shimadzu.co.jp/labcamp//pp style="text-align: justify text-indent: 0em line-height: 1.75em " (10)Shimma S et al. (2013) J. Mass Spectrom., 48, 1285-90, https://doi.org/10.1002/jms.328/pp style="text-align: justify text-indent: 0em line-height: 1.75em " (11)Nakamura J et al. (2017) Anal. Bioanal. Chem., 409, 1697-1706, a href="https://10.1007/s00216-016-0118-4" _src="https://10.1007/s00216-016-0118-4"https://10.1007/s00216-016-0118-4/a/pp style="text-align: justify line-height: 1.75em text-indent: 2em "span style="text-indent: 0em "(12) Shimma S et al.(2016) Anal. Bioanal. Chem., 408, 7607-7615,/spanspan style="text-indent: 0em "https://doi.org/10.1007/s00216-016-9594-9/span/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (13) http://company.jra.jp/0000/law/law07/07.pdf/pp style="text-align: justify text-indent: 0em line-height: 1.75em "  (14) http://www.iwatekeiba.or.jp/news/180915i/ppbr//p
  • 兽药非法添加物检测标准与方法集合(截至2024年6月30日)
    兽药非法添加物通常指的是在兽药生产过程中未经批准或超出规定范围添加的化学物质,这些物质可能对动物健康和人类食品安全构成风险。及时对兽药非法添加物进行检测,可以确保兽药的安全性和有效性,防止非法添加物对动物和人类健康造成危害,同时保障食品安全和公共卫生。兽药非法添加物检测通常在以下情况下进行:1. 兽药生产过程中的质量控制。2. 兽药上市前的注册检验。3. 市场监管中的随机抽检。4. 怀疑兽药存在质量问题时的专项检测。通过这些检测,可以及时发现并处理非法添加问题,保护消费者权益,维护市场秩序。检测主要用到的仪器为:高效液相色谱仪、液相色谱-质谱联用仪、显微镜等。中国农业农村部已经组织制定了多项兽药中非法添加物的检查方法标准,以加强兽药监管。这些标准包括《兽药制剂中非法添加磺胺类药物检查方法》、《兽药中非特定非法添加物质检查方法》等,旨在规范兽药生产,确保兽药中不含有非法添加物质。据仪器信息网查询和统计,截至2024年6月30日,农业农村部官方网站上一共公告了61种兽药非法添加物检测标准与方法,整理如下表所示,供各行业的读者参考借鉴。序号名称兽药制剂非法添加物发布时间文件/公告号01《硫酸卡那霉素注射液中非法添加尼可刹米检查方法》硫酸卡那霉素注射液尼可刹米2016.05.09农业部公告第2395号02《恩诺沙星注射液中非法添加双氯芬酸钠检查方法》恩诺沙星注射液双氯芬酸钠2016.05.19农业部公告第2398号03《中药散剂中非法添加呋喃唑酮、呋喃西林、呋喃妥因检查方法》中药散剂:止痢散、清瘟败毒散、银翘散呋喃唑酮、呋喃西林、呋喃妥因2016.09.23农业部公告第2448号《兽药制剂中非法添加磺胺类药物检查方法》等34项检查方法(修订31个;新建3个)04《中兽药散剂中非法添加氯霉素检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散氯霉素2016.09.2305《中药散剂中非法添加乙酰甲喹、喹乙醇检查方法》中药散剂:止痢散、健胃散、清瘟败毒散、胃肠活、肥猪散、清热散、银翘散乙酰甲喹、喹乙醇2016.09.2306《黄芪多糖注射液中非法添加解热镇痛类、抗病毒类、抗生素类、氟喹诺酮类等11种化学药物(物质)检查方法》黄芪多糖注射液解热镇痛类:对乙酰氨基酚、安乃近、氨基比林、安替比林;抗病毒类:利巴韦林、盐酸吗啉胍;抗生素类:林可霉素;氟喹诺酮类:诺氟沙星、氧氟沙星、环丙沙星、恩诺沙星等11种化学药物( 物质)2016.09.2307《肥猪散、健胃散、银翘散等中药散剂中非法添加氟喹诺酮类药物(物质)检查方法》肥猪散、健胃散、银翘散氟喹诺酮类药物(物质):氧氟沙星、诺氟沙星等2016.09.2308《氟喹诺酮类制剂中非法添加乙酰甲喹、喹乙醇等化学药物检查方法》氟喹诺酮类制剂:氧氟沙星制剂、诺氟沙星(及其盐)制剂、恩诺沙星(及其盐)制剂、环丙沙星(及其盐)制剂乙酰甲喹、喹乙醇2016.09.2309《氟苯尼考粉和氟苯尼考预混剂中非法添加氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星检查方法》氟苯尼考粉、氟苯尼考预混剂氧氟沙星、诺氟沙星、环丙沙星、恩诺沙星2016.09.2310《氟苯尼考制剂中非法添加磺胺二甲嘧啶、磺胺间甲氧嘧啶检查方法》氟苯尼考制剂:氟苯尼考可溶性粉、氟苯尼考粉、氟苯尼考预混剂、氟苯尼考溶液、氟苯尼考注射液磺胺二甲嘧啶、磺胺间甲氧嘧啶2016.09.2311《乳酸环丙沙星注射液中非法添加对乙酰氨基酚检查方法》乳酸环丙沙星注射液对乙酰氨基酚2016.09.2312《阿莫西林可溶性粉中非法添加解热镇痛类药物检查方法》阿莫西林可溶性粉解热镇痛类药物:对乙酰氨基酚、安替比林、氨基比林、安乃近、萘普生2016.09.2313《注射用青霉素钾(钠)中非法添加解热镇痛类药物检查方法》注射用青霉素钾(钠)解热镇痛类药物:安乃近、对乙酰氨基酚、氨基比林、安替比林、2016.09.2314《氟苯尼考制剂中非法添加烟酰胺、氨茶碱检查方法》氟苯尼考制剂:氟苯尼考粉、氟苯尼考可溶性粉、氟苯尼考预混剂烟酰胺、氨茶碱2016.09.2315《氟喹诺酮类制剂中非法添加对乙酰氨基酚、安乃近检查方法》氟喹诺酮类制剂:氧氟沙星、诺氟沙星(及其盐)、恩诺沙星(及其盐)、环丙沙星(及其盐)注射液、可溶性粉及粉剂对乙酰氨基酚、安乃近2016.09.2316《硫酸庆大霉素注射液中非法添加甲氧苄啶检查方法》硫酸庆大霉素注射液甲氧苄啶2016.09.2317《氟苯尼考固体制剂中非法添加β-受体激动剂检查方法》氟苯尼考固体制剂:氟苯尼考粉、可溶性粉、预混剂β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2318《盐酸林可霉素制剂中非法添加对乙酰氨基酚、安乃近检查方法》盐酸林可霉素制剂:盐酸林可霉素可溶性粉、注射液乙酰氨基酚、安乃近2016.09.2319《黄芪多糖注射液中非法添加地塞米松磷酸钠检查方法》黄芪多糖注射液地塞米松磷酸钠2016.09.2320《氟苯尼考液体制剂中非法添加β-受体激动剂检查方法》氟苯尼考液体制剂:氟苯尼考注射液、溶液β-受体激动剂:克伦特罗、莱克多巴胺、沙丁胺醇、西马特罗、西布特罗、妥布特罗、马布特罗、特布他林、氯丙那林2016.09.2321《柴胡注射液中非法添加利巴韦林检查方法》柴胡注射液利巴韦林2016.09.2322《柴胡注射液中非法添加盐酸吗啉胍、金刚烷胺、金刚乙胺检查方法》柴胡注射液盐酸吗啉胍、金刚烷胺、金刚乙胺2016.09.2323《柴胡注射液中非法添加对乙酰氨基酚检查方法》柴胡注射液对乙酰氨基酚2016.09.2324《鱼腥草注射液中非法添加甲氧氯普胺检查方法》鱼腥草注射液甲氧氯普胺2016.09.2325《鱼腥草注射液中非法添加林可霉素检查方法》鱼腥草注射液林可霉素2016.09.2326《鱼腥草注射液中非法添加水杨酸、氧氟沙星检查方法》鱼腥草注射液水杨酸、氧氟沙星2016.09.2327《中兽药散剂中非法添加金刚烷胺和金刚乙胺检查方法》中兽药散剂:白头翁散、苍术香连散、银翘散金刚烷胺、金刚乙胺2016.09.2328《扶正解毒散中非法添加茶碱、安乃近检查方法》扶正解毒散茶碱、安乃近2016.09.2329《黄连解毒散中非法添加对乙酰氨基酚、盐酸溴己新检查方法》黄连解毒散对乙酰氨基酚、盐酸溴己新2016.09.2330《酒石酸泰乐菌素可溶性粉中非法添加茶碱检查方法》酒石酸泰乐菌素可溶性粉茶碱2016.09.2331《硫酸安普霉素可溶性粉中非法添加诺氟沙星检查方法》硫酸安普霉素可溶性粉诺氟沙星2016.09.2332《硫酸黏菌素预混剂中非法添加乙酰甲喹检查方法》硫酸黏菌素预混剂乙酰甲喹2016.09.2333《硫酸安普霉素可溶性粉中非法添加头孢噻肟检查方法》硫酸安普霉素可溶性粉头孢噻肟2016.09.2334《阿维拉霉素预混剂中非法添加莫能菌素检查方法》阿维拉霉素预混剂莫能菌素2016.09.2335《甘草颗粒中非法添加吲哚美辛检查方法》甘草颗粒吲哚美辛2016.09.2336《兽药制剂中非法添加磺胺类药物检查方法》阿莫西林可溶性粉、氟苯尼考粉、盐酸林可霉素注射液、伊维菌素注射液、恩诺沙星注射液、盐酸环丙沙星可溶性粉、鱼腥草注射液、止痢散、黄芪多糖注射液、健胃散磺胺类药物:磺胺嘧啶、磺胺二甲嘧啶、磺胺对甲氧嘧啶、磺胺间甲氧嘧啶、磺胺甲噁唑2016.09.2337《兽药中非法添加甲氧苄啶检查方法》替米考星预混剂、磷酸泰乐菌素预混剂、盐酸多西环素可溶性粉、乳酸环丙沙星可溶性粉及注射液、恩诺沙星注射液甲氧苄啶2016.10.08农业部公告第2451号38《兽药中非法添加氨茶碱和二羟丙茶碱检查方法》环丙沙星注射液及可溶性粉、恩诺沙星注射液、替米考星注射液及预混剂、盐酸多西环素可溶性粉、酒石酸泰乐菌素可溶性粉、磷酸泰乐菌素预混剂、金花平喘散、荆防败毒散、麻杏石甘散氨茶碱、二羟丙茶碱2016.10.0839《兽药中非法添加对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠检查方法》氟苯尼考粉及预混剂、泰乐菌素预混剂、替米考星预混剂及注射液、板蓝根注射液、穿心莲注射液对乙酰氨基酚、安乃近、地塞米松和地塞米松磷酸钠2016.10.0840《兽药中非法添加喹乙醇和乙酰甲喹检查方法》硫酸黏菌素可溶性粉及预混剂、黄连解毒散、白头翁散喹乙醇和乙酰甲喹2016.10.0841《硫酸黏菌素制剂中非法添加阿托品检查方法》硫酸黏菌素制剂:硫酸黏菌素可溶性粉、硫酸黏菌素预混剂阿托品2016.10.0842《鱼腥草注射液中非法添加庆大霉素检查方法》鱼腥草注射液庆大霉素2017.02.27农业部公告第2494号43《兽药中非法添加非泼罗尼检查方法》阿维菌素粉非泼罗尼2017.08.31农业部公告第2571号44《兽药中非法添加药物快速筛查法(液相色谱-二级管阵列法)》兽药兽药及其原料与辅料中紫外光谱图库中所列153种药物2019.05.16农业部公告第169号45《麻杏石甘口服液、杨树花口服液中非法添加黄芩苷检查方法》麻杏石甘口服液、杨树花口服液黄芩苷2019.07.31农业农村部公告第199号46《兽药中非特定非法添加物质检查方法》兽药非特定非法添加物质:对人或动物具有药理活性或毒性作用等的物质2020.05.09农业农村部公告第289号47《中兽药固体制剂中非法添加物质检查方法—显微鉴别法》不含动物类、矿物类药材的中兽药散剂;中兽药散剂、颗粒剂、胶囊剂、片剂、丸剂、锭剂化学成分;其他药味2020.05.0948《兽药中非法添加硝基咪唑类药物检查方法》盐酸多西环素可溶性粉、硫酸新霉素可溶性粉罗硝唑、甲硝唑、替硝唑、地美硝唑、奥硝唑或异丙硝唑2020.05.0949《兽药中非法添加四环素类药物的检查方法》麻杏石甘散、银翘散、替米考星预混剂、氟苯尼考预混剂、磺胺氯吡嗪钠可溶性粉四环素类药物:土霉素、盐酸四环素、盐酸金霉素或多西环素2020.11.19农业农村部公告第361号50《兽药固体制剂中非法添加酰胺醇类药物的检查方法》健胃散、止痢散、球虫散、胃肠活、阿莫西林可溶性粉、氨苄西林可溶性粉、硫酸新霉素可溶性粉、盐酸大观霉素林可霉素可溶性粉、盐酸土霉素预混剂、注射用盐酸土霉素、盐酸金霉素可溶性粉、酒石酸泰乐菌素可溶性粉、硫酸红霉素可溶性粉、替米考星预混剂、盐酸林可霉素可溶性粉、硫酸粘菌素可溶性粉、恩诺沙星可溶性粉、盐酸环丙沙星可溶性粉、氧氟沙星可溶性粉、盐酸环丙沙星小檗碱预混剂、阿苯达唑伊维菌素预混剂、阿维菌素粉、地克珠利预混剂、维生素C可溶性粉、复方维生素B可溶性粉酰胺醇类药物:甲砜霉素、氟苯尼考、氯霉素2020.11.1951《兽药制剂中非法添加磺胺类及喹诺酮类25种化合物检查方法》黄芪多糖注射液、维生素C可溶性粉、硫酸卡那霉素注射液磺胺脒、磺胺、磺胺二甲异嘧啶钠、磺胺醋酰、磺胺嘧啶、甲氧苄啶、磺胺吡啶、马波沙星、磺胺甲基嘧啶、氧氟沙星、培氟沙星、洛美沙星、达氟沙星、恩诺沙星、磺胺间甲氧嘧啶、磺胺氯达嗪钠、沙拉沙星、磺胺多辛、磺胺甲噁唑、磺胺异噁唑、磺胺苯甲酰、磺胺氯吡嗪钠、磺胺地索辛、磺胺喹噁啉或磺胺苯吡唑等磺胺类及喹诺酮类25种化合物2021.01.11农业农村部公告第384号52林可霉素注射液中非法添加盐酸左旋咪唑检查方法林可霉素注射仦盐酸左旋咪唑2021.11.8农业农村部公告第485号53硫酸新霉素可溶性粉中非法添加苯并咪唑和大环内酯类抗寄生虫药物检查方法硫酸新霉素可溶性粉氧阿苯达唑、阿苯达唑、芬苯达唑、三氯苯达唑、乙酰氨基阿维菌素、阿维菌素、伊维菌素2022.10.13农业农村部公告第611号54复方麻黄散中非法添加喹烯酮检查方法复方麻黄散喹烯酮2022.10.13农业农村部公告第611号55恩诺沙星注射液中非法添加呋噻米检查方法恩诺沙星呋噻米2022.10.13农业农村部公告第611号56鸡传染性支气管炎活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性支气管炎活疫苗-2023.10.23农业农村部公告第717号57鸡传染性法氏囊病活疫苗中非法添加/改变制苗用毒种检测方法鸡传染性法氏囊病活疫苗-2023.10.2358鸡新城疫活疫苗中非法添加/改变制苗用毒种检测方法鸡新城疫活疫苗-2023.10.2359禽用灭活疫苗中非法添加禽腺病毒Ⅰ群全病毒抗原检测方法禽用灭活疫苗-2023.10.2360禽用灭活疫苗中非法添加禽流感病毒抗原检测方法禽用灭活疫苗禽流感病毒抗原2017.6.12农业部公告第2538号61清瘟败毒片中非法添加三磷酸核苷竞争性抑制剂(GS-441524)检查方法清瘟败毒片三磷酸核苷竞争性抑制剂(GS-441524)2024.6.19农业农村部公告第801号参考自农业农村部官方网站:http://www.xmsyj.moa.gov.cn/zcjd/202403/t20240321_6452006.htmhttp://www.xmsyj.moa.gov.cn/gzdt/202406/t20240619_6457458.htm

地塞米松磷酸钠对照品相关的仪器

  • PhosphaxSigma 总磷/正磷酸盐分析仪 仪器简介:典型应用:地表水、生活污水、工业废水总磷含量自动分析监测;工业循环水总磷/正磷/有机磷连续自动监测,控制缓蚀阻垢剂自动添加测量原理:水中聚磷酸盐和其他含磷化合物,在高温、高压的酸性条件下水解,生成磷酸根;对于其他难氧化的磷化合物,则被强氧化剂过硫酸钠氧化为磷酸根。磷酸根离子在含钼酸盐的强酸溶液中,生成一种锑化合物,这种化合物被抗坏血酸还原为蓝色的磷钼酸盐。测量磷钼酸盐的吸光度,和标准比较,就得到样品的总磷含量。PhosphaxSigma 总磷/正磷酸盐分析仪 技术参数:测量范围:总磷:0.01-5.0mg/L(以磷计)正磷酸盐:0.01-5.0mg/L测量准确度:± 2%测量周期:约10分钟仪器校准:自动样品流速:100ml/h试剂更换周期:3个月信号输出:2路4-20mA模拟输出;最大负载500欧姆;RS232可选通讯协议:Modbus 和Profibus 可选工作温度:5-40℃电源要求:220Vac/50HzPhosphaxSigma 总磷/正磷酸盐分析仪 主要特点:● 可自动分析总磷及正磷,并直接显示出含磷缓蚀阻垢剂浓度● 采用符合标准方法(DIN38 405 D11)的钼蓝法测量● 响应速度快,总磷测试仅需10分钟● 仪器有自动校准功能,准确度高● 有自动清洗功能,维护量小● 配置有安全防护面板,安全性高● 测试结果可以图形或数据显示
    留言咨询
  • 禾工科仪 ALT电镀产线三价铬、次磷酸钠在线分析仪是一款由禾工科仪自主研发的无人值守的工业过程在线分析滴定仪,取代人工分析,可实现自动取样、上样、信号测量、滴定分析、自动清洗、自动分析、在获取分析结果后根据生产工艺控制加药泵对槽液进行精确配比加药,将槽液指标维持在生产工艺的预设范围内,还可将分析结果和加药量发送给服务器的数据库进行存储和统计,满足现代化生产过程控制的要求。ALT电镀产线三价铬、次磷酸钠在线分析仪采用A8处理器,模块化设计, 七英寸中文人机对话全彩触摸屏,高精度滴定管、电磁切换阀、长寿命溶剂泵,高分辨率的颜色采集模块和多样的检测模块,可通过测量电极的电位变化和颜色变化的自动判断,来指示滴定的终点,根据样品性质,仪器选用不同电极和检测器进行自动颜色滴定、pH滴定、氧化还原滴定、络合滴定、非水滴定和沉淀滴定等多种滴定,适用于化工、环保、食品、制药、造纸、纺织、冶金、金属表面处理、水质处理等领域。ALT电镀产线三价铬、次磷酸钠在线分析仪 功能示意图在线设备的开发标准:结果准确,控制精确,可靠稳定,智能可控。禾工科仪目前具备下列行业及生产控制领域的样品在线检测及现场药水添加系统开发经验:工业涂装工艺流程生产线、印染工艺生产线、PCB印刷生产流水线、冶金治炼流水线、各类化工过程槽液浓度参数控制等领域的酸值、碱值、水质硬度、钙镁等金属与氯氟等非金属离子的在线浓度监测与药水添加系统。ALT电镀产线三价铬、次磷酸钠在线分析仪 产线应用示意图* 根据行业生产线专业定制研发,在线分析,无人值守,可完全替代人工;* 在线分析模块可进行分析自动化进程的编辑、修改和存储;包括在线自动取样,自动上样,自动分析,自动清洗,自动数据存储;计算公式可进行编辑和存储,分析完成后自动计算最终结果并发送给服务器;* 过程控制模块可监控多台在线分析仪的状态,并可根据客户需要开发配合自动化生产控制功能,本设备具有监控报警功能,可设置,液体,电源及分析结果等异常报警功能;★配置清单(基本配置):数量1、主机控制单元 1套2、高精度滴定馈液单元2套3、搅拌滴定台(通用)1个4、电位滴定(PH滴定)模块1套5、双铂针测量电极1支6、精密辅助泵(含控制系统)2个7、通讯模块(RS232,TCP/IP,MODBUS)1套8、滴定控制软件(在线滴定,自动计算,自动输出)1套9、整机安装及机箱与包装1套10、新机安装培训服务及12个月有限保修服务1台
    留言咨询
  • PAL-70s磷酸钠浓度计技术参数:货号:4470型号:PAL-70S应用范围:磷酸钠(%)测量范围:0-15%测量精度:±0.3%温度补偿范围:10-40℃
    留言咨询

地塞米松磷酸钠对照品相关的耗材

  • 2. 以下物质的分析,推荐使用色谱柱 Cosmosil MS-II/PAQ
    2. 以下物质的分析,推荐使用色谱柱 Cosmosil MS-II/PAQ 莫雷西嗪,盐酸索他洛尔,盐酸氨溴索,盐酸倍他司汀,盐酸奈替芬,盐酸麻黄碱,盐酸维拉帕米,盐酸喹那普利,盐酸氯丙那林,盐酸氯米帕明,盐酸氯胺酮,盐酸奥昔布宁,盐酸普奈洛尔,盐酸普鲁卡因,盐酸雷尼替丁,盐酸溴己新,盐酸罂粟碱,盐酸赛洛唑啉,盐酸噻氯匹定,格列本脲,格列吡嗪,格列喹酮,核黄素磷酸钠,氧氟沙星,氨甲环酸,氨曲南,氨苄西宁,氨茶碱,氨鲁米特,胸腺法新,倍他米松磷酸钠,胰岛素,高三尖杉酯碱,盐酸占替诺,酒石酸长春瑞滨,酒石酸美托洛尔,消旋山莨菪碱,诺氟沙星,萘普生,萘普生拴,萝巴新,酚咖片,辅酶Q10,阿司匹林,羟甲香豆素,羟苯磺酸钙,羟基脲,维A酸,维生素B1,维生素B2,维生素B6,维生素B12,替加氟片,替考拉宁,替硝唑,联苯苄唑,葛根素,葡萄糖酸氯己定含漱液,硝苯地平。 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息:www.greenherbs.com.cn
  • 7种混合阴离子对照品 I, 50 mL
    7种混合阴离子对照品 I, 50 mL
  • 6种阳离子混合对照品-II, 50 mL
    6种阳离子混合对照品-II, 50 mL

地塞米松磷酸钠对照品相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制