大鼠骨肉瘤细胞

仪器信息网大鼠骨肉瘤细胞专题为您提供2024年最新大鼠骨肉瘤细胞价格报价、厂家品牌的相关信息, 包括大鼠骨肉瘤细胞参数、型号等,不管是国产,还是进口品牌的大鼠骨肉瘤细胞您都可以在这里找到。 除此之外,仪器信息网还免费为您整合大鼠骨肉瘤细胞相关的耗材配件、试剂标物,还有大鼠骨肉瘤细胞相关的最新资讯、资料,以及大鼠骨肉瘤细胞相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

大鼠骨肉瘤细胞相关的资料

大鼠骨肉瘤细胞相关的论坛

  • 国际研究发现中药可切断肿瘤转移通路

    最新发现与创新 中国科技网讯 对于恶性肿瘤患者而言,最可怕的莫过于肿瘤出现转移扩散,因为这意味着肿瘤病变已经发展到晚期,也是肿瘤治疗失败的重要原因之一。今天(7日)在第七届中国肿瘤学术大会上披露,国际权威学术杂志《抗癌研究》(Anticancer Research)刊发了英国卡迪夫大学关于中药抑制肿瘤转移的研究报告,在国际上引起广泛关注。 英国卡迪夫大学医学院研究证实,我国抗肿瘤创新中药养正消积胶囊可有效抑制肿瘤细胞侵袭转移。研究人员指出,在肿瘤细胞的侵袭转移过程中,磷酸肌醇 3-激酶/蛋白激酶 B(PI3K/AKT) 信号通路的过度激活起到了关键作用,养正消积胶囊可以显著干预 PI3K/AKT 通路,从而对乳腺癌、肠癌、前列腺癌、肺癌、胃癌和骨肉瘤等肿瘤细胞的黏附和迁移起到明显抑制作用,有效控制肿瘤的病变发展。 有关专家介绍,恶性肿瘤细胞非常容易从原发病灶上脱落,每克肿瘤组织每天可向血液中释放300—400万个肿瘤细胞,脱落的肿瘤细胞随血液或淋巴流布全身,一旦条件成熟就会迅速生长,形成转移性病灶。控制肿瘤细胞的侵袭扩散是避免肿瘤恶化、提高肿瘤治疗效果、改善患者生存质量及延长患者寿命的有效措施。 专家认为,这一研究结果对恶性肿瘤的临床治疗具有极高的指导意义,对于尚未出现转移病灶的早中期肿瘤患者,使用养正消积胶囊可以控制肿瘤转移扩散,从而增加手术、介入等治疗手段的成功几率。此外,对于已经发展为全身性病变的晚期肿瘤患者,养正消积胶囊还具有增效减毒作用,可增加化疗疗效,减轻化疗中出现的消化道反应及免疫、造血系统损害,改善患者临床症状,明显提高患者的生存质量,延长患者的生存时间,是辅助治疗恶性肿瘤的一种安全、可靠、疗效满意的治疗方法。(通讯员 杨叁平 李瑞) 《科技日报》(2012-9-8 一版)

  • 大鼠骨髓间充质干细胞的分离培养和分化能力鉴定

    【序号】:3【作者】:周年1,2,3刘波1,4徐彭【题名】:大鼠骨髓间充质干细胞的分离培养和分化能力鉴定【期刊】:江西中医药. 【年、卷、期、起止页码】:2018,49(05)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7i0-kJR0HYBJ80QN9L51zrP3ylMAV4CgQ9wpp7ZMmE5O8NBqbZq4aly75LaltU8u1l&uniplatform=NZKPT

  • SD大鼠骨髓间充质干细胞原代培养条件的选择

    【序号】:4【作者】:李倩晓1那荣妹2刘百亭【题名】:SD大鼠骨髓间充质干细胞原代培养条件的选择【期刊】:中国老年学杂志. 【年、卷、期、起止页码】:2017,37(05)【全文链接】:https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iAEhECQAQ9aTiC5BjCgn0RqLtq4qv82HhSJrd4mMlLD1sEVOCJ2Utcht-M6YZ-Ko0&uniplatform=NZKPT

大鼠骨肉瘤细胞相关的方案

  • 使用 Agilent VistaFlux 对软骨肉瘤细胞系进行 13C-谷氨酰胺定性代谢流分析
    在缺少动态信息的情况下,代谢组学数据的解读通常十分复杂,这是因为在相应代谢物丰度未发生改变时,某个通路的代谢流可能已经发生显著变化。稳定同位素示踪(定性代谢流分析)的巨大潜力有助于解决这些状况,以便更深入地了解生物系统。在定性代谢流分析中,将稳定同位素示踪剂(通常含有 13C、15N 或 2H)引入生物系统, 导致下游代谢物的同位素模式(同位素异数体分布)发生改变。该方法尤其适用于易于 引入稳定同位素示踪剂的细胞模型,对产生的标记模式及示踪剂掺入动力学的分析将提供对酶功能、途径依赖、基因表达和蛋白功能变化效应的洞察。 Agilent MassHunter VistaFlux 软件旨在设计一套完整的工作流程,帮助科学家进行定性代谢流分析,助于高分辨率准确质量数 TOF 和 Q-TOF LC/MS 数据的处理和可视化。软件提供的工具可进行特征提取、同位素掺入分析、同位素异数体丰度分析、天然丰度校正、统计学分析以及数据在通路中的可视化。
  • 光动力学抗癌疗法——新型近红外光敏剂
    根据国家卫生研究所2018年公布的一项研究,对于无法手术的癌症类型,光动力学疗法有着非常广阔的应用前景,如从骨骼开始病变的骨肉瘤就是典型。
  • 低氧/厌氧产品案例——低氧与大鼠心肌细胞OGD 研究
    丹参素对急性心肌梗死(AMI)诱发的心功能下降和心肌重塑有保护作用,但其剂量-效应关系及其作用途径尚不清楚。本研究采用丹参素不同剂量(7.5、15 和30 mg/kg/d)给AMI 模型大鼠灌胃21 d,在体内评估生存率、超声心动图和组织学分析;采用MTT 法、流式细胞术、Western blotting 等方法研究丹参素对H9C2 细胞的细胞毒性和抗凋亡作用。机制上,研究了MAPK 效应因子和p38 在体内的激活。结果表明,中、高剂量丹参素能明显改善心功能,减少梗死面积和心肌纤维化。中剂量对心功能的保护效果最好,而高剂量对细胞凋亡和组织学改变的保护效果最好。在体内,丹参素显著抑制JNK 的激活,这可能有助于解释自噬对AMI 诱导的凋亡的以及剂量效应关系的差异。综上,本研究提示JNK 抑制在丹参素诱导的心肌梗死抗凋亡作用中起重要作用,且中剂量丹参素在体内的抗凋亡作用最强。

大鼠骨肉瘤细胞相关的资讯

  • 针对骨肉瘤的Cu和Ce基氧化物纳米平台,用于NIR-II荧光/磁共振双模成像和ros级联扩增以及免疫
    本文要点:骨肉瘤是一种致命的骨肿瘤,多发于儿童和青少年,具有局部破坏性和高转移性。迫切需要针对骨肉瘤具有高治疗效果和精确诊断的独特纳米平台。多模态光学成像和程序化治疗,包括协同光热-化学动力学治疗 (PTT-CDT) 引发免疫遗传性细胞死亡 (ICD) 是一种有前途的策略,它具有高生物成像灵敏度,可准确描绘骨肉瘤,治疗效果显著,副作用可忽略不计。动物活体成像系统方案1. 骨肉瘤靶向mCu&Ce@ICG/RGD的构建过程示意图,用于NIR-II荧光/MR生物成像和PTT-CDT-ICD协同肿瘤抑制本文开发了一种简便的一步法合成具有介孔纳米结构的多功能 Cu&Ce 氧化物纳米球 (mCu&Ce)。据报道,在 ICG 封装和 RGD 肽表面接枝(mCu&Ce@ICG/RGD) 后,该纳米平台可准确识别骨肉瘤并在肿瘤微环境 (pH = 6.5) 下触发 ICG、Cu 和 Ce 离子的剧烈释放(方案1)。进入骨肉瘤肿瘤细胞后,mCu&Ce@ICG/RGD 可在近红外激光照射下有效产生高温并进而促进&bull OH 的生成。PTT/CDT 协同肿瘤消融将在体外和体内实现。同时,热量和扩增的 ROS 都通过激发 ICD 来激活有效的 T 细胞生成,从而产生全身抗骨肉瘤免疫反应,从而显著介导有效的肿瘤免疫治疗。此外,基于Cu&Ce 的纳米平台可以通过 NIR-II 荧光和磁共振双模生物成像对骨肉瘤进行精确的早期诊断。总之,本研究设计了一种具有双模生物成像特性的简便的 Cu&Ce 纳米平台。它可以特异性地识别骨肉瘤,并通过 PTT 增强的 CDT 实现癌细胞抑制,从而进一步显著诱导 ICD 增强。图1. mCu&Ce@ICG/RGD 的表征mCu&Ce@ICG/RGD纳米平台的制备具体流程如图1所示。首先以氯化铜(CuCl 2)和氯化铈(CeCl 3)为前驱体(重量比=7:3)在水相体系中首次制备出亲水性的mCu&Ce纳米粒子,在90°C下搅拌均匀后,加入乌洛托品不同时间后可得到一系列表面粗糙的合金化Cu&Ce纳米球。进一步临床荧光团ICG负载到中孔纳米结构中(mCe&Cu@ICG),负载效率约为12.5 &thinsp %(w/w)。接下来,为了延长血液循环时间并进行随后的靶向修饰,将亲水性PEG 2000 -NH 2包裹在mCe&Cu@ICG的界面上。最后,通过脱水缩合反应将活性骨肉瘤识别配体RGD交联在ICG负载的双金属纳米粒子的外层(mCe&Cu@ICG/RGD)。令人兴奋的是,表面接枝RGD后ζ电位明显降低,这可归因于-NH2基团的消耗。在mCe&Cu@ICG/RGD中发现不明显的形态转变和尺寸变化(图 1L)。同时,与ICG类似,ICG封装纳米平台的发射光谱理想地延伸到NIR-II,并且上述两个样品的非峰值NIR-II发光图像非常强,证明了mCe&Cu@ICG/RGD的成功设计(图 1 P)图2. pH 敏感生物降解、ROS 生成和高温测定由于mCe&Cu@ICG/RGD是为了激活ICG的释放而设计的,因此在细胞外弱酸诱发下,mCe&Cu基框架生物降解发生了类Fenton反应。在pH=6.5条件处理下的生物降解效率在所有时间点都明显高于pH=7.4组,6h时框架初步崩溃,纳米颗粒释放,36h时所有纳米球消失,出现大量Cu&Ce基颗粒。这些纳米颗粒能够传导肿瘤组织浸润。在肿瘤组织中细胞外弱酸性pH值浸泡36小时后,mCe&Cu@ICG/RGD的平均直径从&sim 68nm急剧下降到&thinsp &sim 5nm ,&thinsp 进一步表明结构整体崩解。同时,在不同的孵育期内还测定了pH=6.5生理缓冲液上清液中ICG的释放曲线。我们观察到ICG染料以时间依赖性方式逐渐释放(图2C)。同时,如pH=6.5条件下释放的游离ICG的NIR-II发光图像所示,荧光信号在36小时内显著增强,明显强于pH=7.4组(图 2D)。同时,在肿瘤微环境刺激缓冲液孵育不同时间后,Cu和Ce离子的释放趋势相似,孵育36h后约有90%的Cu/Ce离子被释放。同时,在弱酸性环境下处理36h后,以商业&bull OH指示剂3,3',5,5'-四甲基联苯胺(TMB)评价Cu&Ce离子的类Fenton催化效果。在&bull OH催化下,产物氧化物TMB具有三个特征峰,显然,与mCe&Cu@ICG/RGD + L基团相比,mCu@ICG/RGD仅表现出边际ROS生成率,正如预期的那样,mCe&Cu@ICG/RGD + H2O2&thinsp + L 的&bull OH 增加量增加了 2 倍。纳米平台在高 H2O2条件下加上 808 nm 光照射时增强的化学动力学能力(图 2E)。随后,由于 ICG 对 808 nm 激光的强吸收赋予 mCe&Cu@ICG/RGD 强大的光热转换性能。如图 2F、G 所示,纳米平台的温度呈现出明显的时间相关上升趋势,在连续 300 秒的 808 nm 激光照射下温度上升到最高水平(79.1 °C),证明了快速的近红外光响应。与此形成鲜明对比的是,在相同处理下,PBS 溶液中的温度略有上升,在激光照射终点仅为 36.3 °C。此外,为了进一步检测激光-热转换效率(η),最近从冷却-加热循环计算了分散在水溶液中的mCe&Cu@ICG/RGD的热量差异(图 2H),具体的η值大约为&sim 55.92 &thinsp %(图2I)同时,在四次808nm激光开关循环后也监测到出色的光热稳定性(图 2J)。总体而言,所有结果证实了负载ICG的肿瘤响应性程序化介孔Cu&Ce纳米载体可进一步应用于通过PTT-CDT抑制恶性肿瘤。图3. PTT -CDT体外细胞杀伤及 ICD 指标的表达如图 3A所示,用RGD修饰的纳米平台处理的ICG的红光明显强于mCe&Cu@ICG和游离ICG。如图 3B 所示 ,与 mCu&Ce@ICG/RGD 组相比,mCu@ICG/RGD 组呈现出暗绿色荧光,这可以归因于前者的生物降解率低。在 pH = 6.5 的缓冲液中孵育 36 小时后,发现从 mCu 纳米叶中释放出的 Cu 离子相对较少,且含有大量 Cu 基碎片。值得注意的是,与本体溶液中的 ROS 生成趋势一致,当使用 808 nm 光照射并伴随 H2O2预处理时,该趋势会显著加强(图3G)。研究结果表明,更高的热量产生可以显著增强类 Fenton 反应,因为 ROS 增强的结果凸显了我们研究的重要性。如图 3D所示,与其他制剂相比,用 mCu&Ce@ICG/RGD + H2O2+ L处理的 143b 和 b 细胞&thinsp 介导了最高水平的 CRT,这与细胞内 ROS 扩增结果一致。此外,该组中还显示出 HMGB1 信号减弱,CRT 水平的这种相反趋势进一步证明了我们的纳米平台增强的 ICD 效应(图 3D)。随后,为了进一步说明 ICD 相关蛋白的表达,通过蛋白质印迹分析研究了各种处理后 143b 中的 CRT 和 HMGB1 水平。显然,当用 mCu&Ce@ICG/RGD + H2O2 + L 处理 143b 细胞时,CRT 在细胞膜上显著上调,而 HMGB1 在细胞质中显著下调&thinsp (图 3E 、F)。与mCu&Ce@ICG/RGD 组相比,mCu&Ce@ICG/RGD + H2O2+ L中上述表达的蛋白质水平分别大约高出 2 倍和降低 5 倍&thinsp (图 3I、J),揭示了该处理强大的 ICD激发能力。最后,分别用CLSM和流式细胞仪获得活死染色图像和细胞凋亡-坏死研究。与细胞内ROS生成和HMGB1的结果类似,143b细胞在mCu&Ce@ICG/RGD + H2O2+ L中经历最有效的细胞死亡&thinsp (图 3K -N)。正如预期的那样,当mCu&Ce@ICG/RGD的浓度增加到300µ g / mL时,H2O2预孵育加激光照射组中143b细胞的细胞活力仅为纯纳米平台处理组的一半。这种最高的肿瘤细胞杀伤力主要由PTT同时扩增的ROS和ICD介导。图4. 通过荧光成像、MRI 和光热评估进行体内肿瘤靶向性评估之后,研究mCu&Ce@ICG/RGD在骨肉瘤荷瘤裸鼠模型中的生物分布和肿瘤富集行为。首先,为了获得准确的肿瘤轮廓辨别,将mCu@ICG/RGD和mCu&Ce@ICG/RGD分别静脉注射到荷瘤小鼠皮下,随后在特定时间拍摄NIR-II荧光生物图像,通过小动物NIR-II荧光成像生物系统监测该纳米平台在体内的肿瘤靶向性和生物分布。显然,在注射mCu&Ce@ICG/RGD后2 h,肿瘤轮廓逐渐清晰,荧光信号(超过1000 nm)最初集中在肿瘤部位,24 h时达最强,肿瘤轮廓与周围外周肌肉组织明显区分开来;随后,它随着时间的推移而缓慢衰减,残留纳米平台保持在48小时(图 4 A)。而mCu@ICG/RGD的荧光信号主要分散在肝脏中,并且在所有时间间隔内都明显高于mCu&Ce@ICG/RGD组。基于在肝脏中的这种高积累,后一组的肿瘤组织几乎无法区分(图 4 A)。同时,收获肿瘤和主要器官进行离体NIR-II荧光生物成像。值得注意的是,即使可以看到上述两组肿瘤中的比较光信号强度,mCu&Ce@ICG/RGD处理的肝脏的强度明显低于mCu@ICG/RGD(图 4 B)。此处,前者相对快速的生物降解行为有利于肝脏清除。因此,肿瘤与周围正常组织的比例通过半定量平均NIR-II信号强度来计算。mCu&Ce@ICG/RGD 在注射后 24 小时的数值比 mCu@ICG/RGD 高 6 倍(图 4D)。此外,本文还通过MRI 验证了Cu 基纳米平台对肿瘤的特异性识别,以临床Gd-DTPA 为对照。根据不同时间间隔的连续 T1WI MRI 生物图像,足底注射 mCu&Ce@ICG/RGD 的淋巴转移性骨肉瘤的 MRI 信号在注射后 24 小时急剧增加至峰值水平,从此时间点开始逐渐衰减至基础强度(图 4C)。然而,由于 Gd-DTPA 的快速排泄,可以在注射后 2 小时发现最高的肿瘤积累。我们的纳米平台在 24 小时的肿瘤与组织比明显高于 Gd-DTPA(图 4E),进一步证明了mCu&Ce@ICG/RGD有效的肿瘤靶向能力,此时最合适进行激光照射进行PTT。最后,研究了皮下骨肉瘤小鼠尾静脉注射PBS、mCu&Ce@ICG和mCu&Ce@ICG/RGD后在体内的光热转换效果。具体而言,纳米制剂处理的肿瘤部位温度急剧变化,升高到峰值(分别为48.9和52.8°C),并且最大光热维持率(图 4F,G)。毫无疑问,这种现象主要归因于RGD修饰的主动靶向能力。对于PBS处理的小鼠,即使经过300秒的照射,温度也仅略有升高(39.8°C)(图 4F,G)。因此,上述体内生物成像结果凸显了多模对比纳米剂在肿瘤诊断方面的潜力和令人满意的肿瘤抑制热疗性能。图5. 体内 PTT CDT 和 ICD 评估基于上述基于Cu&Ce的纳米平台在体外具有良好的细胞杀伤力和出色的肿瘤蓄积效果,我们建立了143b肿瘤异种移植小鼠模型,以进一步研究mCu&Ce@ICG/RGD在体内的PTT/CDT/ICD协同治疗效果。为了验证我们的程序化治疗假设,给皮下患有骨肉瘤的小鼠施用六种不同的配方(PBS、L、mCu@ICG/RGD、mCu&Ce@ICG/RGD、mCu@ICG/RGD +L和mCu&Ce@ICG/RGD + L)。如图 5A -D所示,接受PBS或激光治疗的小鼠的肿瘤组织在整个治疗过程中迅速生长,证实单独使用808nm激光( 5分钟,1.5W/cm2 )对肿瘤生长几乎没有抑制作用。不出所料,与具有部分消融效果的 mCu@ICG/RGD 相比,由于生物降解速度更快,用mCu&Ce@ICG/RGD 处理的肿瘤生长抑制率相对较高,相比之下,纳米粒子加激光照射组的肿瘤体积和肿瘤重量均得到明显控制。有趣的是,与其他组相比,mCu&Ce@ICG/RGD + L 给药的肿瘤基本被抑制,肿瘤抑制率明显较低。显然,这种彻底的根除效率可能归因于协同 PTT 增强的 ROS 扩增。结果显示,激光照射后给予mCu&Ce@ICG/RGD可显著延长小鼠寿命,超过90%的治愈小鼠存活超过100天,而接受PBS治疗的小鼠均在42天内死亡(图 5E),充分表明我们基于Cu&Ce的PTT-CDT协同疗法具有最佳的肿瘤抑制性能。 总之,本文设计并成功制备了一个迷人的纳米平台,该平台由用于 CDT 和 MRI 的介孔Cu&Ce 氧化物纳米球、用于 NIR-II 造影剂和PTT 的负载 ICG 以及用于靶向基序的 RGD 组成。这种有前途的纳米治疗剂具有无与伦比的优势,例如对骨肉瘤组织的精确识别、用于肿瘤轮廓区分的 NIR-II 荧光生物成像和 MRI 以及通过 PTT 评估的 CDT 和激活的ICD 进行的程序化抗癌性能。通过在体外有效诱导癌细胞死亡以及在体内强力根除实体骨肉瘤并显著延长存活率来证实治疗效果。此外,出色的生物安全性能也在体内得到体现。该研究为促进临床恶性肿瘤的靶向诊断和治疗开发了一种独特的范例。参考文献heng, M., Kong, Q., Tian, Q. et al. Osteosarcoma-targeted Cu and Ce based oxide nanoplatform for NIR-II fluorescence/magneticresonance dual-mode imaging and ros cascade amplification along with immunotherapy. J Nanobiotechnol 22, 151 (2024).⭐ ️ ⭐ ️ ⭐ ️ 近红外二区小动物活体荧光成像系统 - MARS NIR-II in vivo imaging system 高灵敏度 - 采用Princeton Instruments深制冷相机,活体穿透深度高于15mm高分辨率 - 定制高分辨大光圈红外镜头,空间分辨率优于3um荧光寿命 - 分辨率优于 5us高速采集 - 速度优于1000fps (帧每秒)多模态系统 - 可扩展X射线辐照、荧光寿命、一区荧光成像、原位成像光谱,CT等显微镜 - 近红外二区高分辨显微系统,兼容成像型光谱仪 有不同型号的样机可以测试,请联系:021-61620699⭐ ️ ⭐ ️ ⭐ ️ 恒光智影上海恒光智影医疗科技有限公司,被评为“国家高新技术企业”,荣获“科技部重大仪器专项立项项目”,上海市“科技创新行动计划”科学仪器领域立项单位。恒光智影,致力于为生物医学、临床前和临床应用等相关领域的研究提供先进的、一体化的成像解决方案。与基于可见光/近红外一区的传统荧光成像技术相比,我们的技术侧重于近红外二区范围并整合CT, X-ray,超声,光声成像技术。可为肿瘤药理、神经药理、心血管药理、大分子药代动力学等一系列学科的科研人员提供清晰的成像效果,为用户提供前沿的生物医药与科学仪器服务。⭐ ️ ⭐ ️ ⭐ ️ 上海恒光智影医疗科技有限公司地址:上海市浦东新区张江高科碧波路456号 B403-3室网址:www.atmsii.com邮箱:liupq@atmsii.com电话:137 6102 1531 (同微信)
  • 癌症基因扰乱细胞正常生物钟和代谢
    近日 Cell旗下Cell metabolism杂志上发表宾夕法尼亚大学的Chi V. Dang研究团队发现癌基因Myc会扰乱细胞的生物钟和代谢的相关论文。这项研究表明,MYC能结合到关键基因的启动子区域,改变细胞的代谢和昼夜节律。这种蛋白具有双重功能,不仅在代谢通路中起作用,还能抑制BMAL1的抑癌效果。这项研究有助于更好的理解癌细胞如何有效维持快速复制。文章第一作者Brian Altman博士说“MYC癌细胞的节律性振荡发生改变,是因为蛋白REV-ERBα的表达水平被上调,这类癌症应该很适合采取时间疗法(chronotherapy)”。“我们的工作将癌细胞代谢与癌症时间疗法关联起来。”癌症时间疗法的理论基础是,在正确的时间进行治疗,可以有效杀死癌细胞,同时减少对正常细胞的副作用。已知CLOCK-BMAL1二聚体是生物钟的重要调控子,而MYC在基因组中的结合位点与CLOCK-BMAL1相同。因此研究人员推测,癌细胞中的MYC异常表达可能会影响到生物钟。研究中发现,MYC异常表达会提高REV-ERBα的表达,进而影响BMAL1和生物钟。降低REV-ERBα的表达水平,可以部分恢复这些癌细胞中的节律性振荡。此外,在神经母细胞瘤患者中,高水平REV-ERBα和低水平BMAL1都与预后差有关。在神经母细胞瘤中重新表达BMAL1,能够抑制这些癌细胞的复制能力。研究显示,MYC对葡萄糖代谢的振荡和谷氨酰胺的消耗也有很大的影响。葡萄糖和谷氨酰胺都是细胞中的基础代谢分子。研究人员建立了骨肉瘤细胞系,并且在其中分析了MYC和代谢的互作。细胞系的葡萄糖通路原本存在正常的节律性振荡,但MYC增多之后这种振荡就消失了,细胞的葡萄糖摄取速度大大增加。Hsieh说。癌细胞独特的代谢谱为人们提供了癌症治疗的重要线索:当正常细胞休息而癌细胞还在没日没夜地工作时,癌症治疗可以起到事半功倍的效果,对正常细胞的毒性也大大降低。
  • 镁伽联合申报项目获国自然基金立项资助
    近日,镁伽科技与中国中医科学院医学实验中心、中南大学湘雅二医院联合申报的科研项目先后获批2022国家自然科学基金面上项目。自2022年以来,镁伽与高校、科研院所的联合项目已连续三次入选国自然基金支持名单,这标志着镁伽在生命科学不同细分领域的科研创新实力得到认可并具备广泛应用价值,切实解决实验室质效痛点,能够为人类健康长寿的大命题贡献更多力量。此次镁伽与中国中医科学院医学实验中心联合申报的项目——“机器人驱动的高通量中药新药及其作用靶点筛选新技术建立和示范应用”,旨在探索突破中药新药研发的劳动密集性、实验稳定性和可重复性等瓶颈。中药是一个复杂的化学成分体系,这一特性造成了从中筛选、确定有效组分和化合物的难度极高,人工操作繁杂且效率低。此项目结合镁伽在机器人自动化、人工智能领域的独特优势和中国中医学科学院医学实验中心长期的科研积累,通过镁伽自主研发的实验室自动化软件系统MegaFluent®将药物筛选工作站、荧光定量 PCR 仪等仪器进行有效串联,结合热稳定性蛋白质芯片技术,实现中药复杂作用体系靶点筛选及有效成分鉴定的全流程自动化,极大提高筛选质量,有效解决中药靶点、新药筛选的难题。▲机器人驱动的中药新药筛选和靶点系统示意图中国中医科学院医学实验中心副研究员陈鹏博士表示:“中药自身的物质多样性导致其药理研究的复杂性,中药作用靶点筛选是解读中药科学原理和复杂作用解析的关键环节,也是中药创新药发现的新增长点,目前针对中药复方还缺乏有效的靶点筛选技术,中医药机器人智能实验室团队前期研发了蛋白质热稳定性芯片技术,依托中国中医科学院医学实验中心的药理学和镁伽的自动化平台,获得了国家自然科学基金面上项目资助,表明镁伽的自动化技术在中药领域的应用获得了同行的认可,项目的实施有望为中药复杂作用解析和创新药物发现提供新的技术路径。”镁伽与中南大学湘雅二医院联合申报的项目——“基于CRISPR/Cas9高通量筛选联合类器官探索PRKDC在骨肉瘤多柔比星耐药中的作用及机制研究”则是镁伽自动化高通量基因编辑以及类器官技术的成功应用。骨肉瘤当前的治疗手段非常有限,手术及辅助化疗为目前临床标准治疗方案。多柔比星是临床一线化疗药物,其耐药往往致患者化疗效果不佳,严重影响患者预后。湘雅团队与镁伽鲲鹏实验室结合各自在自动化高通量药筛、高通量基因编辑技术、类器官技术和骨肉瘤领域的专业积累优势,成功揭示骨肉瘤多柔比星耐药的作用及机制,将有效推动骨肉瘤临床治疗水平的提升。▲镁伽鲲鹏实验室中南大学湘雅二医院骨科副研究员涂超博士表示:“骨肉瘤是一种罕见肿瘤,治疗预后极差。其罕见性也是目前对其研究与有效治疗手段显著滞后于其他肿瘤的主要原因之一。而在常见的骨肉瘤治疗手段中,又有众多患者对多柔比星等一线药物产生耐药性,进一步增加了其治疗难度。本项目的成功实施将揭示骨肉瘤多柔比星的耐药机制,提升临床骨肉瘤的治疗效果,最终造福于患者。本项目目前已取得非常振奋人心的结果,其中离不开镁伽的自动化与高通量技术的大力支持。”2022年3月,双方联合申报的科研项目——“基于深度学习的骨肿瘤人工智能影像诊断及预后评估的精准预测研究”还获批湖南省自然科学基金资助。该项目旨在通过人工智能深度学习结合临床影像,辅助诊断骨肿瘤,判断预后,为骨肿瘤临床决策提供支持。镁伽科技联合创始人张琰先生表示:“镁伽一直致力于以先进的科技生产工具和创新产品助力科学家释放更多潜能,此次与中国中医科学院医学实验中心、中南大学湘雅二医院共同申报的项目能够获批国自然基金,是对镁伽有效赋能基础科研的认可,鼓励我们为人类生命健康这一大命题继续不懈创新。镁伽也非常荣幸能与众多优秀科研院所、高校合作,参与到这么多有深远意义和价值的项目中,这也是镁伽‘创建更高效、更健康、更美好的世界’愿景的深刻践行。”国家自然科学基金项目是我国自然科学基础研究领域最高级别的科研项目,代表着自然科学基础研究的最高水平。此前,镁伽科技与清华大学联合申报的科研项目——“高通量自动化连续定向进化平台筛选纳米抗体的研究和应用”已获批2022国家自然科学基金区域创新发展联合基金重点支持项目。

大鼠骨肉瘤细胞相关的仪器

  • Naturethink细胞流体剪切力系统_北京_上海别名:剪切应力装置、流体切应力装置、流体力学细胞培养系统产品型号:NK110-STD 产品介绍:血流环境下形成的对于细胞的流体剪切力作用在人体内几乎无处不在,这种作用力影响着细胞的生长,粘附,分化,衰老及死亡的各个环节,进而改变细胞内基因的表达,同时改变着细胞周边的微环境,形成了作用与反作用的效果,在没有力学作用环境下的细胞却难以表达出来这样的效果。细胞流体剪切力系统用以实现模拟生理状态及非生理状态下血流流体剪切力对于细胞、组织的刺激作用,可实现细胞流体环境下的细胞粘附实验、内皮细胞培养实验(内皮细胞培养实验、内皮细胞和平滑肌细胞混合培养、干细胞内皮化实验)、骨细胞生成实验(剪切力刺激骨髓间充质干细胞诱导分化实验)、剪切力刺激骨髓间充质干细胞诱导分化实验、基因诱导实验、药物作用实验(血流状态下药物药效作用实验)、胶质细胞血流力学刺激实验、间质流刺激肿瘤细胞实验、血流刺激循环肿瘤细胞侵袭实验等。在不同值的流体剪切力下可以进行不同的实验。此外足够的细胞培养量,也满足了提取蛋白的需求。细胞流体剪切力系统在科研前期的使用过程中尽量降低了摸索和测试的成本,并以极低的耗材成本来实现相关的流体剪切力实验,同时系统可拆卸,可灭菌,经久耐用。用户也可以通过想象力和创新赋予实验更多可能,如: 牙周膜成纤维细胞流体剪切应力刺激培养、动脉静脉流体剪切力刺激培养、内皮细胞流体剪切力刺激培养、动脉粥样硬化流体剪切力细胞培养、骨肉瘤细胞流体力学细胞培养 、主动脉血流刺激细胞培养等。适用于心脑血管、肿瘤、骨科、口腔、内科、眼科、药物代谢、组织工程、类器官培养、干细胞培养、组织器官培养、器官移植等多个领域。 参数说明:培养面积:满足提取蛋白—64cm² ;流体剪切力刺激范围:0-50dyne/cm² ;流体剪切力模式:稳定流、脉冲流、振荡流;预置不同流体剪切力刺激在同次实验中顺序进行。 产品优势:应用范围广,适合细胞的长时间细胞培养;多种剪切力刺激模式;培养面积与培养液比小;四通道培养:每个通道可进行不同的细胞培养 用户自定义时间、流体剪切力和方向等 加载生理性/非生理性血流剪切应力;长时间使用,更接近生理状态。Naturethink是国内较早从事仿生细胞培养仪器研发与销售的企业,多年的技术沉淀,使得我们在人体仿生环境培养领域拥有独立自主的研发能力,并拥有核心技术;我们为用户提供仪器设备的改进、设计及研发服务。同时我司还提供多种规格平行平板流动腔小室、细胞流体剪切应力系统、细胞共培养流体剪切应力实验系统、牵张力细胞实验系统装置、、人体血液循环模拟系统、细胞张应力(应变)刺激实验系统、细胞压力刺激实验室系统、细胞综合应力实验系统、血液循环模拟培养系统、细胞组织构建培养系统等。
    留言咨询
  • Bandelin SONOCOOL255超声波清洗机使病理分析样品前处理过程,更快速,更有效◆可加速骨组织脱钙速度◆适用于热敏性样品◆缩短接触时间,实现细胞结构的有效保护订货号:3500配置:超声波装置,样品架PH 255, 盖子D 255 G10插孔烧杯SD 01-100mL,250mL TR 3型清洗液Bandelin SONOCOOL255超声波清洗机特点:◆设计紧凑,外形小巧◆焊接水槽,采用AISI 316Ti不锈钢,更耐用◆玻璃盖易于清洗和观察◆具有水位传感器,可进行液位保护◆LCD图形显示剩余时间、精确温度、间歇/诊断、设定时间/设定温度、超声功率◆串行接口用于远程控制Bandelin SONOCOOL255超声波清洗机技术参数 病理学研究应用:• 股骨头标本脱钙(包括海绵、皮质骨、部分关节软骨)• 胫骨干标本脱钙(包括致密体和海绵体)• 骨肉瘤脱钙• 脱钙的牙硬组织病理准备
    留言咨询
  • 制冷型超声波恒温浴槽 SONOCOOL 225相比较常规的超声恒温浴槽, SONOCOOL 225 自带压缩机制冷系统,除能够准确控温外,同时能够带走超声过程中产生的热量。尤其适用于制药领域QC,食品和饮料行业。特别适用于病理学研究,比如:骨标本脱钙( 包括海绵状骨,皮质骨,关节软骨等),胫骨标本脱钙(密质骨,海绵骨),骨肉瘤的脱钙化,组织病理学中牙科硬组织脱钙制备等。产品特点* LED 显示屏,独立的温度和超声控制区域* 与传统方法相比,减少脱钙时间,不影响样本质量* 提高样本的可切削性* 温度范围:20~40℃ ( 内置压缩机制冷系统 )* 标配排水阀产品参数型号SONOCOOL 225订货号W3080225容量5L内部尺寸(W × D × H)300×150×120mm冷却功率300W (at 20℃ )温度范围20~40℃频率40Khz定时器1-99min排水口有超声功率160W
    留言咨询

大鼠骨肉瘤细胞相关的耗材

  • Kugelmeiers 3D 细胞培养板-细胞球体类器官培养
    Kugelmeiers 3D 细胞培养板一、Kugelmeiers公司介绍Kugelmeiers Ltd. 成立于 2015 年,是瑞士苏黎世大学的衍生公司。公司起源于苏黎世大学医院用于治疗糖尿病的人胰岛细胞移植临床项目。其业务是将对细胞生物学现实的新见解转化为适合 3D 细胞培养和细胞移植的产品。该公司在细胞移植、3D细胞培养和干细胞生物学方面的专业知识满足了日益增长的市场需求。Sphericalplate 5D细胞培养板可以在每个板上形成多达9000个细胞球状体,从而以可重复且对细胞友好的方式,实现了球状体的高通量开发二、 产品介绍- Sphericalplate 5D 细胞培养板Sphericalplate 5D 细胞培养板可以大规模生成均匀、尺寸可控和标准化的球状体。安全"是细胞培养平台 Sphericalplate 5D 的原则。它具有独特的功能以支持细胞球状体的均一性、活性和可放大性。我们的独特几何形状和表面使细胞聚集成球状体, 让您对细胞培养拥有控制能力。Sphericalplate 5D 型号分为:24孔3D细胞培养板,6孔3D细胞培养板1. Sphericalplate 5D 6孔3D细胞培养板Sphericalplates 5D® 用于3D 细胞培养的培养板,6孔培养板是无菌,一次性使用,为形成大小一致的球形细胞聚集体提供培养环境,每个孔有3364个微孔,6孔培养板共有20184 微孔。孔板的材质是COC, 每个孔的工作体积是2-4ml, 总体积是14mL。2. Sphericalplate 5D 24孔3D细胞培养板Sphericalplate 5D 24孔3D细胞培养板含有9000 微孔。Sphericalplate 5D细胞培养板的产品特点:&bull 是易于使用的细胞球状体形成平台&bull 可以实现标准化和大小一致的球形体&bull 易于升级,不会降低球状体的质量&bull 1个6孔Sphericalplate 5D 细胞培养板=20184个球状体Sphericalplate 5D细胞培养板的优势:&bull 形成大小一致均匀,标准化的球状体&bull 预涂层,无表面附着物&bull 可放大生产大量球形体,用于实现高通量成像/筛选/分析(例如,蛋白质组学/基因组学/代谢组学)&bull 适合对病人细胞进行个性化诊断或个性化研究细胞&bull 方便用于在同一板孔内的多个球形体上测试不同的化合物 &bull 与现有的标准成像和自动化技术/设备/系统兼容-尤其是球状体处于微孔内中心位置&bull 可进行长时间或短时间培养以生成足够的球状体&bull 可从癌症球体内收集分泌物组三、Sphericalplate 5D 细胞培养板的应用Sphericalplate 5D (SP5D) 是一种 3D 细胞培养板,用于形成高质量和高产量的均匀、大小可控的球状体。它还可以方便扩大规模并进一步扩展到转化研究或诊断。在开发SP5D时,目标是通过培养标准化球体来创造一个模拟生理条件的环境,该球体可以在没有外部干扰信号的情况下进行细胞间通信。同时,它提高了后续测试的可重复性,因为由于培养的细胞球体的尺寸差异较小,因此您始终以相同的初始条件开始实验。自动化性和可放大性是Sphericalplate 5D 的关键特征,这在未来的治疗应用中也至关重要。SP5D 采用获得专利的金字塔几何形状和微孔设计,具有明确的角度、圆润的底部和锐利的边框。这允许在孔底部形成具有预测尺寸且高度规则的球状体。这些设计特征的结合有利于生物保真度和细胞间通讯。此外,特定的几何形状使球体居中,并支持球体在孔内位置的可预测性。使用即用型 SP5D 特别人性化,您将很快熟悉新平台的操作:接种细胞后,培养不需要任何预处理或离心步骤。通过简单的移液,更换培养基也特别方便,微孔的高度被设计为可以保留细胞球状体。SP5D中成功培养的细胞包括:人类胚胎干细胞人乳腺癌细胞系(BT20、MCF-7)小鼠胚胎干细胞系(HM-1)人前列腺癌细胞系(LNCaP)人间充质基质细胞人肺癌细胞系 (A549)原代胰岛细胞(人、猪、啮齿动物)人骨肉瘤细胞系(Saos-2)β细胞系(EndoC-βH1、MIN-6)人肾上腺癌细胞系肝内胆管细胞类器官 (ICO)人卵巢癌细胞系(OVCAR-3、OAW-42、SK-OV-3)人羊膜上皮细胞 (hAEC)人肝癌细胞系(HepG2)原发性平滑肌细胞人肝细胞 (HepaRG)人脐静脉内皮细胞系(huVEC)人白种人胎肺细胞系(WI-38)小鼠3T3成纤维细胞系人胶质母细胞瘤细胞系Sphericalplate 5D应用领域包括:3D 细胞培养,癌症球状体研究,药物筛选,组织工程,再生医学,3D 生物打印,诊断,个性化医疗,3D 干细胞培养等
  • 海狸TCT表面处理细胞培养板40106六孔板
    TCT细胞培养板 组织培养处理(Tissue Culture Treatment, TCT)表面细胞培养板是传统二维平面细胞培养实验室的常规工具,也是海狸研发的各种具有特殊功能性表面的特种细胞培养板的基础。其广泛应用于生命科学基础研究、肿瘤研究、病毒检测与诊断,基因工程及疫苗研发生产等领域。产品名称编号规格包装TCT Cell Culture 6-Well Plate401061/pk50/CaseTCT Cell Culture 12-Well Plate401121/Pk50/CaseTCT Cell Culture 24-Well Plate401241/pk50/CaseTCT Cell Culture 48Well Plate401481/pk50/CaseTCT Cell Culture 96-Well Plate401961/pk65/Case产品质量稳定,批次间无差异,同一培养板各孔差异小表面稳定性好,细胞贴附力强,更适合细胞生长γ射线灭菌,无毒性、无热源、无Human DNA、无DNase、无RNase人性化设计,方便易用 细胞培养表面为纯镜面,无明显划痕和瑕疵,为客户获得高质量的细胞培养数据提供坚实的保障 左图:大鼠骨髓间充质干细胞(SD MSC)在BeaverBio™ 细胞培养表面的生长状况 右图:人脐静脉内皮细胞(HUVEC)在BeaverBio™ 细胞培养表面的生长状况左图:人主动脉血管平滑肌细胞(T/G HA-VSMC)在BeaverBio™ 细胞培养表面的生长状况
  • 大鼠头部固定适配器
    NARISHIGE的RA-6N大鼠头部固定适配器用于将小鼠固定夹具转换为大鼠固定夹具,使用燕尾结构可以简单地调整嘴和鼻子夹紧位置的,大鼠头部固定适配器可以用一只手平稳轻松地操作该过程。大鼠头部固定适配器的夹紧行动中使用辅助耳固定杆也是事实,这比用常规型号更容易。头部固定适配器规格尺寸大小/重量宽20 x 深98 x 高50-70mm, 132g

大鼠骨肉瘤细胞相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制