耶尔森氏菌属

仪器信息网耶尔森氏菌属专题为您提供2024年最新耶尔森氏菌属价格报价、厂家品牌的相关信息, 包括耶尔森氏菌属参数、型号等,不管是国产,还是进口品牌的耶尔森氏菌属您都可以在这里找到。 除此之外,仪器信息网还免费为您整合耶尔森氏菌属相关的耗材配件、试剂标物,还有耶尔森氏菌属相关的最新资讯、资料,以及耶尔森氏菌属相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

耶尔森氏菌属相关的资料

耶尔森氏菌属相关的论坛

  • 关于《食品安全国家标准 食品微生物学检验 小肠结肠炎耶尔森氏菌检验》等标准 调整实施日期的说明

    关于《食品安全国家标准 食品微生物学检验 小肠结肠炎耶尔森氏菌检验》等标准调整实施日期的说明中华人民共和国国家卫生和计划生育委员会2016-09-22   我委与食品药品监管总局于2016年8月31日联合发布了2016年第11号公告。为与检验机构实验室管理工作相衔接,现调整其中《食品安全国家标准 食品微生物学检验 小肠结肠炎耶尔森氏菌检验》(GB 4789.8-2016)等82项检验方法标准实施日期为2017年3月1日。请以新标准文本为准。  相关链接:关于发布《食品安全国家标准 食品添加剂 磷酸氢钙》(GB 1886.3-2016)等243项食品安全国家标准和2项标准修改单的公告

  • 美国泰森召回疑含大肠杆菌的牛肉馅

    据美国农业部消息,9月27日美国农业部发布通报称,泰森公司的碎牛肉被俄亥俄州农业局检出大肠杆菌阳性,目前泰森公司正在美国14个州召回131,300磅牛肉馅,因为这些产品可能已被大肠杆菌O157:H7污染。 据了解,问题牛肉馅有3个系列,每个系列产品的名称均为"碎牛肉73%瘦肉-27%肥肉",产品的保质期为2011年9月12日,生产日期为2011年8月23日,厂区检疫代码为"245D",之后这些产品被销往田纳西州、佛罗里达州等地。 由于担心消费者在食用牛肉馅前会将它们置于冰箱内冷冻起来,美国农业部食品检验局(FSIS)建议消费者仔细检查冰箱内的产品,如果发现它们属于召回产品那么应尽快丢弃。 目前俄亥俄州已出现食用问题牛肉而染病的病例,美国农业部正同俄亥俄州公共卫生部门联合对此次感染事件进行调查。 原文链接:

耶尔森氏菌属相关的方案

耶尔森氏菌属相关的资讯

  • 吉尔森/华运:与中国仪器业同行三十年——访吉尔森CEO Atika El Sayed、法国吉尔森创始人Eric Marteau d’Autry、华运董事总经理黄光戎
    由Warren Gilson博士于1948年创立的美国吉尔森公司(Gilson.Inc),以移液器、HPLC(高效液相色谱)、GPC纯化系统等著称,进入中国市场已经超过半个世纪。华运有限公司(World Ways Co.Ltd)是多个仪器设备品牌的中国独家总代理商,总部位于香港,与吉尔森的合作也长达三十年,与吉尔森一同为实验室研究人员所熟悉。  2013年9月27日,吉尔森公司与吉尔森中国独家代理香港华运有限公司在北京召开了新产品发布会,美国吉尔森行政总裁Atika El Sayed、法国吉尔森创始人及原总裁Eric Marteau d&rsquo Autry、香港华运有限公司董事总经理黄光戎这次也到访了北京。或许是巧合,这三位吉尔森与华运高层都经历了吉尔森进入中国市场三十多年以来的发展,也是中国仪器市场化三十年以来的见证者。首次选择北京发布新品是否预示着在中国市场策略的改变?吉尔森三十年来在中国市场是如何立足和发展的?对未来的中国市场有何展望?值此机会,仪器信息网对三位公司高层进行了采访。  采访现场照片  由一片空白变成第二大市场  Atika El Sayed认为,十年前的仪器市场是以欧美为主,美国约占四成,欧洲则是约三成,而在其他国家中,日本有着比较发达的市场,以单个国家而言仅次于美国,中国的仪器市场则是仅次于日本。  美国吉尔森行政总裁Atika El Sayed  对中国仪器市场,Atika El Sayed非常看好,她认为中国市场的发展非常迅猛而且前所未有,远比其他国家和地区要快,而中国的政策也对市场有着非常强的推进力。中国的高效液相色谱市场,从2007年到2012年,已有了成倍的增长。而在固相萃取、PCR、纯化系统等方面,中国市场也已经在全球市场中,占据了较大的份额。在这样快的发展速度下,中国很快就由过去的世界第七大市场,发展成为继美国和日本后,第三大的市场。而在快速的发展下,中国在不久的将来就可以超越发展放缓的日本,成为世界第二大市场。  但这样一个大市场,在三十年前是什么样子呢? Eric Marteau d&rsquo Autry回忆道:&ldquo 我来到中国的时候,发现人们对仪器还没什么了解,当然也没有需求,而且在当时,电脑等设备也是非常少见的,几乎可以说是没有仪器的市场。&rdquo   法国吉尔森创始人及原总裁Eric Marteau d&rsquo Autry  于是一切只能从零开始。从1980年(首届Miconex)开始,Eric Marteau d&rsquo Autry开始造访北京、上海、广州、成都、重庆等地,做一些很基础性的工作,通过培训和讲座等方式,把仪器的概念引入到中国,帮助中国用户了解和熟悉仪器产品。经过几年的努力和中国仪器行业自身的成长,到1985-1990,情况有很大的转变,仪器市场开始进入比较快速的发展,而有着留学经历的科研人员纷纷回国,也加速了这一发展过程,由于在国外早就熟悉了仪器的应用,这些研究人员对仪器的认知和接受程度较高。  香港华运有限公司董事总经理黄光戎  华运公司与吉尔森的合作则始于1983年,对当时中国市场,黄光戎同样很有感触,有着化学行业背景的黄光戎敏锐的认识到仪器产品未来在实验室工作中的应用,但在空白的中国市场仍面临许多困难,当时国内并不是很开放,客户想购买仪器设备并不容易,购买一台高效液相色谱需要7个部门审批,每个部门的手续均需要两天左右的时间才能办理完成,然后才能拿到外汇,购买仪器。由于当时的实验条件和经费紧张,大部分用户不懂仪器也买不起仪器,市场的开发也很有难度。而每次来往内地,运送产品和配件也很麻烦。最初华运是直接由香港派遣工程师来内地提供服务,随着市场的发展,也开始逐渐在内地建立分公司和培训技术人员,直到形成今天的市场格局。  吉尔森与香港华运携手并肩,在中国立足与发展的秘诀  吉尔森如何在中国市场从无到有,发展壮大?对此,Atika El Sayed表示吉尔森的成功之处主要在于对用户的重视。吉尔森每开发一个新产品之前,都会先去用户了解用户的意见和想法及用户的实验需求,如SPE的开发是在50年之前,当时主要了解的是欧洲市场客户的意见,如英国、德国、瑞士等国家科学家的意见后进行开发,而开发过程会分步完成,每完成一步就会再征求用户的反馈,然后根据反馈意见进行调整,然后才进行第二步的开发,这样反复进行,经过这样一个也许是很漫长的研发过程,才开发出一个新产品,但产品很适合用户的需求。而现在的吉尔森产品,也会征求中国用户的意见,国内用户的需求由华运反馈给吉尔森。而在生产上,吉尔森也采用良好的原材料和品控,产品以坚固耐用著称。在提供服务上,吉尔森也同样准备充分,每个产品都会提前至少半年做好准备才上市,做好服务用户的准备。  黄光戎认为,吉尔森和华运的三十年的合作与发展,要点在于信任和沟通,当华运遇到困难,吉尔森总是能及时给予支持。吉尔森全球不同国家共有50多个代理商,之间也经常通过会议进行交流,甚至互相支援。&ldquo 吉尔森公司的工作人员或许并不是很多,但影响力还是非常大,就是因为有这样一个遍布全球的网络。&rdquo 黄光戎说道。  未来将使产品更加专业化,看好中国仪器业  Atika El Sayed对未来的中国仪器市场和吉尔森的发展也做出了展望:吉尔森的移液器、HPLC、纯化产品线等都将继续发展,做到更专业并提供更好服务。在中国市场,过去主要是手动移液器,但随着实验室科技的发展,试验量的增大及重现性要求的提高,移液器将向自动化发展,像是这次的自动化移液工作站就是这样的产品。过去用户可能觉得这样一台仪器很昂贵,但现在包括中国用户在内的用户观念正在逐渐改变,认识到其实用这样的仪器进行移液工作其实可以节省用户珍贵的样品,节省经费,而且保证精度和重现性。  Eric Marteau d&rsquo Autry认为,中国仪器业这些年的快速发展给人留下了非常深刻的印象,对中国国产仪器他也发表了看法:&ldquo 中国也有很多仪器制造厂商,但目前很多还处在对国外产品的模仿阶段,而且只做到了外观的模仿,内在的质量仍有差距。但我相信,中国的仪器厂商也可以做出高质量的产品。而在这之后,中国的国产仪器或许可以达到第三阶段,创造出自己的全新产品。&rdquo 对中国国产仪器的发展,Eric Marteau d&rsquo Autry则是乐见其成,认为整个市场的发展即来自不断出现的新品,这也是吉尔森的发展轨迹,他认为国产仪器如有创新产品,将增加中国市场的影响力和竞争力,使整个中国仪器行业受益。  附:  Atika El Sayed,美国吉尔森行政总裁  1986年在法国里昂大学获得生物工程博士学位,1986-2000年在Gilson SAS手动液体处理及自动化样品制备生产线工作,历任产品经理、市场销售和销售总监,2000-2005年担任Eyeneo总经理,2005-2009年担任Gilson SAS总经理,2009年至今担任Gilson Inc.首席执行官。  Eric Marteau d&rsquo Autry,法国吉尔森创始人及原总裁  1958年毕业于美国威斯康星州大学,1984在巴黎就读MBA,1962年创立了法国吉尔森,1972年任法国吉尔森总裁直到1999年退休,退休后,吉尔森法国和吉尔森美国合并。1976年春季第一次访问中国。
  • 吉尔森发布新型自动化液样处理平台pipetmaX
    吉尔森与华运召开发布会  2013年9月27日,美国吉尔森公司(Gilson.Inc)与香港华运有限公司在北京召开了新产品发布会,多位吉尔森及华运的合作伙伴、吉尔森用户、特邀嘉宾及媒体人士等参加了此次会议。  新品剪彩仪式  美国吉尔森行政总裁Atika El Sayed、法国吉尔森创始人及原总裁Eric Marteau d&rsquo Autry、香港华运有限公司董事总经理黄光戎及香港华运有限公司副总经理张子进一同揭开帷幕,正式发布了新产品。  庆祝新品发布  其后,新产品的几位研发主创人员也一同加入到庆祝之中,全场参会者也受邀一同畅饮香槟庆祝。  pipetmaX全自动移液平台产品  吉尔森此次发布的新产品为pipetmaX全自动移液工作站产品,这款全新产品之前已在欧美上市,今日是首次在亚洲地区公布并进行了实机展示,发布会后,该产品将正式在中国上市。  法国吉尔森创始人Eric Marteau d&rsquo Autry致辞  法国吉尔森创始人,曾任法国吉尔森总裁40年的Eric Marteau d&rsquo Autry博士应邀参加会议并致辞。据Eric介绍,吉尔森品牌系Warren Gilson博士于1948年创立,致力于开发生物科学实验室相关的新兴技术。70年代末,吉尔森公司将主要产品锁定在以下三个方面:HPLC(高效液相色谱)、手动液样处理仪器和自动化液样处理工作站,并在当时首次访问了中国,而Eric从那时起就常来到中国,对刚起步的中国仪器市场进行产品及技术的推广。而三十多年过去了,已有众多实验室选择并正在使用吉尔森产品。  美国吉尔森行政总裁Atika El Sayed致辞  据美国吉尔森行政总裁Atika El Sayed博士介绍:&ldquo 中国已经有超过数十万的科学家正在使用吉尔森仪器或移液器,这些客户都熟知吉尔森产品的优质特色。这也是吉尔森在当下激烈竞争的市场上依然能够在众多品牌之中屹立的原因之一,这也秉承了50多年前Warren Gilson博士创立吉尔森公司时的精神:我们提供优质的产品并竭诚为用户服务。而很多在市场一闪而过的品牌大多都是因为忽视了这两点精神。&rdquo   市场在不断变化,中国现已经成为业界第三大市场,仅次于美国和欧洲。许多制药企业都依靠中国的研发实验室进行他们的研究。中国和其他主要工业国家一样,生物技术实验室正在引领医学研究的发展。而食品、环境等实验室在仪器市场也具有举足轻重的作用。  pipetmaX是为了满足生物科技的进步而研发的。它不仅是一台灵巧的满足用户分子生物学方法的自动化样品准备设备,还能够成为用户的助手。例如,在qPCR方法中,可以根据操作界面的指引设置,将用户轻易的从如何自动化的思考中解放出来,并轻松的将实验步骤由手动专为自动。此外,pipetmaX还提供了最佳的移液重现性和最适宜的性价比。  Atika El Sayed介绍到,吉尔森法国公司拥有手动液样处理的领先技术,吉尔森美国公司拥有一流的自动化仪器硬件和软件技术pipetmaX是两方面技术的完美结合。而pipetmaX应用程序的开发和评估是由相关领域科学家、分子生物学用户和其他相关用户共同完成的。今后也将会不断的开发新的应用方案,并充实到应用库中。吉尔森将通过网络定期更新应用,并鼓励、帮助用户添加自己的应用,这些应用都可以在吉尔森网站的应用专区获得。  香港华运有限公司董事总经理黄光戎致辞  香港华运有限公司董事总经理黄光戎曾与Eric一起将吉尔森产品带入中国市场,至今同样也是三十年了。黄光戎,认为吉尔森仪器的其中一个特点就是它的模件化设计,从基本的液相色谱模件,到200系列各类自动样品处理仪,直到今天发布的pipetmaX 268,它们既是一台独立运作的单元,又具备很强的兼容性,可以根据容户不同的应用,跟其它仪器设备联机,发展出适合每个个体用户的仪器,给使用者提供了很大的空间。  黄光戎还表示,从1993年开始,华运公司就在北京、上海、成都、武汉、广州等地设立了移液器服务中心,由经过法国原厂培训的技术人员定期上门为用户提供免费校准服务,而仪器工程师可在收到用户要求的24小时内到达现场,免费为用户解决疑难。  在会后,仪器信息网对吉尔森及华运进行了独家专访,请留意我们的进一步报道。
  • 何念鹏、潘俊等研究人员揭示森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达27篇。 今天与大家分享的是何念鹏、潘俊等研究人员在森林-农田长期转化对土壤微生物呼吸温度敏感性及空间变异的影响方面取得的进展。在该项研究中,研究团队利用PRI-8800测定土壤样品的Rs和Q10,为研究结果提供了有力的数据支撑。 土壤是陆地生态系统中最大的碳库,所含碳量相当于大气和植被的总和。土壤微生物呼吸(Rs)是重要的碳循环过程,控制着陆地生态系统向大气的碳释放。此外,全球变暖会加速土壤中碳的分解,增加大气二氧化碳(CO2)浓度,从而导致土壤碳循环与气候变暖之间的正反馈。这种反馈的方向和强度在很大程度上取决于Rs的温度敏感性(Temperature sensitivity, Q10)。 土地利用变化是当前生物圈碳循环的主要人为驱动因素之一(也是全球变化的重要组成要素),土地利用变化将促进/抑制土壤碳释放到大气中,被认为是仅次于化石燃烧的第二大人为碳源,累计约占人为二氧化碳排放量的12.5%。由于人口的增长和对农产品需求的增加,全球范围内大量森林生态系统已被转化为农业生态系统。这些与农业相关的森林砍伐,不仅会导致生物多样性丧失,改变土壤碳循环过程,还可能削弱生态系统应对气候变化的能力。由于土壤微生物呼吸对温度变化的响应异常敏感,土壤Q10对土地利用变化的潜在响应(提升或压制),可能会对未来气候产生重大影响。因此,为了提高人们关于土地利用变化对土壤碳循环的影响及其对气候变化反馈的认识,确定Q10对土地利用变化响应的生物地理格局及其调控因素至关重要(图1)。图1 不同区域森林转变为农田对土壤微生物呼吸温度敏感性(Q10)潜在影响 为了更好地阐明土地利用变化对土壤Q10的影响及其空间变异机制,研究人员收集了中国东部从热带到温带的19个“森林转变为农田”配对地块的土壤样品,采用由普瑞亿科研发的PRI-8800全自动变温土壤培养温室气体分析系统,在5~30 °C进行室内培养,并测量Rs和计算了Q10,此数据的获取为该项研究提供了有力的数据支撑。 图 2 中国东部土壤微生物呼吸Q10的空间变异模式 研究结果表明: 森林土壤Q10的纬度模式主要受到气候因素的驱动。类似的,农田土壤Q10随纬度而升高,气候因素、pH、粘粒和SOC共同调节了耕地土壤Q10的空间变化(图2)。总体而言,森林和耕地之间的Q10值随着纬度的增加趋于一致;DQ10从热带地区(9.23~3.58%)到亚热带地区(0.58~1.93%)和温带地区(–0.97~1.11%)显著下降。DQ10的空间变化受到气候因子、DpH、DMBC及其相互作用的影响。此外,研究还发现森林转变为农田土壤Q10呈现了明显的阈值现象(约1.5),受到pH和MBC的共同调控(图3)。图3 长期的森林转化为农田导致Q10出现不同方向的偏离(阈值约1.5) 预计全球气温升高2.0 °C的情景下,与生物地理可变的Q10相比,使用固定的Q10平均值将导致土壤CO2排放量估算产生偏差:森林为–0.93%~3.66%,农田为–0.71%~2.05%,森林-农田转换的偏差范围为–5.97~2.14%(表1)。表1 中国东部不同生物群落在2.0°C升温情景下表土(0-20 cm)CO2排放预测 总的来说,相关研究结果凸显了与长期土地利用变化相关的生物地理变化对土壤微生物呼吸温度响应的潜在影响,并强调了将长期土地利用对土壤温度敏感性的影响纳入陆地碳循环模型以改进未来碳-气候反馈预测的重要性。 研究论文近期在线发表于土壤学著名期刊《Soil Biology and Biochemistry》。第一作者为北京林业大学博士研究生潘俊、通讯作者为东北林业大学何念鹏教授和北京林业大学的孙建新教授;其他重要的合作作者还包括密歇根州立大学刘远博士、中央民族大学李超博士、中国科学院地理资源所李明旭博士和徐丽博士。该研究受到国家自然科学基金项目(32171544,42141004, 31988102)、中国科学院稳定支持基础研究领域青年团队计划(YSBR-037)等资助。原文链接:Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322. 截至目前,以PRI-8800为关键设备发表的相关文章已达26篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。即日起,如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;307 mL样品瓶,25位样品盘;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.25.Liu YH,Xiong DC,Wu C,et al.Effects of exogenous carbon addition on soil carbon emission in a subtropical evergreen broad-leaf forest[J]. Journal of Forest & Environment, 2023, 43(5).26.Zheng, J., Mao, X., Jan van Groenigen, K., Zhang, S., Wang, M., Guo, X. et al. (2024). Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau. 441, 116736.27.Pan J, He NP, Li C, Li MX, Xu L, Osbert Sun JX. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. Soil Biology and Biochemistry, doi:10.1016/j. soilbio.2024.109322.

耶尔森氏菌属相关的仪器

  • 吉尔森PG型移液器 400-860-5168转3811
    PIPETMAN G(PG 型移液器)是吉尔森全新设计的空气排代式移液器,是市场上按压力最轻的移液器之一。全新的活塞组件,提高移液器舒适度,吸液及净液时,更省力,更方便。共有八种型号,容量覆盖 0.2μL 至 10mL。易于识别? PG 型移液器的摩擦环下方配有蓝色圆环,易与轻巧版P 型或经典版 P 型移液器的区分。? P2 和 P10 型号移液器均附有弹射器加长节(货号:F144879),可用于吉尔森 D10(短吸嘴)及 DL10(长吸嘴)。DL10 长吸嘴在微量管操作时能防止交叉污染,计量更精确。提升舒适度? 新设计的活塞组件(新型密封圈、更轻的弹簧),与高质量润滑油的搭配,为您带来超轻超舒适的移液新感受。不锈钢弹射器?塑料弹射器?由您决定!? 不锈钢或塑料弹射器可供选择,均具备吉尔森移液器坚固耐用的特点。? 新型环夹式弹射器,令日常操作更方便、更耐用。
    留言咨询
  • 吉尔森PL型移液器 400-860-5168转3811
    PIPETMAN L(PL 型移液器)是一款全新的容量可调空气排代式移液器,在保证精准、耐用的同时,更关注人体工学、舒适性、可追溯性等新时代移液需求。创新的流线型手柄,为您的移液工作带来舒适的全新体验。PL 型单道移液器共有八种型号,容量覆盖 0.2μL 至 10mL。市场上移液按压力最小的移液器之一? 全新的弹射器设计,有效降低脱卸吸嘴时的按压力。? 全新的活塞组件设计,大幅改善移液及净液时的按压力。可追踪的移液器? 二维码包含移液器基本信息:生产日期、移液器编号、标称容量。? 利用全球通用的扫描装置,可轻松下载移液器相关资料。不锈钢弹射器?塑料弹射器?由您决定!? 不锈钢或塑料弹射器可供选择,均具备吉尔森移液器坚固耐用的特点。? 新型环夹式弹射器,令日常操作更方便、更耐用。最佳舒适度1、全新的活塞组件设计,减轻按压力,有效避免重复性肌肉劳损(RSI)风险。2、全新形状的挂钩,更贴合手指弧度,使用更舒适。3、专利的容量锁定系统,确保调节容量和移液时的安全,规避因容量变动引起的误操作。4、可调式弹射器按钮,左右手操作者均能流畅使用。
    留言咨询
  • PIPETMAN L Multi(PL 型多道移液器),整合了 PL 型移液器的舒适性和轻巧版 P 型多道移液器的优良设计。共有八种型号,容量覆盖 0.5μL 至 300μL。选择 PL 型多道移液器的 4 个理由1、容量可锁定2、二维码可追踪3、前所未有的操作舒适感4、适用于 96/384 孔微孔板移液工作的独特设计容量移取的绝对连贯性? 创新的齿轨架装置保证了每个轨道都有一致的操作性能。? 独家专利的活塞驱动装置,确保每个活塞的推送压力都保持一致性和连贯性,并且有效解决了多道移液器常见的问题,例如通道之间吸取容量的差异。灵巧的弹射器技术? 弹射器隔板设计将脱卸压力均匀分配到每一个通道,脱卸吸嘴更轻松。? 弹射器隔板的均衡设计,大大降低了脱卸压力,避免肌肉劳损。PL 型 10μL 多道移液器: 两种弹射器隔板可供更换,分别适用于吉尔森钻石吸嘴 D10 和 DL10。厚型隔板适合 D10,薄型隔板适合 DL10。独一无二的套筒设计? 根据移液器移液量程需求的不同,各种型号吸嘴均可被固定在套筒前端,确保吸嘴完全符合使用规范。
    留言咨询

耶尔森氏菌属相关的耗材

  • 北京绿百草现货提供卫生检验微生物检验干粉培养基(小肠结肠炎耶尔森氏菌)
    北京绿百草现货提供卫生检验微生物检验干粉培养基(小肠结肠炎耶尔森氏菌) 关键词:培养基,北京绿百草,微生物检验,小肠结肠炎耶尔森氏菌 北京绿百草现货提供卫生检验微生物检验干粉培养基(小肠结肠炎耶尔森氏菌):缓冲葡萄糖蛋白胨水(MR-VP),尿素酶琼脂基础,改良Y培养基,改良磷酸盐缓冲液PSB,改良酵母浸汁-孟加拉红肉汤,CIN-II培养基基础,半固体琼脂,改良克氏双糖培养基,鸟氨酸脱羧酶试验培养基等。 需要详细供货信息请联系北京绿百草:010-51659766. 登录网站获得更多产品信息:www.greenherbs.com.cn
  • Senshu-Pak液相色谱柱
    Senshu-Pak液相色谱柱§ 日本Senshu scientific公司是色谱仪器和耗材的供应商,其中的色谱柱业务是其主营业务之一产品描述粒径4.6×150mm4.6×250mmPEGASILODS SP1005μmPG-ODS-1151-SPPG-ODS-1251-SPPEGASIL C8 SP1005μmPG-C8-1151-SPPG-C8-1251-SP
  • erichsen321浸入式粘度杯
    erichsen321浸入式粘度杯测量原理: 一种物质的粘度表述为一定容量的测量液体(通常为100 ml)从一个指定喷口直径的杯子中全部流出所需的时间。流动时间通过秒表来测量。测试程序: 将杯子全部浸入到被测物质中,并完全装满一杯来进行测量。然后迅速将杯子提起,同时按下秒表。杯中物质完全流干所需的时间以秒为单位,在由上自下可看到喷口的那一刻所记录的时间便为结束点的时间。必须小心杯子在测试过程中保持垂直。

耶尔森氏菌属相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制