人胎盘泌乳素

仪器信息网人胎盘泌乳素专题为您提供2024年最新人胎盘泌乳素价格报价、厂家品牌的相关信息, 包括人胎盘泌乳素参数、型号等,不管是国产,还是进口品牌的人胎盘泌乳素您都可以在这里找到。 除此之外,仪器信息网还免费为您整合人胎盘泌乳素相关的耗材配件、试剂标物,还有人胎盘泌乳素相关的最新资讯、资料,以及人胎盘泌乳素相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

人胎盘泌乳素相关的资料

人胎盘泌乳素相关的论坛

  • 人胎盘制品的发展历程

    人类很早就注意到了胎盘的特性,使用胎盘的历史源远流长。人胎盘在中医里被称为紫河车,秦始皇两千多年前就利用它炼制长生不老药,民间还有食胎盘进补的传统。但在以往的使用历史中,胎盘的作用被简化,只是作为一种普通药品或补品加以利用。直到进入现代,提取技术成熟以后,胎盘强大的美容保健作用才逐渐被开发出来。  人类使用胎盘迄今为止,按生产工艺及功能划分,人胎盘制品已经是第五代。  最初胎盘制品是以紫河车、胎宝为代表的中医中成药。由于提取技术十分粗糙,最初的人胎盘制品只有简单的医用价值。  当胎盘制品是进入科学技术高度发达的20世纪后,以我国为主的少数国家应用现代生物技术成功研制的人胎盘组织液。人胎盘组织液完全改变了第一代胎盘制品的生产工艺,成功应用了酸水解、酶解等技术,医用价值大为提高。  后来,胎盘制品是瑞士人发明的羊胎素。羊胎素的应用可以追溯到20世纪初期,但真正作为美容品风行世界是在20世纪中后期。羊胎素作为一种成熟的胎盘制品,有较好的美容作用,受到各国爱美人士的热烈追捧,但自从疯牛病爆发以后,受到严重打击。  人体胎盘中含有的物质叫人胎盘素,简称人胎素,它不是一个单一的特定物品名称,也不是特定物品的通用名,而是一个概念的名词。人胎素产品包括人胎盘组织液、人胎素脂多糖注射液和胎盘素注射液等。人胎素对治疗妇科疾病以及术后粘连有显著作用。  到目前为止,人胎盘制品为第五代人胎盘组织液。人胎盘组织液是最新一代的胎盘制品,有清除自由基、抗氧化、调节免疫、抗突变、调节内分泌等作用,能抑制化学致突变,对遗传因子的损伤起修复作用,保证遗传物质的稳定和抗体的正常生理功能。对延缓衰老、改善亚健康及更年期症状、提高生活质量功效显著。  胎盘制品的发展历程,其实是人类对自身健康不断追求的过程,随着科学的发展,胎盘这个生命的源泉,一定会为人类贡献出更多更好的产品。

  • 【讨论】吃胎盘,能大补?

    "3·15"晚会再次曝光"人胎素"的问题。事实上,无论是"人胎素注射液"还是口服或者外用的"人胎素"药品,除了暴利之外,都不能给使用者带来什么实质性的好处。对"人胎素"的信赖,其实来源于传统医疗保健观念中对胎盘的崇拜。很多人相信服用人胎盘能强身健体,甚至抗衰老。不仅民间有吃胎盘大补的传说,中医也用人胎盘入药,名为"紫河车"。中医认为,胎盘性味甘、咸、温,入肺、心、肾经,有补肾益精,益气养血之功。据《本草纲目》引《丹书》:"天地之先,阴阳之祖,乾坤之槖籥,铅汞之匡廓,胚胎将兆,九九数足,我则乘而载之,故谓之河车。"通俗的说,古人认为胎儿坐着胎盘这辆小车跨过"天地""阴阳""乾坤"之界降临人世,又因为胎盘焙干后入药呈紫色,所以谓之"紫河车"。

人胎盘泌乳素相关的方案

  • 人P钙黏蛋白/胎盘钙黏蛋白(P-cad)检测试剂盒
    人P钙黏蛋白/胎盘钙黏蛋白(P-cad)检测试剂盒人P钙黏蛋白/胎盘钙黏蛋白(P-cad)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人P钙黏蛋白/胎盘钙黏蛋白(P-cad)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人P钙黏蛋白/胎盘钙黏蛋白(P-cad)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人P钙黏蛋白/胎盘钙黏蛋白(P-cad)抗原、生物素化的人P钙黏蛋白/胎盘钙黏蛋白(P-cad)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人P钙黏蛋白/胎盘钙黏蛋白(P-cad)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。
  • 凯氏定氮仪测定胎盘中的蛋白质含量
    胎盘是后兽类和真兽类哺乳动物妊娠期间由胚胎的胚膜和母体子宫内膜联合长成的母子间交换物质的过渡性器官。产妇分娩后的胎盘还是一味中药,称之为人胎衣、紫河车。本实验使用凯氏定氮法对干胎盘粉中的蛋白质含量进行测定。
  • 人胰抑制素(Pancreastatin)ELISA试剂盒
    人胰抑制素(Pancreastatin)ELISA试剂盒中文名称 人胰抑制素(Pancreastatin)ELISA试剂盒英文名称 Human pancreatic inhibin (Pancreastatin) ELISA kit 规格 96T/48T 生 产 商 进口原装/分装 产品介绍 实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人胰抑制素(Pancreastatin)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人胰抑制素(Pancreastatin)抗原、生物素化的人胰抑制素(Pancreastatin)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人胰抑制素(Pancreastatin)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。

人胎盘泌乳素相关的资讯

  • 最新研究:微塑料在人胎盘中的发现率高达100%,这一种含量尤其高!心脏、大脑等多器官均存在
    随着塑料品的消费量逐年增加,塑料污染已然成为全球面临的最紧迫的环境威胁之一。而这些塑料制品释放出的塑料碎片,又会在物理、化学和生物的进一步降解后分解成为“更微小但更严重”的威胁,即「微塑料」或「纳米塑料」。 微塑料(Microplastic),是指直径在1μm至5mm之间的塑料碎片和颗粒,在塑料制品使用过程中释放,特别是食物用途的塑料制品。事实上,越来越多的实验表明,塑料聚合物的碎裂并未止步于“微米级”,而是进一步形成了纳米塑料,数量上更是比预期高出了好几个量级。 纳米塑料(Nanoplastics),则是目前已知最小的微塑料,尺寸在1μm以下。与微塑料相比,纳米塑料更易进入人体,其体积小到可以穿过生物屏障(比如细胞膜)并进入生物系统,包括血液、淋巴系统,甚至全身。 胎盘中微塑料检出率高达100% 微/纳米塑料可能会遍布全身并产生损害? 这并非空穴来风,Toxicological Sciences上最新刊登的研究,采用了一种新的分析工具测量了人类胎盘中存在的微塑料,得到的结果令人震惊!在接受测量的62个胎盘样本中100%地检测出了微塑料,浓度为每克组织中6.5-790微克。 微克,听起来不多?但正如毒理学中的基本原理“剂量决定毒性”所述,积少成多聚沙成塔,如果剂量不断增加,很可能带来一定的健康危害。“如果连胎盘中都存在微塑料,那么地球上所有哺乳动物的生命均可能受到影响,说明事态很严峻了!”美国新墨西哥大学的Matthew Campen博士强调。 图源:https://hsc.unm.edu/news/2024/02/hsc-newsroom-post-microplastics.html 人类胎盘由贝勒医学院数据库提供,收集时间为2011-2015年,最终有62个符合条件的胎盘被用于Py-GC-MS分析。 为了能更精准地确定和量化纳米和微塑料(NMPs)在人体组织中的累积程度,研究者开发了一种新方法:通过皂化反应和超速离心从人体组织样本中提取出固体材料,从而可以采用热裂解-气质联用(Py-GC-MS)来对塑料进行高度特异性和定量分析。 具体来说,研究者首先对样本进行化学处理,使得脂肪、蛋白质进一步水解和皂化成小分子。接着,将样品放入超速离心机中,最终在试管底部观察到一小块塑料。 再然后,研究者采用Py-GC-MS对收集到的塑料块儿进行处理,将其加热到600℃后,从而捕捉不同类型的塑料在特定温度下燃烧时释放出的气体。“很酷的是,气体进入质谱仪后,会留下属于自己的印迹。”Campen解释道。 实验流程 Py-GC-MS分析显示,纳入分析的62个胎盘样本中均存在微塑料,每克胎盘组织中的NMPs浓度从6.5µg到685µg不等,均值为126.8±147.5µg/g。 其中,胎盘组织中最常见的聚合物是聚乙烯(PE),几乎所有样本中都存在。按重量计算,PE占NMPs总量的54%,平均浓度为68.8±93.2µg/g。事实上,生活中聚乙烯的使用率非常高,主要用于食品包装和塑料瓶,比如水果、蔬菜、超市采购回来的半成品都是用PE保鲜膜。 聚氯乙烯(PVC)和尼龙紧随其后,各占总量的10%左右。而剩余的26%,由其他9种聚合物组成。 胎盘中的NMPs含量 研究者表示,在胎盘中发现如此高浓度的微塑料,是一件非常令人担忧的事儿!胎盘是孕期母体和胎儿循环系统之间的接口,约在怀孕后一个月开始形成。时间跨度上来说,胎盘组织仅有8个月左右的生长期,就能囤积如此之高浓度的NMPs;那么,这些微塑料也会在人体内其他器官进行更长期的积累。 警惕!微塑料已入侵人类心脏及全身 而这绝不是杞人忧天。去年,来自中国首都医科大学的研究学者们竟然在与外部环境没有接触的器官——心脏及其周围组织中发现了微塑料的存在! 研究者从心脏收集来的5种不同类型的组织中,包括心包、心外膜脂肪组织(EAT)、心包脂肪组织(PAT)、心肌和左心耳(LAA),检测到直径20-469μm不等的微塑料颗粒。 doi: 10.1021/acs.est.2c07179. 为了获得人体内器官存在微塑料的“直接证据”,研究者招募了15名正在经历心脏手术的参与者,最终收集到6个心包样本、6个EAT样本、11个PAT样本、3个心肌样本和5个LAA样本。最终,在所有的5类样本中均检测到了微塑料的存在,直径从20到469μm不等。 其中,最常见的微塑料类型是聚对苯二甲酸乙二醇酯(PET),约占总数的77%,在心包、EAT、PAT和心肌中的具体占比分别高达96%、83%、49%和43%;其次为占12%的聚氨酯(PU),主要存在于LAA样本中。 值得注意的是,虽然PE只占到微塑料颗粒总数的1%,但在所有的组织样本中均检测到。同时,在9号患者的心肌样本中也能找到PE,说明微塑料的污染已达到了人体最深的解剖结构! 微塑料在人体中的分布情况 由于此次样本是接受心脏手术的患者,研究者还发现了另一个微塑料的来源途径——没错,就是心脏手术本身。 在手术过程中,患者会接触到各种带有塑料成分的医疗器械,这也使得手术前后患者血液样本中的微塑料类型以及直径分布出现了改变。举例来说,手术前血液中检测到的最常见的微塑料类型为PET,占67%;而聚酰胺(PA)则是手术后血液样本的含量最高的微塑料颗粒类型。 因此,研究者强调,侵入性医疗程序很有可能成为被忽视的微塑料暴露途径,值得重视! 心脏中的各种微塑料类型分布 先前,加拿大的Kieran D. Cox教授和他的团队以美国人饮食为基础,根据食物消费种类以及不同种类食物所含有的微塑料数量,估算出每人每年会吃掉5万个微塑料颗粒,如果算上漂浮在空气中、被呼吸吸入的微塑料,那么每人每年吃掉的微塑料颗粒数量在7.4万-12.1万之间。 按照重量计算的话,每人每周大约吃掉5g微塑料,相当于一张银行卡的重量!还真是活到老,吃微塑料到老呢。 微/纳米塑料的“温水煮青蛙”式健康危害 不夸张地说,NMPs对人的影响往往是“温水煮青蛙式”的——很容易被忽视,但对健康的危害或是积年累月的。 去年,维也纳医科大学等多院校联合开展的研究,揭示了一个令人惊讶的现象:仅摄入后2小时,纳米塑料便会穿过血脑屏障(BBB)抵达大脑,而这可能会增加炎症、神经系统疾病以及神经退行性疾病的风险。 本研究中,研究者选择了聚苯乙烯(PS)来模拟塑料微粒通过血脑屏障后的转移。PS属于热塑性塑料,经常被用来制作各种需要承受开水温度的塑料杯、一次性泡沫饭盒;因其使用广泛,污染环境的程度较高,而被纳入了本次的重点研究对象。 令研究学者意想不到的事情发生了!在灌胃的仅仅2小时后,小鼠脑组织中便出现了特定的纳米级绿色荧光信号。这表明,0.293µm的PS微粒能在很短的时间内被胃肠道吸收,并穿透BBB进入脑组织中。 有意思的是,脑组织中只检测到了绿色荧光颗粒(即0.293µm的纳米塑料),而没有更大颗粒的信号。也就是说,塑料微粒的大小或是影响其穿透BBB能力的关键因素。 给药的2小时后,小鼠脑内检测到纳米级PS塑料微粒 此外,Science Advances上最新刊登的研究揭露了微塑料的另一大新罪证——纳米塑料能够进入大脑,与神经元中的蛋白纤维发生作用,从而加剧帕金森病的风险。 这些“狡猾”的塑料微粒不仅仅是进入大脑这么简单,还诱导了严重的神经毒性,成为某些疾病的“铺路石”。 DOI: 10.1126/sciadv.adi8716 帕金森病(PD)的病理特征是α-突触核蛋白在脆弱的脑神经元中病理性积聚,可以说α-突触核蛋白是PD发病中的中心环节。 为了探明塑料微粒与帕金森病之间的关系,第一步,研究者先在体外将高浓度的野生型人类α-突触核蛋白单体蛋白(~1 mg/ml)与聚苯乙烯纳米塑料(平均直径~39.5±0.7nm的1nM)进行混合。 结果显示,在阴离子纳米塑料污染物的催化下,α-突触核蛋白发生了聚集。具体来说,在α-突触核蛋白与纳米塑料污染物持续混合的6天后,产生了浑浊的白色泡沫界面,整体也出现了浑浊。使用负染色透射电镜(TEM)观察溶液中的产物发现,早在第3天就有多条α-突触核蛋白纤维从单个微塑料中发出。纳米塑料污染物与α-突触核蛋白的混合过程 第二步便是探究“how”——具体来说,阴离子纳米塑料是如何加速α-突触核蛋白的聚集的呢? 分子动力学(MD)模拟表明,α-突触核蛋白与阴离子纳米塑料形成了相当稳定的复合物,其特点是在两亲结构域和邻接非淀粉样成分(NAC)结构域中具有很强的静电吸引和压实作用。然而,如果使用中性或阳离子纳米塑料来取代阴离子纳米塑料时,则未能形成类似的复合物。 仔细观察发现,阴离子纳米塑料能够置换水,插入α-突触核蛋白的两亲结构域和NAC结构域,并与之形成强烈的相互作用。正是两亲结构域和NAC结构域的存在,促成了阴离子纳米塑料与α-突触核蛋白的特异性结合,从而促进α-突触核蛋白成核。 与此同时,阴离子纳米塑料还会导致神经元的轻度溶酶体损伤,减缓α-突触核蛋白聚集体的降解。生成的增多,降解的减少,自然会导致“不平衡”的发生。 阴离子纳米塑料与α-突触核蛋白共同形成了稳定的复合物 第三步便是追踪真实的脑内链路,研究者构建了小鼠模型,将不同浓度的人类α-突触核蛋白纤维滴定在小鼠的初级神经元上。光片显微镜和共聚焦分析表明,α-突触核蛋白纤维很容易扩散开来,在大脑皮层、丘脑和杏仁核的神经元以及黑质紧密区(SNpc)的多巴胺能神经元中积聚。 当共同注射纳米塑料与α-突触核蛋白纤维时则出现了更令人惊讶的情况——注射3天后,SNpc中大约20%的多巴胺能神经元的α-突触核蛋白纤维和纳米塑料均呈阳性,且有75%的α-突触核蛋白纤维信号与纳米塑料共定位。 事实上,当给小鼠同时注射纳米塑料和α-突触核蛋白纤维时,会在多巴胺能神经元中观察到成熟的胞质磷酸化Ser129-α-突触核蛋白包涵体,同时在整个皮质幔、杏仁核和SNpc中均出现了pS129-α-突触核蛋白病理变化的大幅增加。 总结而言,在较高的纳米塑料浓度下,这些大脑中的阴离子纳米塑料污染物会与α-突触核蛋白纤维发生协同作用,上调pS129-α-突触核蛋白包涵体在相互连通的大脑区域中的传播,进而增加了小鼠大脑皮层、杏仁核和SNpc中的病理沉积。 纳米塑料在小鼠脑内聚集并形成包涵体 最后一步,也是与人类关联性最强的一步——研究者采用裂解气相色谱-质谱法在人脑中检测到清晰的苯乙烯纳米塑料。 聚苯乙烯并非止步于血液中,其纳米塑料颗粒可穿透哺乳动物的血脑屏障。在先前的研究中,研究者在路易体痴呆症患者的额叶皮层脑组织中观察到很强的α-突触核蛋白种子活性,同时也发现了强烈的苯乙烯离子痕迹。 这些数据首次测量了纳米塑料可能作为污染物进入人脑组织中,但其浓度与作用还需要更进一步的人体试验进行探究。 神经元α-突触核蛋白和纳米塑料污染物之间的病理相互作用 综上,纳米塑料污染能够促进帕金森病以及痴呆症相关的α-突触核蛋白的聚集。具体来说,阴离子纳米塑料污染物能够进入大脑组织,通过与α-突触核蛋白的两亲和NAC结合域的高亲和相互作用,导致α-突触核蛋白病理学的传播和积聚,进而诱导帕金森等神经性疾病的发生。 众所周知,塑料降解速度很慢,通常会持续数百年甚至数千年,这也增加了微塑料被摄入并累积在许多生物体和组织中的可能性。 为了避免人类的五脏六腑变成“塑料制品”,最简单的办法就是——尽量在生活中减少塑料制品的使用并及时治理塑料污染,别让地球被塑料“攻陷”之后再追悔莫及。
  • 孕妇胎盘中首次发现微塑料
    p  据最新一期《环境国际》杂志报道,意大利科学家首次在孕妇胎盘中发现了微塑料颗粒。研究小组在妇女生完孩子后捐赠的6个胎盘中的4个发现了12个微塑料碎片。有3种被确定为被污染的热塑性聚合物聚丙烯,而其他9种被鉴别出的颜料,则来自于人造涂料、油漆、粘合剂、手指画颜料、化妆品和个人护理用品等。/pp  据报道,国外科学家们尚不清楚人体中的微塑料对健康有何具体影响。但是,微塑料中可能含有某些化学物质,这对胎儿可能造成长期的身体损害,甚至使胎儿的免疫系统崩溃。/pp  据称,胎儿体内的微塑料颗粒很可能是母亲吸入,或通过饮食带入体内的。/pp  据报道,研究者们对四名怀孕和分娩过程都正常的健康妇女进行了检查。结果,科学家们在胎盘的胎儿和母体两侧,以及胎儿发育的薄膜中都检测到了微塑料。据悉,十几个微塑料颗粒被检测出来。然而事实上,科学家们仅分析了每个胎盘约4%的部分,这表明微塑料的总数要多得多。/pp  微塑料颗粒大多为10微米(0.01毫米)左右,这意味着它们足够小,可以进入血液中。这些微塑料颗粒可能已经进入了婴儿的体内,但研究人员目前无法进行分析。br//pp  罗马圣乔瓦尼· 卡利比塔医院的妇产科主任安东尼奥· 拉古萨(Antonio Ragusa)表示:“他们就像半机械婴儿似的,不再单纯由人类细胞组成,而是掺杂着无机物。”/pp  研究人员称:“我们仍需进行进一步研究,以评估微塑料的存在是否会触发胎儿的免疫反应,或导致有毒污染物在体内的释放,从而对人体造成危害。”br//pp  不过,参与该研究的另外两名女性的胎盘中并未查出微塑料颗粒,这可能是由于不同的生理状况、饮食或生活方式造成的。/pp  从珠穆朗玛峰的山顶到漆黑无边的深海,微塑料污染已遍及地球的每个角落。/pp  本网相关报道:/pp  a href="https://www.instrument.com.cn/news/20200824/557449.shtml" target="_blank"警惕!人体47处被检出微塑料,或成健康研究下一个热点/a/pp  a href="https://www.instrument.com.cn/news/20200522/539229.shtml" target="_blank"除了海洋里,空气中也有浮游微塑料 你呼吸了吗?/a/pp  a href="https://www.instrument.com.cn/news/20190829/492232.shtml" target="_blank"洗涤衣物可能是未被充分认识的微塑料污染源/a/pp  a href="https://www.instrument.com.cn/news/20190820/491533.shtml" target="_blank"北极微塑料从哪儿来?科学家又发现新证据/a/pp  a href="https://www.instrument.com.cn/news/20180904/470662.shtml" target="_blank"美研究:13国水管及食盐和啤酒中存在“微塑料”/a/pp  今年十月,科学家们发现婴儿使用塑料瓶饮用配方奶粉时,每天要吞咽数百万个微塑料颗粒。2019年,研究人员在胎盘一侧发现空气颗粒污染物,这表明未出生的婴儿也暴露于交通和化石燃料燃烧产生的污染物中。/pp  显然,如何避免这些微型颗粒对人体造成潜在的危害,将在未来成为一项重要的课题。/p
  • 新思路:迷你胎盘+大脑类器官将如何揭开精神疾病的根源
    它们漂浮在普通的实验室培养皿中,不会比普通的米色小扁豆更引人注目;它们往往如此脆弱,如果温度或“食物”或周围的空气偏离“完美理想区”就会萎缩死亡。科学家们之所以要精心伺候着这样的“类器官”——微型版本的肾、心脏、肠道,甚至大脑—— 是因为这可都是由人类干细胞构建产生的,它们的脆弱可能会耗费数月的工作。Lieber脑发育研究所的生物学家Jennifer Erwin却无意“娇惯”她培养出来的类器官:这是世界上第一个用干细胞生成的人类胎盘。尽管构建这样类器官颇具挑战性,她打算让它们接受缺氧、应激激素、以及其他条件的攻击——用于模拟妊娠并发症。妊娠并发症会增加胎儿大脑发育的风险,甚至有可能导致后期出现精神分裂症,自闭症,注意力缺陷多动障碍和智力残疾等疾病。如果这些实验能行得通,Erwin下一步计划将胎盘类器官与大脑类器官共同培养!弄啥咧?这样,当迷你胎盘遭受生理困扰时,她将能够检测迷你大脑中会出现什么问题、收集有关这些疾病如何出现的线索 —— 比如基因是否过度活跃?还是不活跃?神经元是否形成了太少的突触?或是太多?—— 理想情况下,甚至找出阻止它们的方法。实验结果可以填补科学对大脑发育理解的巨大空白。多年的研究表明,如果母亲在怀孕期间经历压力,则会增加孩子患精神分裂症或其他神经发育障碍的机会。“在某些情况下,风险是两到四倍,”神经科学家,Lieber研究所所长Daniel Weinberger博士说。相比之下,遗传变异只会增加一小部分发展为精神分裂症的可能性。但“复杂的怀孕”和“精神分裂症”之间是大脑的“黑匣子”。通过测定胎盘窘迫如何影响大脑类器官,Erwin希望她能够了解真实情况下可能会发生什么。人体类器官被用于了解疾病如何发展,筛选药物等等。迷你肾脏和肠道几乎没有受到生物伦理学家什么异议。但大脑类器官,如大脑本身,具有不同的伦理地位,这引发了激烈的讨论,比如到底应该允许大脑类器官发展到什么程度、需要哪些道德考虑,以及它们是否会变得有意识......可能没有任何人明确。波士顿Wyss生物启发工程研究所的生物伦理学家Jeantine Lunshof说:“我认为建立和研究这种[胎盘/大脑]类器官模型存在着很强的科学和伦理原因。”他曾为George Church的哈佛医学院实验室提供建议。“据我所知,没有其他方法可以测试胎盘功能障碍对发育中大脑的影响。这是一个如此巨大的悬而未决的问题,如果你找到可以导致预防或治疗的线索,那将是一个了不起的医学和道德贡献。”这并没有消除这项研究计划所具有的“推动研究极限边界的性质”。Lieber研究所隶属于但独立于约翰霍普金斯大学医学院,并不缺乏全尺寸的人类大脑。通过与四名体检医师达成的协议,研究所每年收到大约500个大脑,现在大约有3,000个。它位于巴尔的摩北部霍普金斯科技园区一座11年历史的玻璃钢建筑中,看起来就像无数的生物医学研究所——基因组测序仪和蔡司显微镜在初创公司中无处不在。但该研究所与其他实验室有一处显著区别。在这里,由工作人员推着、穿梭于走廊中的灰色膝盖高的小车的盖子上用魔术记号笔标记的潦草字迹中警告说,里面的干冰“不供公众使用。”干冰是为了保持运输中的大脑冷却。平时这些大脑保存在28个冰柜里,在一个裸露的,混凝土地板的房间里。设置在门上的数字温度计显示负80摄氏度以下的读数。这些大脑让Weinberger和他的同事们在了解妊娠问题如何导致精神分裂症方面可以更加深入。医疗记录表明哪些脑供体有精神分裂症,有时还有哪些母亲有怀孕问题 这些数据清楚地表明,诸如糖尿病,缺氧,营养不良和感染等产科并发症会增加精神分裂症的风险。但是这对于妊娠问题何以迫使大脑发育偏离如此之彻底以至于最后导致严重的精神障碍,却无法回答。这就是Erwin的胎盘+大脑类器官切入的地方。像其他类器官研究人员一样,Erwin从成人细胞开始——在她的研究中,包括脑健康的捐赠者和精神分裂症死亡的人。轻轻地剥离一小块硬脑膜(这是覆盖大脑的坚韧膜),并解离硬脑膜的细胞,她和她的同事进行遗传重编程,使他们不再是硬脑膜细胞,而是恢复到类似胚胎的状态——当它们是干细胞、能够发育成任何身体的特化细胞时的状态。然后,科学家将这些诱导的多能干细胞暴露于生物化学物质中,从而将它们推向新的发育途径:成为胎盘细胞。就像宏观版本一样,细胞自发组织起来。“类器官有分层的三维结构,”Erwin说。“而不是一大坨。”胎盘类器官的基因组与其细胞来源的成年人相同。因此,它也与其胎盘相同。Erwin在一个“摇床”中培养类器官,这是一个在培养箱内来回轻轻摇动的小培养皿,摇动以保持良好的营养。诱导性多能干细胞需要大约10天才能发育成类似于真实器官的胎盘类器官,用以模拟对外界攻击的响应。一旦发育成类器官,Erwin会施于压力条件。例如在一项测试中,她通过在含有5%氧气而不是标准20%的空气中生长类器官来模拟怀孕缺氧。根据初步结果,类器官会形成微小的绒毛,突出的手指样结构伸出来寻找维持生命的氧气——就像真正的胎盘一样,缺氧会使绒毛长入子宫壁。其他计划的攻击包括大量的应激激素,流感病毒和其他已知会增加精神分裂症风险的因素。很快,Erwin计划构建大脑类器官,并在与胎盘类器官相同的培养皿中让它们生长,两种类型的类器官用一层仅允许生物化学物质通过的膜分隔开。如果一切顺利,实验应该会展示对胎盘类器官的攻击如何影响大脑的类器官。因为从精神分裂症患者的细胞产生的类器官,具有与细胞来源人相同的引起精神分裂症的遗传变异,所以类器官是测试基因和环境(这里指经过胎盘过滤的环境)如何相互作用导致精神分裂症的理想方式。“只有很少的疾病异常是单纯由基因作为唯一的风险因素的,”Weinberger说。恰恰相反:正确的环境可以使本来可能导致疾病的基因沉默,而错误的环境不仅会释放,而且实际上会加剧基因的致病效应。在2018年对2,038名精神分裂症患者进行的一项研究中,Weinberger及其同事发现了一些之前被认为会增加精神分裂症风险的基因的奇怪现象。“当你查看这些基因时,它们不一定是关于大脑的,相反,它们在胎盘中高度表达。妊娠中的并发症越多,在350个与精神分裂症相关的基因中的某些基因的表达水平越高。”与人们预期不同的是,这些高度表达的基因中几乎没有一个与神经元的经典功能相关。相反,它们会影响总体的细胞功能,如运行产生能量的线粒体和输出蛋白质。Weinberger称这个模型为第一个“连接生命早期相关并发症,遗传风险和精神疾病”的机制。这种连接就是胎盘。如果Erwin的胎盘/脑器官配对成功,它将有望解释胎盘中数百个基因的活性升高如何影响大脑发育,有时强烈到足以导致20年后的精神分裂症。 Weinberger说,这种方法“开辟了胎盘医学的新篇章。”

人胎盘泌乳素相关的仪器

  • 利用AssureNMR™ 进行药物质量控制和筛选: 这是一个定制解决方案,用于借助NMR对不同材料进行评估。借助NMR在确定化合物特性和定量方面的优势以及NMR高度可重复的特性,Assure-NMR™ 可从采集到报告环节以全自动化方式进行材料筛选。通过结合谱仪适用性验证和在样本离开采集队列前进行交叉检查,可确保在数据分析之前获得最高质量的谱图,并协助确保SOP操作。不管是进行代谢组学、膳食补充剂、参考标准、API、聚合物还是原材料的研究,这个定制解决方案可自动提供样本构成和分类的小结。兼容研发和GMP环境的AssureNMR可针对研究开发、产品评估和质量控制快速进行详尽的样本分析。
    留言咨询
  • (一)功能应用及设备优点利用培养基循环流动,模拟血流,低剪切应力环境,结合3D培养构建细胞类器官体外模型,更贴近人体的体内环境。通过将流动引入体外环境,精准提高了您研究的生理相关性,为类器官研究提供了理想的工具,使您能够生成更准确的模型,大大提高对结果有效性的信心。从而研究者能够更高效、可靠地培养类器官,加速药物研发和生物医学研究的进程。广泛应用于干细胞培养和分化,癌症研究,药物和毒性筛选及组织工程等领域。显著的好处包括:加速类器官细胞分化和成熟,提高细胞活力可选择气液界面、液液界面、支架和流动方案的多样化培养方式满足多器官共培养,细胞间的信号传递等实验要求配备了光学窗口在顶部或底部表面,成像友好,便于理想的实时高分辨率成像严密控制多个变量灵活且易于使用节省时间和成本细胞存活时间长,适合长期培养(二)产品应用案例及发表文献1)Mä ki-Mikola, E., Lauren, P., Uema, N. et al. Establishing a simple perfusion cell culture system for light-activated liposomes. Sci Rep 13, 2050 (2023). 虽然多种脂质体和其他纳米颗粒药物载体在临床前研究中表现出了很大的优势,但它们在临床研究中未能复制相同的优势。人们提出了翻译不良的各种原因。在体外研究中,例如,免疫系统的缺乏和纳米颗粒的沉积已经被认为是可能的因素。沉降导致粒子躺在细胞的顶部,增加了纳米颗粒和细胞之间相互作用的可能性。较长的接触时间在毒性和活性研究中都会导致偏差,因为通常情况下纳米颗粒会随着间质融合移动,这挑战它们到达目标位点。 在本文研究中,作者采用Quasi Vivo Fluid Flow 3D 智能培养系统进行了表征和优化,多个腔室可以连接在同一个系统中,创造了在同一系统中包含在不同区域培养的多个细胞系的可能性。建立一种研究光活化脂质体的新型细胞培养工具。2)Spencer, C.E. Rumbelow, S. Mellor, S. Duckett, C.J. Clench, M.R. Adaptation of the Kirkstall QV600 LLI Microfluidics System for the Study of Gastrointestinal Absorption by Mass Spectrometry Imaging and LC-MS/MS. Pharmaceutics 2022, 14,364. 由于口服药物复制胃肠道复杂结构和环境的挑战,口服药物的吸收研究可能是困难的。这些研究通常涉及Caco-2细胞的使用。然而,Caco-2细胞并不包含在肠道组织中发现的所有细胞类型,也缺乏P450代谢酶。QV600 LLI系统是一种设计用于细胞培养的微流体系统,模拟小肠的十二指肠部分。本文作者用pH调节的阿托伐他汀溶液流过胃肠道组织的顶端层,用营养液流过组织的基底层以维持组织活力。组织样本被快速冷冻、冷冻切片,并使用MALDI质谱成像(MSI)成像。对辅料对吸收的影响进行了概念验证研究。在Quasi Vivo Fluid Flow 3D 智能培养系统中加入不同浓度的溶解剂。测定受体回路中阿托伐他汀的量,以研究赋形剂对渗透到组织中的药物量的影响。3)Kupper, N. Pritz, E. Siwetz, M. Guettler, J. Huppertz, B. Placental Villous Explant Culture 2.0: Flow Culture Allows Studies Closer to the In Vivo Situation. Int. J. Mol. Sci. 2021, 22, 7464. 胎盘作为胎儿的一个器官,在妊娠期间暂时存在,并作为胎儿的肺、肝、肾和肠道。使母体和胎儿之间能够交换的绒毛膜绒毛被组织成绒毛树,并自由漂浮在母体血浆和血液中的体内。自由漂浮的绒毛还会释放大量的物质,包括囊泡、激素和调节母体和胎儿生理的生长因子。 最近,绒毛外植体培养被用于分析胎盘激素和释放到母体循环中的因子。虽然胎盘外植体的培养已经根据氧浓度进行了适应和改进,也已经开发了多种静态培养条件。然而,所有这些胎盘外植体培养方法都是静态的方法,绒毛周围没有流动,因此,所有这些方法与体内的情况有显著的不同。 在本文里,作者认为绒毛外植体的体外培养应该以最具功能和最自然的方式进行,以获得代表子宫内环境的稳健结果。因此,本研究旨在建立正常胎盘氧条件下胎盘绒毛外植体的流动培养系统,采用Quasi Vivo Fluid Flow 3D智能培养系统模拟从母亲到胎盘的血流,并回到迄今为止最原生的体外系统。(三)产品用户概况全球使用Kirkstall Quasi Vivo 3D 细胞类器官培养系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前Quasi Vivo智能3D 细胞类器官培养系统被成功用于下列三维细胞类器官培养:(四)品牌制造商简介Kirkstall Ltd.成立于2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的3D细胞类器官培养微生理系统Quasi Vivo。作为3D细胞类器官技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
    留言咨询
  • 全自动3D细胞培养仪 400-860-5168转6227
    (一)功能应用及设备优点 利用培养基循环流动,模拟血流剪切应力环境,结合3D 培养构建细胞模型,更贴近人体的体内环境。通过将流动引入体外环境,显着提高了您研究的生理相关性,使您能够生成更准确的模型,从而大大提高对结果有效性的信心。 显著的好处包括: 提高细胞活力 严密控制多个变量 灵活且易于使用 节省时间和成本 长期培养 (二)产品应用案例及发表文献 1)Mä ki-Mikola, E., Lauren, P., Uema, N. et al. Establishing a simple perfusion cell culture system for light-activated liposomes. Sci Rep 13, 2050 (2023). https://doi.org/10.1038/s41598-023-29215-6 虽然多种脂质体和其他纳米颗粒药物载体在临床前研究中表现出了很大的优势,但它们在临床研究中未能复制相同的优势。人们提出了翻译不良的各种原因。在体外研究中,例如,免疫系统的缺乏和纳米颗粒的沉积已经被认为是可能的因素。沉降导致粒子躺在细胞的顶部,增加了纳米颗粒和细胞之间相互作用的可能性。较长的接触时间在毒性和活性研究中都会导致偏差,因为通常情况下纳米颗粒会随着间质融合移动,这挑战它们到达目标位点。 在本文研究中,作者采用Quasi Vivo流动细胞培养系统进行了表征和优化,多个腔室可以连接在同一个系统中,创造了在同一系统中包含在不同区域培养的多个细胞系的可能性。建立一种研究光活化脂质体的新型细胞培养工具。 2)Spencer, C.E. Rumbelow, S. Mellor, S. Duckett, C.J. Clench, M.R. Adaptation of the Kirkstall QV600 LLI Microfluidics System for the Study of Gastrointestinal Absorption by Mass Spectrometry Imaging and LC-MS/MS. Pharmaceutics 2022, 14, 364.https://doi.org/10.3390/ pharmaceutics14020364 由于口服药物复制胃肠道复杂结构和环境的挑战,口服药物的吸收研究可能是困难的。这些研究通常涉及Caco-2细胞的使用。然而,Caco-2细胞并不包含在肠道组织中发现的所有细胞类型,也缺乏P450代谢酶。QV600 LLI系统是一种设计用于细胞培养的微流体系统,模拟小肠的十二指肠部分。 本文作者用pH调节的阿托伐他汀溶液流过胃肠道组织的顶端层,用营养液流过组织的基底层以维持组织活力。组织样本被快速冷冻、冷冻切片,并使用MALDI质谱成像(MSI)成像。对辅料对吸收的影响进行了概念验证研究。在Quasi Vivo流动细胞培养系统中加入不同浓度的溶解剂。测定受体回路中阿托伐他汀的量,以研究赋形剂对渗透到组织中的药物量的影响。 3)Kupper, N. Pritz, E. Siwetz, M. Guettler, J. Huppertz, B. Placental Villous Explant Culture 2.0: Flow Culture Allows Studies Closer to the In Vivo Situation. Int. J. Mol. Sci. 2021, 22, 7464. https://doi.org/ 10.3390/ijms22147464 胎盘作为胎儿的一个器官,在妊娠期间暂时存在,并作为胎儿的肺、肝、肾和肠道。使母体和胎儿之间能够交换的绒毛膜绒毛被组织成绒毛树,并自由漂浮在母体血浆和血液中的体内。自由漂浮的绒毛还会释放大量的物质,包括囊泡、激素和调节母体和胎儿生理的生长因子。 最近,绒毛外植体培养被用于分析胎盘激素和释放到母体循环中的因子。虽然胎盘外植体的培养已经根据氧浓度进行了适应和改进,也已经开发了多种静态培养条件。然而,所有这些胎盘外植体培养方法都是静态的方法,绒毛周围没有流动,因此,所有这些方法与体内的情况有显著的不同。 在本文里,作者认为绒毛外植体的体外培养应该以最具功能和最自然的方式进行,以获得代表子宫内环境的稳健结果。因此,本研究旨在建立正常胎盘氧条件下胎盘绒毛外植体的流动培养系统,采用Quasi Vivo流动细胞培养系统模拟从母亲到胎盘的血流,并回到迄今为止最原生的体外系统。 (三)产品用户概况全球使用Kirkstall Quasi Vivo器官芯片微生理系统的学术及研究机构已超过100+个,遍布美国、英国、法国、瑞典、奥地利、意大利、荷兰、瑞士、日本等。目前Quasi Vivo流动细胞培养系统被成功用于下列细胞培养: (四)品牌制造商简介Kirkstall Ltd.成立于 2006 年,是 Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。 北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
    留言咨询

人胎盘泌乳素相关的耗材

  • 百欧博伟生物 Capan-1 人胰腺癌细胞
    百欧博伟生物 Capan-1 人胰腺癌细胞 一、细胞简介平台编号:bio-106177拉丁属名:Capan-1(人胰腺癌细胞)规格:1ml/T25细胞名称:人胰腺癌细胞种属:人源细胞系/甲状腺、胰腺、垂体、肾上腺、扁桃体、胸腺到货周期:10-15个工作日细胞用途:仅供科研使用。注意事项:仅用于科学研究或者工业应用等非医疗目的,不可用于人类或动物的临床诊断或治疗,非药用,非食用。 二、细胞介绍该细胞来源于一位40岁白人男性患者的肝转移。细胞表达粘液素,Rh+, HLA A2,,A9,B13,B17。含有刺激素受体和乙二醇激素受体。 三、细胞特性1)来源:胰腺癌,肝转移2)形态:上皮细胞样,贴壁生长3)含量:1x106 个/mL4)污染:支原体、细菌、酵母和真菌检测为阴性5)规格:T25瓶或者1mL冻存管包装 四、细胞接受后的处理:1)收到细胞后,请检查是否漏液,如果漏液,请拍照片发给我们。2)请先在显微镜下确认细胞生长状态,去掉封口膜并将T25瓶置于37℃培养约2-3h。3)弃去T25瓶中的培养基,添加6ml本公司附带的完全培养基。4)如果细胞长满(90%以上)请及时进行细胞传代,传代培养用6ml本公司附带的完全培养基。5)接到细胞次日,请检查细胞是否污染,若发现污染或疑似污染,请及时与我们取得联系。 五、本公司的细胞培养操作规程,供参考1、培养基及培养冻存条件准备:1)准备IMDM培养基(IMDM,GIBCO,货号C12440500BT),80%;优质胎牛血清,20%。 。2)培养条件: 气相:空气,95%;二氧化碳,5%。 温度:37℃,培养箱湿度为70%-80%。3)冻存液:90%血清,10%DMSO,现用现配。液氮储存。2、细胞处理:1)复苏细胞:将含有1mL细胞悬液的冻存管迅速放入37℃水浴中(水面要低于冻存管盖部)摇晃解冻,移入事先准备好的含有4mL培养基的15ml离心管中混合均匀。在1000RPM条件下离心4分钟,弃去上清液,加入1mL培养基后吹匀。然后将所有细胞悬液移入含有5ml培养基的培养瓶中培养过夜。第二天换液并检查细胞密度。2)细胞传代:如果细胞密度达80%-90%,即可进行传代培养。 对于贴壁细胞,传代可参考以下方法:1、弃去培养上清,用不含钙、镁离子的PBS润洗细胞1-2次。2、加2ml消化液(0.25%Trypsin-0.53mM EDTA)于培养瓶中,置于37℃培养箱中消化1-2分钟,然后在显微镜下观察细胞消化情况,若细胞大部分变圆并脱落,迅速拿回操作台,轻敲几下培养瓶后加入3ml此细胞的培养基终止消化。3、轻轻吹打后吸出,移入15ml离心管中,在1000RPM条件下离心4分钟,弃去上清液,加入1mL培养液后吹匀。4、移入到事先准备好的含有5ml培养基的T-25培养瓶中或含有14ml培养基的T-75培养瓶中培养。3)细胞冻存:待细胞生长状态良好时,可进行细胞冻存。贴壁细胞冻存时,先要消化处理并进行细胞计数。消化方法按照细胞传代方法的1-3步骤进行,最后的重悬液使用血清。悬浮细胞直接计数后离心,用血清重悬浮,加DMSO至最终浓度为10%。加入DMSO后迅速混匀,按每1ml的数量分配到冻存管中。本公司按每个冻存管细胞数目大于1X106个细胞冻存。 六、运输和保存:可选择干冰运输及发送复苏存活细胞方式:(1)干冰运输,收到后立即转入液氮或者-80 度冰箱冻存或直接复苏;(2)存活细胞,收到后应继续生长,传代达到细胞生长状态良好时,再进行冻存。具体操作见细胞培养步骤。收到细胞后请拍照,3 天内如果发现污染,请及时拍照与我们联系。 七、注意事项:1、收到细胞后,若发现干冰已挥发干净、冻存管瓶盖脱落、破损及细胞有污染,请立即与我们联系。2、所有动物细胞均视为有潜在的生物危害性,必须在二级生物安全台内操作,并请注意防护,所有废液及接触过此细胞的器皿需要灭菌后方能丢弃。 中国微生物菌种查询网自设细胞系板块,是细胞株提供中心,专业提供代次低、周期短、活性好的细胞株。与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • 人乳腺癌细胞(通过STR鉴定)
    人乳腺癌细胞(通过STR鉴定)一、细胞简介平台编号:bio-73188拉丁属名:ZR-75-1细胞名称:人乳腺癌细胞种属:人 年龄(性别):女 组织来源:乳腺癌 生长特性:贴壁 细胞形态:上皮细胞样 背景描述:ZR-75-1细胞产生高水平的黏液素MUC-1 mRNA,低水平的MUC-2 mRNA,但不表达MUC-3基因;ZR-75-1细胞表达雌激素受体。 生长培养基:RPMI-1640(货号:PM150110)+10% FBS(货号:164210-500)+1% P/S(货号:PB180120) 培养条件:气相:空气,95%;CO2,5% 温度:37℃细胞用途:仅供科研使用。注意事项:仅用于科学研究或者工业应用等非医疗目的,不可用于人类或动物的临床诊断或治疗,非药用,非食用。二、细胞接受后的处理方法1)收到细胞后,请检查是否漏液,如果漏液,请拍照片发给我们。2)请先在显微镜下确认细胞生长状态,去掉封口膜并将T25瓶置于37℃培养约2-3h。3)弃去T25瓶中的培养基,添加6ml新的完全培养基。4)如果细胞长满(80%-90%)请及时进行细胞传代。5)接到细胞次日,请检查细胞是否污染,若发现污染或疑似污染,请及时与我们取得联系。三、ZR-75-1人乳腺癌细胞培养步骤1、培养基及培养冻存条件准备:1)准备RPMI-1640培养基;优质胎牛血清,10%;添加0.01mg/ml胰岛素;双抗,1%。2)培养条件: 气相:空气,95%;二氧化碳,5%。 温度:37摄氏度,培养箱湿度为70%-80%。3)冻存液:90%血清,10%DMSO,现用现配。2、细胞处理:1)复苏细胞:将含有1mL细胞悬液的冻存管在37℃水浴中迅速摇晃解冻,加入4mL培养基混合均匀。在1000RPM条件下离心4分钟,弃去上清液,补加1-2mL培养基后吹匀。然后将所有细胞悬液加入培养瓶中培养过夜(或将细胞悬液加入250px皿中,加入约8ml培养基,培养过夜)。第二天换液并检查细胞密度。2)细胞传代:如果细胞密度达80%-90%,即可进行传代培养。四、细胞的运输和保存可选择干冰运输及发送复苏存活细胞方式:(1)干冰运输,收到后立即转入液氮或者-80度冰箱冻存或直接复苏;(2)存活细胞,收到后应继续生长,传代达到细胞生长状态良好时,再进行冻存。具体操作见细胞培养步骤。(3)收到细胞后请拍照,3天内如果发现污染,请及时拍照与我们联系。五、ZR-75-1人乳腺癌细胞实验要点及说明:1、本方法适用于贴壁细胞培养,而不适用于悬浮细胞培养,悬浮细胞可使用滴片法; 2、所使用的盖玻片应该为优质玻璃制造,并经过铬酸洗液处理; 3、盖玻片非常薄,易碎,取放盖玻片时动作要轻; 4、如果需要更多生长状态一致的细胞,可以使用较大的培养皿,但不宜过大,以避免培养液的浪费和增加污染机率; 5、如果细胞贴壁生长能力较差,可将盖玻片在0.5%多聚赖氨酸溶液中浸泡5-10分钟并自然晾干。中国微生物菌种查询网自设细胞系板块,是细胞株提供中心,专业提供代次低、周期短、活性好的细胞株。与国内外多家研制单位,生物医药,第三方检测机构,科研院所有着良好稳定的长期合作关系!欢迎广大客户来询!
  • Minvitro人工授精导管,人授管,IUI导管
    人工授精导管、人授管(辅助生殖)导管前端柔软光滑,有效减少导管进入宫腔的不适感;导管前端侧孔设计,可避免女性生殖道内分泌物堵塞管口;两截型外套管设计增强支撑,便于进入宫腔;每批产品通过内毒素检测人工授精导管、人授管(辅助生殖)人工授精导管包括柔软末端有两个侧孔的内导管和通过锁定接头与内导管连接的外鞘。由聚氨酯、聚丙烯、聚全氟乙丙烯(FEP)材料制成。环氧乙烷灭菌,无菌状态提供,一次性使用。人工授精法是通过非自然受精的技术使卵子受精的一种治疗不孕的方法。男女双方经过体格检查,认为无自然受精可能,而又切盼生育者,可行人工授精。实行人工授精,须推算排卵日期,检查子宫颈及其粘液,查结果良好者,约定授精日期。具体操作时,用干燥无菌注射器吸取,通过导管注入接受授精者的子宫颈内。

人胎盘泌乳素相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制