石墨锥

仪器信息网石墨锥专题为您提供2024年最新石墨锥价格报价、厂家品牌的相关信息, 包括石墨锥参数、型号等,不管是国产,还是进口品牌的石墨锥您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石墨锥相关的耗材配件、试剂标物,还有石墨锥相关的最新资讯、资料,以及石墨锥相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

石墨锥相关的厂商

  • 我司主要经营石墨制品,石墨坩埚、热解石墨坩埚、石墨消解仪、高温实验耗材、地质分析土壤检测用坩埚、石墨电极板等高纯石墨制品,可来图来样加工异型高纯石墨件。
    留言咨询
  • 太原市缔盟科贸有限公司是一家服务于实验室分析仪器领域内国内外知名品牌设备配件及耗材的高科技公司,经营多项世界知名顶级品牌产品。公司秉承着“专业、真诚、值得信赖”的经营理念,致力于为科研、生产、商检等领域提供一流的分析仪器产品和服务。我们的诚信和优质服务得到了各行业客户的一致肯定和好评,为企业赢得了卓越商誉。期待为您提供最为全面、及时、优质的产品和服务。 合作品牌:安捷伦、PerkinElmer、热电、岛津、安谱、梅特勒、莱伯泰科、月旭、IKA、Waters等主要经营产品:色谱:色谱柱、进样针、进样隔垫、保护柱、衬管、样品瓶、密封垫等光谱:元素灯、石墨管、石墨炉自动取样杯、石墨锥、雾室、雾化器、矩管、中心管、采样锥、截取锥等试剂:卡尔费休、衍生化、氘代溶剂、电导率标液等其他:标准品、有机前处理、无机前处理、移液器具、以及其他玻璃塑料耗材等
    留言咨询
  • 杭州牛墨科技有限公司作为省市及国家重点支持的高新科技企业,通过对“德国柏林大学国家石墨烯研究院和中科院石墨烯新材料研究所”的核心技术理论进行深度研发。经过多年研发,牛墨科技以“诺贝尔获奖新材料——少层石墨烯”作为发热导热材料,成功将其应用于家庭采暖、工业化冰、农业恒暖等领域,并获得多项国际国内发明专利。 牛墨科技不但是中国石墨烯应用的标准制定者和领导者,还是欧标国际采暖联盟中国唯一副理事单位,是国际上第三代石墨烯油性浆料的发明者及首推者。
    留言咨询

石墨锥相关的仪器

  • 单层石墨烯机械剥离分散设备,石墨烯分散设备,石墨烯剥离设备,石墨烯锂电池分散机,石墨烯防腐涂料分散机,石墨烯分散技术,双层石墨烯浆料分散机一、单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。是世上蕞薄却也是蕞坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,导热系数高达5300 W/mK,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/Vs,又比纳米碳管或硅晶体高,而电阻率只约10-6 Ωcm,比铜或银更低。二、单层石墨烯高剪切分散机设备原理石墨烯高剪切分散机的线速度达21M/S,由3级可调间隙的锥形定子和4级高速旋转的锥形转子形成研磨模块,根据生产要求,剪切研磨间隙可从0.01mm至2mm无级调速,定转子每一级上的凹槽一级比一级精细,深度,方向的不同增加了流体的揣流。当物料经过的时候,形成强有力的挤压、剪切、乳化、粉碎、混合、分散均质及研磨作用。从而得到精细超微粒乳化研磨的较高效益。锥形定子外围、出料腔体及密封件部位有循环水冷却,可根据用户的特殊要求提供多功能的可空转式运作。石墨烯研磨分散机结合乳化机与胶体磨的特长,具有吸、消泡能力。使石墨烯浆料在设备的高线速度下形成湍流,在定转子间隙里不断的撞击,破碎,研磨,分散,均质,从而得出超细的颗粒(当然也需要合适的分散剂做助剂)。综合以上几点可以得出理想的导电石墨烯浆料。 (洽谈:)三、石墨烯分散难点石墨烯研究所在开发石墨烯的过程中,遇到如何将石墨更好的细化,以及细化后团聚问题,成为大的难点。四、SID石墨烯高剪切分散机及解决方案石墨烯高剪切分散机具有非常高的剪切速度和剪切力,粒径约为0.2-2微米可以确保高速分散乳化的稳定性。SDH3是一种三级高剪切在线分散机,用于生产非常精细的乳液和悬浮液。工作腔内的剪切力大大增加了物料的输送,加快了单分子和高分子物质的溶解速度。三级定转子组合(分散头)确保液滴或粒度小且分布范围很窄。此工艺可以使单次混合的混合物长时间保持稳定,尤其是混合乳化液时。SID希德/SDH3系列研磨分散机,可以很好的解决这两个问题.SDH3系列的胶体磨(锥体磨) 分散头的组合,可以先将石墨混合物(配入溶剂和分散剂)研磨细化,然后再经过分散头,进行分散。这样既可以细化又可以避免团聚的现象,为石墨烯行业提供了强有力的设备力量。五、石墨烯高剪切分散机剥离过程石墨烯高剪切分散机液相直接剥离法制备,石液相直接剥离法制备墨烯,,液相直接剥离法,石墨烯研磨分散机,德国液相直接剥离法制备石墨烯研磨分散机,SID液相直接剥离法制备石墨烯研磨分散机是是利用剪切力、摩擦力或冲击力将粉体由大颗粒粉碎剥离成小颗粒。分散:纳米粉体被其所添加溶剂、助剂、分散剂、树脂等包覆住,以便达到颗粒完全被分离、润湿、分布均匀及稳定目的。液相直接剥离法制备石墨烯研磨分散机通常直接把石墨或膨胀石墨((一般通过快速升温至1000℃以上把表面含氧基团除去来获取)加在某种有机溶剂或水中, 借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。coleman等参照液相剥离碳纳米管的方式将石墨分散在n-甲基吡咯烷酮(nmp)中, 超声1h后单层石墨烯的产率为1%, 而长时间的超声(462h)可使石墨烯浓度高达1.2mg/ml, 单层石墨烯的产率也提高到4%[17]。 他们的研究表明, 当溶剂的表面能与石墨烯相匹配时, 溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量, 而能够较好地剥离石墨烯的溶剂表面张力范围为40~50mj/m2;[18]把石墨直接分散在邻二氯苯(表面张力:36.6mj/m2)中, 超声、离心后制备了大块状(100~500nm)的单层石墨烯;[利用液?液界面自组装在三甲烷中制备了表面高度疏水、高电导率和透明度较好的单层石墨烯。为提高石墨烯的产率, 近 等发展了一种称为溶剂热插层(制备石墨烯的新方法,该法是以eg为原料, 利用强极性有机溶剂乙腈与石墨烯片的双偶极诱导作用来剥离、分散石墨, 使石墨烯的总产率提高到10%~12%。同时, 为增加石墨烯溶液的稳定性, 人们往往在液相剥离石墨片层过程中加入一些稳定剂以防止石墨烯因片层间的范德华力而重新聚集。设 备 参 数功率500W电源220V,50/60Hz流量范围 (H?O)1-15L/min处理粘度1000CP速度范围10000-28000rpm温度120℃转速显示刻度/数显转速控制无级接触物料材质SS316L、FKM标准工作腔不锈钢无夹套工作腔标准工作头20DG机械密封材质SiC、FKM、陶瓷进、出口外径14(软管接口)工序类型在线处理底座材质SS304外形尺寸477×120×122重量~6kg包装纸箱
    留言咨询
  • 产品名称: 微射流均质机英文名称: Ultra high pressure Homogenizer产品型号: NH2000产品名称:石墨烯分散设备产品品牌: ILSHIN产品产地: 韩国产品功能: 均质纳米乳,脂肪乳,脂质体,细胞破碎,纳米混悬分散,颗粒减小工作原理:物料流向单向阀后,在高压腔泵里加压,通过纳米级的喷嘴,撞击在乳化腔上,同事通过强烈的空穴,剪切效应,得到足够小而均一的粒径分布石墨烯分散设备产品优势:1、电液传动,在保证安全性的同时,独特的腔体构造,使均质压力高达3000bar,有效解决颗粒的纳米级分散,并可循环均质。 2、喷嘴核心材料为金刚石,同时采用金属锥面密封,在承受超高压力的同时,保证密封性,延长使用寿命。3、温度控制:卫生级换热器有效控制物料温度。4、安全性:液压式动力传输,结构经久耐用。5、进料方式:可选进料泵、压力罐连接进料口或用料斗直接进料。6、模块化:配合物料特性选择Y和Z型不同孔径的喷嘴,可将乳剂、脂质体和固液混悬液粒径均质100nm以下,也可用于生物细胞破壁。7、卫生级别:接触物料部件的材质都是FDA&GMP认可的316L和17-4PH不锈钢、碳化钨、超高分子聚乙烯和PEEK等。电源:适用380V/50Hz。金刚石互溶腔的优点:※ 微射流纳米均质机金刚石内置图层,更加耐磨,适用于更多的颗粒坚硬的样品处理※ 可以根据客户不同种应用定制合适的型号75um、100um、125um等※ 利用样品与样品之间的湍流和对撞来实现样品的处理,样品污的风险更小!※ 耐压可达30000psi,超过目前所有的样品处理设备,可达到更大的剪切力,空穴和湍流的效果!
    留言咨询
  • 智能石墨消解仪CYSM-6 400-860-5168转4357
    石墨消解仪(也叫赶酸器,尿碘消解仪)适用于食品、医药、农业、林业、疾控、化工、生化等行业以及高等院校、科研部门对土壤、饲料、植株、种子、矿石、生物组织等样品消解处理。大屏幕LCD智能程序控温,采用远红外辐射石墨传导的加热技术和微处理器控制平台,环绕式加热,具有升温快速、温度均匀,程序控制、消解完全、高效方便等优点,温度、时间等参数可以自由设定是在常压下对样品进行消解,采用等静压高纯石墨,耐酸碱、耐高温,操作简单,样品处理批量大。也可以与微波消解仪配套,进行微波消解的预处理或消解后赶酸,是原子吸收、原子荧光、ICP-AES等分析仪器的配套使用产品。 THE MAIN CHARACTERISTICS ?∣主要特征:1、节能:采用加热保温方式,比同类产品节能30%以上。可同时消化6-60个样品(可选)的处理,提高工作效率。2、控温:采用PID 控温技术,从室温到400℃升温速度快,控温精度±0.1℃,单孔温度波动度±2.0℃。3、具备整定功能的智能调节,控温稳定且使用安全度高。4、防腐设计:石墨表层经过特氟龙处理,耐强酸强碱,避免实验过程对机器表层的腐蚀,连接部件采用防腐材料,机箱作防腐喷塑处理。5、加热均匀:加热体选用导热性能好的等静压高纯超细石墨,每个消解孔间的温度均匀性好,孔间温差小。6、采用双层式内胆悬空结构设计,保证机器的散热,避免长时间使用导致机箱受热。7、整机具有过压、过流、过热等多重保护,及超温报警功能。8、可选配废气中和系统,通过冷凝、中和、干燥消除实验过程中产生的酸性气体9、在设计中考虑到人性化、自动化、安全性设计,使用更加安全可靠,操作更加简单,方便和快捷是高温消解的理想选择。 TECHNICAL PAPAMETERS ?∣技术参数:型号CYSM-6CYSM-12CYSM-24CYSM-36CYSM-48CYSM-60孔数61224364860孔径424242421818孔深459090909090控温范围°C室温-400室温-400室温-400室温-400室温-400室温-400控温精度°C±0.1±0.1±0.1±0.1±0.1±0.1超温报警有有有有有有电源220V/50HZ重量KG81215151515外形尺寸cm40*28*1349*41*1350*41*1350*41*1350*41*1350*41*13孔数、孔径、孔深可根据客户要求定制 所谓石墨消解就是将加热样品放在石墨孔中间,利用石墨的耐高温性能作为加热介质进行消解的一种办法。1.一次消解样品数:石墨消解一次可以消解30多个样品,甚至可以达到40多个样品,微波消解一次消解数在6-12左右。2.消解时间:单从消解时间来看,微波的消解时间要短,但是计算上消解后的降温、赶酸,以及多个样品总共的消解时间,两者各有所长3.消解效率:微波由于可在高压下消解,所以有些样品能够用微波消解,而很难用石墨消解。比如,塑料等样品。4.安全性:石墨消解在常压下进行,加热均匀,不会暴沸和爆罐,没有安全隐患;而微波消解在高压下进行,瞬间升压会使消解罐内压力陡增,有可能发生爆罐,如果人在旁边会很危险,并且微波消解加热不很均匀,只有其中的一个会完全消解,其他几个可能消解不完全。5.省时省力:微波消解后,还需另外通过平板消解进行赶酸,相对比较麻烦,但石墨消解可在消解的同时进行赶酸,所以有微波消解的客户也可另配一石墨消解用于赶酸,安全方便。实验室几类智能消解仪的区别实验室消解仪主要有哪些:微波消解仪、COD消解仪、石墨消解仪、电热消解仪微波消解仪是指在密闭容器里,采用微波加热原理,在高温高压条件下达到样品前处理目的的仪器。并为样品提供了快速,安全,自动化的解决方案仪器,广泛应用于食品、环境保护、疾病控制、质量监督、商品检验、科研院所等领域。石墨消解仪选用优质高纯石墨材料,自行研发了智能石墨消解仪。具有消解快速、高效、方便等优点,适用于农业、林业、环保、化工、食品、医药、生化等行业以及高等院校、科研部门对土壤、食品饲料、植株、种子、矿石等化学分析之前的样品消解处理,也可以与微波消解仪配套,进行微波消解的预处理或消解后赶酸,是原子吸收、原子荧光、ICP-AES等分析仪器的理想配套产品。COD消解器执行水质化学需氧量的测定,重铬酸盐法,分析方法规范地制定了水质化学需氧量COD(cr)的测定步骤,严格地规定了方法的加热消解时间、溶液酸度、氧化剂和催化剂的用量等条件指标。显而易见,水质COD(cr)的测定是有严格的条件规定,违背了条件规定进行操作,就会影响测定的准确性。遵循了国际标准(ISO)和国家标准(HJ)的基本原则,保证了回流加热微沸2小时的消解操作,试剂溶液的配制和加入量都和HJ法一致,确保可靠精确的分析结果。COD消解器采用微电脑技术控制加热炉的定时,同时可以加热5个250ml的锥形瓶回流装置(或10个150升的消解瓶),达到节能的目的。同时,采用玻璃毛刺回流管代替球形回流管,采用风冷技术代替管道冷却方式,实现节水,使仪器标准化。
    留言咨询

石墨锥相关的资讯

  • 后摩尔时代石墨烯面临的挑战与机遇
    从“买不到”到“买不起”,自2020年底开始的全球范围内的“缺芯荒”,有着愈演愈烈之势,芯片价格飙涨至5倍仍不见停。全球性芯片荒似乎没有经过多少时日,就如多米诺骨牌一样,冲击着全球百余行业,从汽车、钢铁产品、混凝土生产到空调制造,甚至包括肥皂生产,都或多或少受之影响,多位业内专家表示,至少要到2022年全球芯片供应链才能恢复正常化。随着5G通讯、智能汽车及线上化办公的发展,仿佛一夜之间人们对芯片的需求就提升了数个级别。芯片产业的发展,对单晶晶圆及单晶硅材料的需求也一夜暴涨。众所周知,单晶晶圆及单晶硅材料是制造半导体芯片的基本材料,也是集成电路产业的基石。目前最广泛使用的半导体晶圆材料为单晶硅晶圆,此外还有以砷化镓(GaAs)、磷化铟(InP)为代表的第二代半导体材料,以及以碳化硅(SiC)、氮化镓(GaN)等为代表的第三代半导体材料。1975年,Intel创始人之一的戈登摩尔提出摩尔定律后,集成电路一直沿着“当价格不变,每18个月晶体管的密度增加一倍、性能提升一倍”的路径发展。单晶硅作为芯片产业中最为关键的基础材料已发展了数十年,在晶体管尺寸接近物理极限、经济成本越来越高的当下,集成电路发展遇到了挑战,产业发展进入“后摩尔时代”,如何在摩尔定律之外进行材料创新,更显得尤为重要。6月9日,世界半导体大会在南京召开,中国科学院院士、上海交通大学党委常委、副校长毛军发在主题演讲中表示,集成电路的发展有可能会绕开摩尔定律,往异质集成电路上发展。所谓异质集成电路,即是将不同工艺节点的化合物半导体高性能器件(芯片)、硅基低成本高集成器件/芯片(都含光电子器件或芯片),与无源元件或天线,通过异质键合成或外延生长等方式集成而实现。而在这个过程中,单晶化石墨烯无论是作为外延生长衬底材料,还是新型器件材料,都拥有广阔的发展空间。石墨烯是由碳原子组成的六角蜂窝状二维原子晶体材料,具有线性色散的狄拉克锥形能带结构,载流子有效质量为零,迁移率极高,拥有非常优异的物理性能。而石墨烯薄膜材料又有单晶和多晶之分。与传统的多晶石墨烯相比,单晶化石墨烯具有多种优势。多晶石墨烯晶粒畴区小且不均一,晶粒尺寸通常为5-20 µm,但单晶的晶粒最大可达厘米级。单晶石墨烯的载流子迁移率室温下约为 300000 cm2/Vs,远高于多晶石墨烯由于存在晶界限制的1000-3000 cm2/Vs。此外,多晶石墨烯层数调控性差,且存在大量的本征缺陷,这导致了其电学、力学、热学等诸多优良性质的降低。相比之下,单晶石墨烯性能优异,可构筑高性能的电子器件或光电子器件,逐渐成为硅基电子学器件的有力竞争者和补充者。石墨烯材料想要进入芯片、光电等高精尖领域,类比于基于硅晶圆的硅电子器件,基础则是单晶化石墨烯材料的批量制备。图1 北京石墨烯研究院单晶石墨烯晶圆(左)与多晶石墨烯(右)光镜图像对比欧盟石墨烯旗舰计划(Graphene Flagship)提供了一种新颖的单晶石墨烯生长技术,即通过光刻技术在衬底表面打上用于石墨烯单晶晶体生长的“晶种”,随即通过调控生长技术,控制石墨烯晶体在指定位置的晶种上生长,最后形成约100 μm级的单晶石墨烯晶体。这种方法可以自由控制晶体生长位置,便于在制备光电子器件前期妥善排布材料空间,同时降低了各类生长耗材的使用。然而,这种制备方式虽然技术可控,但工艺难度较高,生长效率低,不便进行产业化放大,难以满足市场中日渐增长的产业需求。图2 a-d为欧盟旗舰计划“晶种”技术单晶石墨烯生长及转移过程;e为单晶石墨烯阵列SEM图像;f为单晶石墨烯在铜箔上的光镜图像;g为转移至SiO2/Si后的光镜图像高品质单晶石墨烯是目前全球范围内对石墨烯材料性能和品质最极致的追求。市场数据表明,欧盟石墨烯旗舰计划目前最大单晶石墨烯尺寸在4厘米级,且仍旧处于科研研发状态,欧洲最大CVD石墨烯生产商Graphenea也仅能产业化制备晶畴为20 μm的多晶石墨烯材料,远低于集成电路产业的要求。我国虽然是石墨烯制备的产业大国,无论在企业数量还是石墨烯产能上,都傲居全球榜首,但主要集中在粉体材料或低品质多晶薄膜材料,而高品质石墨烯薄膜的批量制备技术依然是当前石墨烯产业发展的瓶颈。根据CGIA公开数据显示,截至20年底,中国拥有约1.7万家石墨烯相关注册企业,但据统计,真正开展业务的仅3000余家,而粉体制备及相关应用企业占据绝大多数。同时,由于缺少稳定的生长工艺和可靠的制造装备等原因,传统CVD制备方式批量生产的单层石墨烯薄膜材料多为多晶石墨烯,从事高端单晶化CVD石墨烯薄膜的企业更是寥寥无几。毫无疑问,单晶石墨烯生长工艺更加复杂,处理技术更加困难,但单晶石墨烯没有晶界,具有更高的平整度、机械性能、均一性及光电性能,是石墨烯应用于高性能电子及光电器件集成的理想材料。尤其是在异质集成、生物传感器、第三代半导体及其外延材料的生长上,对单晶化石墨烯材料有着更高品质的要求。北京石墨烯研究院(BGI)及刘忠范院士团队深耕石墨烯产业十数年,在单晶化大尺寸石墨烯薄膜生长上突破了产业化的技术壁垒,通过特殊的衬底处理工艺,可实现A3尺寸衬底上高品质石墨烯薄膜的宏量制备,年产能15000片/年,以及10x10 cm2铜基单晶石墨烯薄膜的制备,年产能90000片/年。无论在产品尺寸、晶粒畴区还是质量上,北京石墨烯研究院单晶化石墨烯产品都拥有无可比拟的优势。表1 北京石墨烯研究院单晶石墨烯产品参数尺寸通过短短五个月的市场化试运行,北京石墨烯研究院的单晶石墨烯产品已收获包含军方、中车集团、新加坡国立大学等国内外50余家一流高校科研院所与企业的订单,其中超半成和异质结构、半导体材料、光电器件相关。北京石墨烯研究院的单晶化石墨烯产品,逐渐在异质集成领域崭露头角。基于强大的市场需求及核心基础地位,伴随疫情带给社会生活的巨大改变,全球都在加码发展半导体产业。“未来的变化是产业‘赛道’可能会变,新材料和新架构的颠覆性技术将成为后摩尔时代集成电路产业的主要选择。”赛迪顾问股份有限公司副总裁李珂在2021世界半导体大会上如是表示。后摩尔时代,异质集成作为绕道摩尔定律创新的途径之一,结合石墨烯等新兴光电新材料,开辟石墨烯颠覆性应用技术,为我国早日实现“中国芯”具有重要意义。
  • 重要里程碑!全球首个石墨烯半导体问世,天津大学领衔研制
    天津大学纳米颗粒与纳米系统国际研究中心的马雷团队攻克了长期以来阻碍石墨烯电子学发展的关键技术难题,通过对外延石墨烯生长过程的精确调控,成功地在石墨烯中引入了带隙,创造了一种新型稳定的半导体石墨烯。该成果成功地攻克了长期以来阻碍石墨烯电子学发展的关键技术难题,打开了石墨烯带隙,实现了从“0”到“1”的突破,这一突破被认为是开启石墨烯芯片制造领域大门的重要里程碑。该项研究成果论文《碳化硅上生长的超高迁移率半导体外延石墨烯》已于2024年1月3日在《自然》(Nature)杂志网站发布。图源:天津大学官网石墨烯作为首个被发现可在室温下稳定存在的二维材料,具有宽带光响应、高载流子迁移率、高热导率等特性,是制备体积更小、更节能且传输速度更快的电子元件的理想材料。然而,石墨烯独特的狄拉克锥能带结构导致其“零带隙”的特性,即禁带宽度为零,无法在施加电场时以正确的比率实现打开和关闭,限制了石墨烯在半导体领域的应用和发展。“零带隙”特性也成为困扰石墨烯研究者数十年的难题。马雷团队采用创新的准平衡退火方法,严格控制生长环境的温度、时间及气体流量,制备出超大单层单晶畴半导体外延石墨烯(SEG),即在碳化硅晶圆上外延石墨烯,使其与碳化硅发生化学键合,从而具备半导体特性。该研究成果论文显示,这种石墨烯半导体的带隙为0.6 eV,室温电子迁移率超过5000 cm² V ⁻¹ S⁻¹,表现出了十倍于硅的性能。其电子能以更低的阻力移动,在电子学中意味着更快的计算能力,优于目前所有二维晶体至少一个数量级,是目前唯一具有用于纳米电子学的所有必要特性的二维半导体。同时,该石墨烯半导体具备生长面积大、均匀性高,工艺流程简单、成本低廉等优势,弥补了传统生产工艺的不足。以该半导体外延石墨烯制备的场效应晶体管开关比高达10⁴,基本满足了当前的工业化应用需求。值得关注的是,随着摩尔定律所预测的极限日益临近,这种具有带隙的半导体石墨烯为高性能电子器件带来了全新的材料选择,其突破性的属性满足了对更高计算速度和微型化集成电子器件不断增长的需求,不仅为超越传统硅基技术的高性能电子器件开辟了新道路,还为整个半导体行业注入了新动力。
  • 新世纪“材料之王”——石墨烯在空天推进和动力领域的应用
    太空环境由极端温度、真空、微流星体、太空碎片和太阳黑子活动引起的大变化组成。航天器和航天系统的设计和建造很大程度上依赖于这些参数。暴露在这些恶劣环境下的系统表面由于原子氧的存在而产生破损。因此,高强度和刚度的先进工程材料使20世纪的月球探索时代成为可能,人类探索火星和更远的目的地将需要新一代的材料。20多年来,在纳米尺度(一维小于100nm)合成和加工材料的独特性能吸引了各行各业的关注,这些特性包括大表面积、高纵横比、高各向异性、可定制的电导率和导热系数以及独特的光学特性等。这些特性可用于制备高强度、轻量化和多功能结构、新颖的传感器以及具有高度可靠的环境控制能力、能够屏蔽辐射的储能系统。可持续技术改进的交织性质使纳米材料成为航空航天应用的理想材料。纳米材料可以集成到复杂的航空几何结构中,减少制造技术中的废物产生。这也可用于轻量化和无需耗时维护的机身和结构的设计。石墨烯结构由单层厚度的六方晶格碳原子组成,具有高强度、高刚度、低密度、高电导率和导热率。石墨烯具有高的载流子传输速率,表现出比铜导体好的导电性,比硅半导体更好的材料。石墨烯基复合材料应用于航空航天工业,能有效地减轻重量,提高材料强度,从而减少排放,减少燃料消耗,最终实现更绿色和更清洁的环境。以石墨烯为基础的先进纳米材料在航空工业中,得到了广泛的认可和应用。本文主要从以下三方面进行综述: (1)简述石墨烯结构及其性能特征;(2)主要介绍石墨烯在空天推进和动力领域的热门应用方向,例如复合推进剂,热管理,电极材料,光帆材料等方面;(3)石墨烯未来在空天领域的应用前景和挑战。一、石墨烯结构及其特性石墨烯由单原子厚度的sp₂杂化碳原子同素异形体组成,呈二维(2D)平面蜂窝状晶格。也是构成石墨、碳纳米管、富勒烯等多种碳的同素异形体的基本单元。如图1所示,具有二维碳原子结构的石墨烯,可以通过堆叠形成三维的石墨,也可通过卷曲形成一维的碳纳米管,或者通过包裹形成零维的富勒烯。图1 (a)石墨烯及碳的同素异形体;(b)石墨烯的晶格结构,属于相邻两个碳格A和B的碳原子以圆点表示;(c)石墨烯的能带结构;(d)石墨烯起伏表面模型图。早在1940年,就有理论认为,二维的石墨烯处于非稳定热力学状态,无法在有限温度下自由存在。因此,一直仅是一个学术概念。直至2004年,曼彻斯特大学利用简单的机械剥离方法成功获得单层石墨烯,从而证实它可以稳定存在。石墨烯的蜂巢晶格结构由密集分布在六边形点阵上的碳原子构成,原子排列十分紧密。碳原子以sp₂电子轨道杂化,在平面内形成3个σ键,键角120°,键长约为0.142nm(图 1(b)),2pz轨道电子在垂直于平面方向形成大π键。石墨烯具有特殊的能带结构,由简单的紧束缚模型可以计算得出,它的导带(π*带)和价带(π带)在布里渊区的两个锥顶点K和K´交于一点,称为Dirac点,进而形成圆锥状的低谷。同时,通过观测发现,石墨烯并不是一个完美的平整的二维结构,而是在微观状态下表现出一定的起伏(图 1(e)),这也被认为是石墨烯能够在室温下自由稳定存在的原因。由于其优异的化学稳定性、高载流子迁移率、低密度和光学透明度等特性,在传感器、光子和电子器件等领域被认为是一种很有前景的材料。这一新型碳材料也从此开辟了一个崭新的研究方向,以其令人兴奋的独特性质,涉及的领域覆盖化学、力学、医学、电子智能及众多交叉学科,并由此创造了潜在的巨大经济价值与广阔的应用前景。二、石墨烯在空天推进领域热门应用方向航空航天应用历来是先进材料的驱动力,从太空飞行器的强化碳-碳热保护系统到先进的推进动力系统。只有工程纳米材料的应用才能满足需求,使得航空航天发展更进一步。(一)复合推进剂石墨烯的应用目前也已经扩展到复合推进剂领域,主要用于提高推进剂的热分解、导热以及力学性能。研究最多的就是复合固体推进剂含能组分的热分解,分解速率的提升对于提高推进剂的燃烧性能至关重要,而热分解又主要依赖于催化剂体系。传统上广泛使用的催化剂主要是一些过渡金属及其氧化物。它们的催化能力依赖暴露出来的金属活性位点的数量,然而其往往容易发生团聚,降低催化活性。为了克服这一问题,纳米碳材料已经被广泛作为催化剂载体,以抑制催化剂颗粒的团聚,提高其催化能力。以石墨烯为基底负载无机纳米颗粒的方法主要有非原位复合和原位复合。非原位复合是将预先制备好的纳米颗粒直接附着在石墨烯上,但是由于兼容性问题以及改性剂可能影响到与含能材料之间的相互作用,所以以原位复合方法制备复合推进剂的方法研究的较多。原位复合是通过在石墨烯表面上由各种前驱体制备出纳米颗粒的方法。根据制备手段不同原位复合可以分为还原法、电化学沉积法、水热法、溶胶-凝胶法。石墨烯原位复合纳米材料的制备方法中,电化学沉积法、溶胶/凝胶法由于工艺复杂或原料昂贵,不适合大规模生产。水热法相对于化学还原法的优势在于避免了还原剂的使用,还可以负载金属氧化物纳米颗粒,纳米颗粒分散度高,粒径小且对负载纳米颗粒的性状调控性更强。在实际应用中,根据负载的燃烧催化剂选择不同的方法制备。DEY等采用微波法制备了直径约20~30nm的Fe₂O₃粒子均匀分散在石墨烯片上的Fe₂O₃/Graphene复合粒子,作为AP的催化剂,并对其催化性能进行研究。研究发现,随着Fe₂O₃/Graphene含量的增加,催化作用也明显增强,同时指出Fe₂O₃/Graphene能够有效加快AP系推进剂的燃烧速率。复合固体推进剂的导热问题是导弹、火箭系统安全性与可靠性研究中的重要问题。一方面,由于推进剂不可避免地需要承受极端恶劣和复杂的温度环境,温度的变化很容易导致内部应力的产生;另一方面,导热系数对推进剂的点火和燃烧性能具有关键性的作用。以高分子粘结剂为基体的复合固体推进剂导热系数通常较低,这使得其在承受大幅度温度冲击时,热量无法快速传递,导致装药内部温度分布不均匀或呈梯度分布,进而产生严重的内部热应力,直接引起内部裂纹甚至结构破坏。石墨烯由于具有极高的导热系数和较轻的质量,目前已经广泛作为导热填料用于复合材料。这种具有二维结构的新型轻质碳材料实际上已经在含能材料导热性能的提升方面发挥了作用,如对于高聚物粘结炸药导热系数的提升。张建侃等总结了石墨烯应用于固体推进剂的研究进展的基础上,提出非氧化石墨烯由于导热系数高,适合经非共价改性后分散于推进剂基体中,增强基体的导热性能。此外,复合固体推进剂力学性能的不足将导致药柱无法承受冲击、振动、过载等复杂载荷的作用,进而产生裂纹,增大燃烧面积,引起发动机内压升高,甚至导致爆炸。为了提高复合推进剂的力学性能,在基体中添加纳米材料已经成为提高推进剂力学性能的重要手段。文献指出,石墨烯应用于复合推进剂,可以有效增强推进剂的力学性质。(二)热管理石墨烯纳米材料目前正被纳入各种航天热防护材料和热管理,以提高在各种气或热流动条件下热稳定性和机械完整性的极限。为特殊航天任务材料系统提供多功能的研究也在进行中。由于航空工业的发展,复合材料基体的耐热性和烧蚀性能提出了更高的要求。由于树脂具有良好的加工工艺等性能,被广泛用作耐烧蚀材料的主要基体。为了进一步改善烧蚀材料的性能,石墨烯由于其独特的结构,表现出优异的热稳定性能、力学性能、导电性能等特点,是制备先进复合材料的理想增强体。这些复合材料用于高超声速飞行器前缘的热保护系统、火箭喷管和固体火箭发动机的内部绝缘以及导弹发射设施结构。研究发现,氧化石墨烯/酚醛树脂/碳纤维复合材料的热稳定性和烧蚀性能得到了显著提高,这是因为GO在聚合物基体中的分散良好,GO与酚醛基体之间的界面相互作用强,以及热解后的层状碳结构。与其他样品相比,GO含量为1.25%的样品在烧蚀率、热扩散率和热稳定性方面表现最佳。该复合材料在不同温度下具有恒定的热扩散率,炭产率和烧蚀率分别提高了10%和51%。MA等为了提高碳纤维/ 酚醛复合材料的烧蚀性能,采用纳米填料对纤维增强体界面进行改性。首先,通过将低浓度的GO(0.1%)加入到碳/酚醛(CF/PR)中,结合实验和计算分析氧化石墨烯(GO)对提高复合材料抗烧蚀性能。氧化石墨烯填充复合材料在热阻方面的优势与氧化石墨烯的加入提高了PR的炭收率和纤维的石墨化。分子动力学模拟表明,即使浓度很小,基体内的氧化石墨烯也可以作为炭化PR石墨化晶体生长的核剂。在极端烧蚀温度下,纤维-基体界面处的氧化石墨烯可以与纤维结合。促进了石墨烯-纤维界面stone-throwing-wales缺陷(xy平面)和sp₂杂化(z方向)的形成,进一步提高了纤维的石墨化程度。文中还研究了两种纳米材料填充 CF/PR复合材料的界面、热性能和烧蚀性能。特别是,氧化石墨烯(GO)和石墨氮化碳(g-C3N4)被用于生产低负载(0.1%)的复合材料。通过氧乙炔火焰试验研究了复合材料的烧蚀性能。石墨烯填充和g-C3N4填充复合材料的抗烧蚀性能比原始复合材料分别提高了62.02%和22.36%,线性烧蚀速率的降低是导热系数、烧焦层和纤维石墨化程度共同作用的结果。氧化石墨烯填充复合材料的机理是氧化石墨烯可以显著提高纤维表面的石墨化程度,并进一步提高其抗高温烧蚀的耐热性。而在g-C3N4填充的复合材料中,较厚的纤维直径和烧蚀区炭化层可以分散可燃气体,提高抗氧化性能。此外,将石墨烯均匀地分散在丁苯橡胶基体中,显著提高了聚合物基纳米复合材料的抗烧蚀性能。多孔结构在烧蚀试验过程中形成,它增强了蒸腾和蒸发过程,降低了背面的温度升高。橡胶复合材料的极限拉伸强度和橡胶的肖氏硬度A得到有效提高,而断裂伸长率随着填料与基体比的增加而降低。与有机硅、天然橡胶和乙丙橡胶纳米复合材料相比,丁苯橡胶复合材料在暴露于超高温和剪切流后显示出很好特性。ARABY等制备了苯乙烯-丁二烯橡胶和石墨烯聚合物纳米复合材料。当纳米颗粒含量达到10.5%阈值时,产生导热和界面通道,此时导热系数最高。此外,如图2所示,辐射冷却正在成为一种越来越有吸引力的被动热管理方法,它利用周围环境中的光谱辐射特性。通过机械可重构石墨烯的选择性中间膨胀发射率控制,其中机械拉伸和释放会引起石墨烯的受控形态变化。利用太阳光谱吸收太阳辐射加热(从200nm~2.5μm,可见到近红外波长)并利用大气透射窗口(从8μm~14μm,中红外波长),通过将热量重新发射到外层空间来冷却表面。用于航空航天应用的系统和表面需要动态温度控制以获得最佳系统性能,同时满足个人舒适度和维护设备功能的热需求,并避免过热。能够在不同光谱范围内加热和冷却否定了使用具有相当均匀的高或低发射率值的传统材料,并且由于缺乏对发射率的动态调制,可调节温度的需要是刚性冷却表面无法实现的。同时,由于石墨烯良好的导热性,基于废热反射导热的石墨烯散热器在空间光伏聚光器上得到了应用,不仅降低了成本,在降低质量密度,比功率的提升方面都起到至关重要的作用。图2 (a)基于皱褶石墨烯的选择性发射;(b,c)褶皱节距的变化可利用太阳辐射和大气窗口来辐射冷却(10 μm)和加热(290nm)。(三)电极材料目前,小型化、自动化、以功能为中心的设备的快速发展,使星际任务和近地空间探索的实现更近一步。先进的纳米结构材料的引入促进了全球智能多样化的平台在电力、仪器和通信方面取得进步。然而,仍然缺乏高效可靠的推力系统,能够在长期部署期间支持小型卫星和立方体卫星的精确机动。此外,航空和空间系统需要可靠的电力生产、存储和传输,无论是短期还是长期活动。现有的能源系统正在被纳米材料创新所取代或补充。以石墨烯为基础的更好的工程纳米材料正在不断改进。MARKANDAN等使用氧化铝增韧氧化锆(ATZ)作为结构材料制造了一个微型推进器,氧化钇稳定氧化锆-石墨烯(YSZ-Gr)作为电极材料。YSZ-石墨烯不仅可以作为电解分解硝酸羟铵溶液的电极,还可以起到阻尼作用。这种微型推进器作为主推进系统具有潜在的应用,可用于卫星星座编队飞行中的快速轨道转移。离子推进器阴极(如图3(a)所示)的关键挑战在于减少或完全消除阴极的推进剂消耗,显著提高阴极的使用寿命,以及减少白炽部分的热损失。通过使用纳米多孔材料、纳米管和石墨烯,可以确保减少气体消耗。这个问题的最佳解决方案是通过使用高发射材料和表面结构完全消除通过阴极的气体通量。垂直排列的石墨烯薄片显著提高推进器效率的,作为无推进剂体系下的良好候选者而备受关注,如图3(b)所示。图3 (a)常用的热发射阴极示意图;(b)纳米多孔材料,垂直排列的石墨烯薄片直接生长在纳米多孔氧化铝上(比例尺:200nm)。(四)光帆材料基于石墨烯的轻型帆的推进系统因其灵活性和无需携带燃料这一特性而成为行星际和星际任务的候选技术。轻型航行也是唯一现存的空间推进技术,可以让我们在人类的一生中访问其他星系。为此举办的蜻蜓计划竞赛,就旨在评估激光驱动的光帆星际探测器发送到另一个恒星系统的可行性。这种大规模光操纵石墨烯光帆对实现星际探索和直接空间运输是具有深远意义的。如图4(a)所示,ZHANG等使用大块石墨烯泡沫在宏观尺度上观察到其直接光推进。这种三维石墨烯材料的新形态,使其不仅能够吸收不同波长的光,而且可以使用瓦级的激光,甚至阳光,按照一种新颖的光致电子喷射机制,直接推进到亚米尺度。如图4(b)所示,GAUDENZI与其合作伙伴制作了由铜网格支撑的石墨烯微膜二维帆叶,并在微重力环境下测试了光诱导位移。提出的材料设计消除了帆所需的光学和机械性能,从而大大降低了帆的总质量,并为利用石墨烯机械强度的高反射2D帆打开了大门。此外,PERAKIS等设计了石墨烯作为夹层的低密度和高反射率的三明治轻帆,达到指定加速度比目前最先进的镀铝的聚酯薄膜太阳帆材料性能更好。图4(a)石墨烯海绵在激光照射下向上推进和光致旋转示意图;(b)帆在激光照射下的垂直位移,显示了帆在微重力和真空中的不同位置(侧视图):释放后(左)和在450nm、100mW的激光下加速350ms后(右) 。(五)其他领域由于太空环境由极端温度、真空、太空碎片和太阳黑子活动引起的大变化构成,那么先进的纳米复合材料被用于航空航天飞机结构和太空环境恶劣气候的涂层以及微电子系统的开发就变得非常的有意义。石墨烯霍尔效应传感器具有低热漂移,适用于航空航天应用的电力电子模块中的电流实时监测,可在高达500K的温度下工作。随着温度的升高,临界电子性质的变化,特别是载流子浓度和载流子迁移率的变化,这些参数是受实现传感器的石墨烯层狄拉克点Dirac点所独特影响的。利用门控优化石墨烯霍尔传感器可以实现低温度系数下的高灵敏度霍尔效应测量。此外,在其他星球上的生境开发受到多种标准的制约,其中之一就是空间碎片的撞击破坏。Kuzhir在纳米级厚度的铜催化剂膜和介质SiO₂基底之间通过催化化学气相沉积工艺合成Ka波段多层石墨烯薄膜,石墨烯薄膜的厚度由原子力显微镜直接表征,仅显示了样品上纳米级的小波动。所研究的薄膜厚度不超过5nm,且有一定的粗糙度。石墨烯只有千分之一的皮肤深度,吸收损耗造成的电磁屏蔽效率非常高,达到35%~43%的入射功率水平上。制造的石墨烯薄膜在室温下具有高度的导电性,在可见的范围内具有非常高的透明性,并具有非常好的热学和力学性能,可能成为制造纳米级厚度的电磁干扰防护涂层的有趣的技术材料。此外,特殊的三维导电链结构对轻质,柔性的导电纳米复合材料具有很强的吸引力,尤其是在降低材料的制造价格和良好的加工性能方面。聚二甲基硅氧烷(PDMS)复合材料通过将石墨烯排列成仿珍珠层状序列三维结构,在石墨烯含量不足的情况下表现出更高的力学性能、各向异性电导率和优越的电磁辐射屏蔽效率。掺杂0.4%质量分数的导电颗粒电磁辐射屏蔽效率达到42dB,沿排列方向的电导率为32S/m。在2500 ℃下热处理气凝胶后,聚合物纳米复合材料的电磁辐射屏蔽效率和电导率分别变化为65dB和0.5S/m。在0.15%的超低浓度,热处理温度800℃条件下,其电磁辐射屏蔽效率可达25dB。表明各向异性石墨烯/PDMS层板在超低石墨烯含量下通过结构调控获得了更高的电磁屏蔽效率。环境控制和生命支持系统技术是纳米材料的沃土,长期的人类太空探索带来了最大的挑战。无论是在相对安全的低地球轨道内的短期任务,还是艰难的长期任务,如前往遥远的星球。可靠的空气、水和食物供应;废物管理系统;功能性的可居住空间都是必不可少的。包括在国际空间站上的低轨道运行,已经为生命支撑技术提供了一个有用的试验场,随着航天国家为前往火星等目的地的长期任务做准备,在低轨道运行中测试技术被认为是一项重要的指标。目前的生命支撑技术的可靠性和性能相对较差,需要采用高比表面积和导电纳米材料作为提高系统整体性能的途径之一。碳纳米管仲胺功能化以实现二氧化碳去除,这是生命支持技术不可或缺的功能,并解决当前系统的局限性,包括可再生性和高功耗。在最好的条件下,水的净化和回收是具有挑战性的,但微重力环境的增加和多年耐用性的必要性推动了基于纳米材料的水过滤系统的几个例子。富勒烯在水净化方面已显示出非常好的前景,美国宇航局赞助的使用碳纳米管的纳米级过滤技术已发展成为一种商业产品。尽管可扩展性仍然存在问题,但多孔石墨烯是一种积极研究的水过滤材料,吸引了大量的关注,如图5所示。图5 (a)纳米多孔石墨烯水脱盐示意图;(b)具有亲水键的纳米孔示意图。三、结束语本文首先对石墨烯的结构和理化性质进行了介绍,并简要阐述各性能在具体应用中的重要作用;然后,综述了石墨烯纳米材料在航空航天领域的各方面(复合固体推进剂、热管理和智能光帆等)前沿领域的应用现状。石墨烯及其复合材料的制备已得到较快发展。其中,石墨烯在复合固体推进剂中的应用目前主要集中在提高推进剂含能组分的热分解和燃烧性能方面,而在导热和力学性能方面的研究则相对较少,且制备方法单一,以简单的共混为主,缺乏针对性的设计和性能的控制。而且对石墨烯的性能增强机理缺乏深入的分析。在热管理方面,导热系数、产炭性能和纳米颗粒分散对聚合物纳米复合材料的烧蚀性能和绝缘性能都有影响。酚醛树脂仍然是这一应用中被广泛研究的聚合物,纳米陶瓷颗粒与碳基的复合纳米填料的结合似乎是下一个热管理趋势。此外,在太空电力推进领域,新型石墨烯基纳米材料和微电子机械系统支持的离子液体推进器解决方案,这是为微加工和纳米结构推进器阵列的实现提出了方案。另外,一种可能的低成本,高时效的纳米制造工艺,用于飞机储能和生命支持设备。与传统解决方案相比,这些纳米复合材料应用了纳米材料的整合,并与太空任务和探索计划相结合,可以节省成本和时间。石墨烯在很多领域的研究仍处于探索阶段,石墨烯材料在极端环境中的行为将扩大我们的基本理解和潜在应用,将促进人类在太空的探索。石墨烯基纳米材料未来的研究重点需要着眼于以下几个方向:(1)一种降低开发成本的潜在解决方案是创新材料-建模和模拟与实验测试和表征方法相结合,可以降低开发和鉴定成本。将有助于跨越纳米工程材料的性能转化为宏观尺度上的现实。(2)大规模构造石墨烯材料的集成方法,以保持在石墨烯纳米尺度上注意到的性能和批量实现。它们占地面积小,功耗低,耐辐射,非常适合太空应用。(3)将纳米石墨烯材料集成到最先进类型的电力推进装置中,利用纳米材料的独特特性,提高其效率和使用寿命。另外,进一步创造出一个自适应(自清洁表面,自愈合修复机制,自我愈合)推进器。

石墨锥相关的方案

石墨锥相关的资料

石墨锥相关的试剂

石墨锥相关的论坛

  • 请教石墨锥泛白现象

    我用的是岛津AA6300,前不久因做石墨炉时,升温后,墨锥不回弹,岛津工作人员过来维修。把石墨锥拆下,对了一下同心圆。之后,做实验就发现石锥里面泛白,并且一个石墨管只用一二十次就会报废,有明显的白色物质脱落,并且石墨管无缘无故的变形。请问这是不是有可能氩气保护气没有密封好呢??

  • 【讨论】石墨管碎在石墨锥该怎么办

    大家有没有遇到石墨管烧碎在石墨锥内的,如果有遇到这样的情况大家是怎么处理的,还有就是该如何延长石墨管的寿命的,各位版友都来讨论一下。还有就是如果石墨管碎在石墨锥内如果清理不干净除了会导致导电不均 还会造成什么后果。

  • 如何清洗石墨帽、石墨锥?

    最近测乳酸钙中铅,可能钙元素太多把石墨帽、石墨锥也污染了。结果现在测钙不是样品时也有吸收值。我用棉花沾酒精清洗过,效果不明显。请问各位老有没有更好的方法!

石墨锥相关的耗材

  • 安捷伦瓦里安6310001600 6310001700 石墨锥 /塞曼石墨锥(对)
    安捷伦瓦里安6310001600 6310001700 石墨锥 /塞曼石墨锥(对)安捷伦瓦里安6310001600 6310001700 石墨锥 /塞曼石墨锥(对)安捷伦瓦里安6310001600 6310001700 石墨锥 /塞曼石墨锥(对)
  • 各型号石墨锥
    各型号石墨锥(货号0003)我公司可以向国内外用户提供各种分析仪器原子吸收石墨炉,国内独家生产PE机型、一体化高灵敏度正体石墨管(装溶液50微升)、各种型号石墨锥、各型号石墨管、石墨平台(石墨舟);各型号气体分析仪器石墨坩埚、各尺寸石墨滑片(石墨柱)、石墨烧结棒、异型石墨模具、石墨结晶器、无油石墨轴承、各型号热电耦石墨保护套、石墨密封圈。也可以来图带料加工。天宝公司愿与您共同发展。以先进的产品和优良的服务回报客户。我们对用户进行质量承诺,以优质、高效、快捷、诚信、立足国内外新老客户,以一流的生产技术、精湛的制造工艺,可靠的质量保证,走向国际市场,欢迎国内外人士光临、洽谈指导。
  • 岛津石墨锥
    岛津石墨锥(货号049) 本公司生产国内外,原子吸收光谱仪器石墨炉配件,给安徽皖仪厂家配套于岛津6300型号石墨锥使用,如有特殊型号尺寸的石墨锥可来图来样定货加工。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制