当前位置: 仪器信息网 > 行业主题 > >

石墨锥

仪器信息网石墨锥专题为您提供2024年最新石墨锥价格报价、厂家品牌的相关信息, 包括石墨锥参数、型号等,不管是国产,还是进口品牌的石墨锥您都可以在这里找到。 除此之外,仪器信息网还免费为您整合石墨锥相关的耗材配件、试剂标物,还有石墨锥相关的最新资讯、资料,以及石墨锥相关的解决方案。

石墨锥相关的资讯

  • 后摩尔时代石墨烯面临的挑战与机遇
    从“买不到”到“买不起”,自2020年底开始的全球范围内的“缺芯荒”,有着愈演愈烈之势,芯片价格飙涨至5倍仍不见停。全球性芯片荒似乎没有经过多少时日,就如多米诺骨牌一样,冲击着全球百余行业,从汽车、钢铁产品、混凝土生产到空调制造,甚至包括肥皂生产,都或多或少受之影响,多位业内专家表示,至少要到2022年全球芯片供应链才能恢复正常化。随着5G通讯、智能汽车及线上化办公的发展,仿佛一夜之间人们对芯片的需求就提升了数个级别。芯片产业的发展,对单晶晶圆及单晶硅材料的需求也一夜暴涨。众所周知,单晶晶圆及单晶硅材料是制造半导体芯片的基本材料,也是集成电路产业的基石。目前最广泛使用的半导体晶圆材料为单晶硅晶圆,此外还有以砷化镓(GaAs)、磷化铟(InP)为代表的第二代半导体材料,以及以碳化硅(SiC)、氮化镓(GaN)等为代表的第三代半导体材料。1975年,Intel创始人之一的戈登摩尔提出摩尔定律后,集成电路一直沿着“当价格不变,每18个月晶体管的密度增加一倍、性能提升一倍”的路径发展。单晶硅作为芯片产业中最为关键的基础材料已发展了数十年,在晶体管尺寸接近物理极限、经济成本越来越高的当下,集成电路发展遇到了挑战,产业发展进入“后摩尔时代”,如何在摩尔定律之外进行材料创新,更显得尤为重要。6月9日,世界半导体大会在南京召开,中国科学院院士、上海交通大学党委常委、副校长毛军发在主题演讲中表示,集成电路的发展有可能会绕开摩尔定律,往异质集成电路上发展。所谓异质集成电路,即是将不同工艺节点的化合物半导体高性能器件(芯片)、硅基低成本高集成器件/芯片(都含光电子器件或芯片),与无源元件或天线,通过异质键合成或外延生长等方式集成而实现。而在这个过程中,单晶化石墨烯无论是作为外延生长衬底材料,还是新型器件材料,都拥有广阔的发展空间。石墨烯是由碳原子组成的六角蜂窝状二维原子晶体材料,具有线性色散的狄拉克锥形能带结构,载流子有效质量为零,迁移率极高,拥有非常优异的物理性能。而石墨烯薄膜材料又有单晶和多晶之分。与传统的多晶石墨烯相比,单晶化石墨烯具有多种优势。多晶石墨烯晶粒畴区小且不均一,晶粒尺寸通常为5-20 µm,但单晶的晶粒最大可达厘米级。单晶石墨烯的载流子迁移率室温下约为 300000 cm2/Vs,远高于多晶石墨烯由于存在晶界限制的1000-3000 cm2/Vs。此外,多晶石墨烯层数调控性差,且存在大量的本征缺陷,这导致了其电学、力学、热学等诸多优良性质的降低。相比之下,单晶石墨烯性能优异,可构筑高性能的电子器件或光电子器件,逐渐成为硅基电子学器件的有力竞争者和补充者。石墨烯材料想要进入芯片、光电等高精尖领域,类比于基于硅晶圆的硅电子器件,基础则是单晶化石墨烯材料的批量制备。图1 北京石墨烯研究院单晶石墨烯晶圆(左)与多晶石墨烯(右)光镜图像对比欧盟石墨烯旗舰计划(Graphene Flagship)提供了一种新颖的单晶石墨烯生长技术,即通过光刻技术在衬底表面打上用于石墨烯单晶晶体生长的“晶种”,随即通过调控生长技术,控制石墨烯晶体在指定位置的晶种上生长,最后形成约100 μm级的单晶石墨烯晶体。这种方法可以自由控制晶体生长位置,便于在制备光电子器件前期妥善排布材料空间,同时降低了各类生长耗材的使用。然而,这种制备方式虽然技术可控,但工艺难度较高,生长效率低,不便进行产业化放大,难以满足市场中日渐增长的产业需求。图2 a-d为欧盟旗舰计划“晶种”技术单晶石墨烯生长及转移过程;e为单晶石墨烯阵列SEM图像;f为单晶石墨烯在铜箔上的光镜图像;g为转移至SiO2/Si后的光镜图像高品质单晶石墨烯是目前全球范围内对石墨烯材料性能和品质最极致的追求。市场数据表明,欧盟石墨烯旗舰计划目前最大单晶石墨烯尺寸在4厘米级,且仍旧处于科研研发状态,欧洲最大CVD石墨烯生产商Graphenea也仅能产业化制备晶畴为20 μm的多晶石墨烯材料,远低于集成电路产业的要求。我国虽然是石墨烯制备的产业大国,无论在企业数量还是石墨烯产能上,都傲居全球榜首,但主要集中在粉体材料或低品质多晶薄膜材料,而高品质石墨烯薄膜的批量制备技术依然是当前石墨烯产业发展的瓶颈。根据CGIA公开数据显示,截至20年底,中国拥有约1.7万家石墨烯相关注册企业,但据统计,真正开展业务的仅3000余家,而粉体制备及相关应用企业占据绝大多数。同时,由于缺少稳定的生长工艺和可靠的制造装备等原因,传统CVD制备方式批量生产的单层石墨烯薄膜材料多为多晶石墨烯,从事高端单晶化CVD石墨烯薄膜的企业更是寥寥无几。毫无疑问,单晶石墨烯生长工艺更加复杂,处理技术更加困难,但单晶石墨烯没有晶界,具有更高的平整度、机械性能、均一性及光电性能,是石墨烯应用于高性能电子及光电器件集成的理想材料。尤其是在异质集成、生物传感器、第三代半导体及其外延材料的生长上,对单晶化石墨烯材料有着更高品质的要求。北京石墨烯研究院(BGI)及刘忠范院士团队深耕石墨烯产业十数年,在单晶化大尺寸石墨烯薄膜生长上突破了产业化的技术壁垒,通过特殊的衬底处理工艺,可实现A3尺寸衬底上高品质石墨烯薄膜的宏量制备,年产能15000片/年,以及10x10 cm2铜基单晶石墨烯薄膜的制备,年产能90000片/年。无论在产品尺寸、晶粒畴区还是质量上,北京石墨烯研究院单晶化石墨烯产品都拥有无可比拟的优势。表1 北京石墨烯研究院单晶石墨烯产品参数尺寸通过短短五个月的市场化试运行,北京石墨烯研究院的单晶石墨烯产品已收获包含军方、中车集团、新加坡国立大学等国内外50余家一流高校科研院所与企业的订单,其中超半成和异质结构、半导体材料、光电器件相关。北京石墨烯研究院的单晶化石墨烯产品,逐渐在异质集成领域崭露头角。基于强大的市场需求及核心基础地位,伴随疫情带给社会生活的巨大改变,全球都在加码发展半导体产业。“未来的变化是产业‘赛道’可能会变,新材料和新架构的颠覆性技术将成为后摩尔时代集成电路产业的主要选择。”赛迪顾问股份有限公司副总裁李珂在2021世界半导体大会上如是表示。后摩尔时代,异质集成作为绕道摩尔定律创新的途径之一,结合石墨烯等新兴光电新材料,开辟石墨烯颠覆性应用技术,为我国早日实现“中国芯”具有重要意义。
  • 重要里程碑!全球首个石墨烯半导体问世,天津大学领衔研制
    天津大学纳米颗粒与纳米系统国际研究中心的马雷团队攻克了长期以来阻碍石墨烯电子学发展的关键技术难题,通过对外延石墨烯生长过程的精确调控,成功地在石墨烯中引入了带隙,创造了一种新型稳定的半导体石墨烯。该成果成功地攻克了长期以来阻碍石墨烯电子学发展的关键技术难题,打开了石墨烯带隙,实现了从“0”到“1”的突破,这一突破被认为是开启石墨烯芯片制造领域大门的重要里程碑。该项研究成果论文《碳化硅上生长的超高迁移率半导体外延石墨烯》已于2024年1月3日在《自然》(Nature)杂志网站发布。图源:天津大学官网石墨烯作为首个被发现可在室温下稳定存在的二维材料,具有宽带光响应、高载流子迁移率、高热导率等特性,是制备体积更小、更节能且传输速度更快的电子元件的理想材料。然而,石墨烯独特的狄拉克锥能带结构导致其“零带隙”的特性,即禁带宽度为零,无法在施加电场时以正确的比率实现打开和关闭,限制了石墨烯在半导体领域的应用和发展。“零带隙”特性也成为困扰石墨烯研究者数十年的难题。马雷团队采用创新的准平衡退火方法,严格控制生长环境的温度、时间及气体流量,制备出超大单层单晶畴半导体外延石墨烯(SEG),即在碳化硅晶圆上外延石墨烯,使其与碳化硅发生化学键合,从而具备半导体特性。该研究成果论文显示,这种石墨烯半导体的带隙为0.6 eV,室温电子迁移率超过5000 cm² V ⁻¹ S⁻¹,表现出了十倍于硅的性能。其电子能以更低的阻力移动,在电子学中意味着更快的计算能力,优于目前所有二维晶体至少一个数量级,是目前唯一具有用于纳米电子学的所有必要特性的二维半导体。同时,该石墨烯半导体具备生长面积大、均匀性高,工艺流程简单、成本低廉等优势,弥补了传统生产工艺的不足。以该半导体外延石墨烯制备的场效应晶体管开关比高达10⁴,基本满足了当前的工业化应用需求。值得关注的是,随着摩尔定律所预测的极限日益临近,这种具有带隙的半导体石墨烯为高性能电子器件带来了全新的材料选择,其突破性的属性满足了对更高计算速度和微型化集成电子器件不断增长的需求,不仅为超越传统硅基技术的高性能电子器件开辟了新道路,还为整个半导体行业注入了新动力。
  • 新世纪“材料之王”——石墨烯在空天推进和动力领域的应用
    太空环境由极端温度、真空、微流星体、太空碎片和太阳黑子活动引起的大变化组成。航天器和航天系统的设计和建造很大程度上依赖于这些参数。暴露在这些恶劣环境下的系统表面由于原子氧的存在而产生破损。因此,高强度和刚度的先进工程材料使20世纪的月球探索时代成为可能,人类探索火星和更远的目的地将需要新一代的材料。20多年来,在纳米尺度(一维小于100nm)合成和加工材料的独特性能吸引了各行各业的关注,这些特性包括大表面积、高纵横比、高各向异性、可定制的电导率和导热系数以及独特的光学特性等。这些特性可用于制备高强度、轻量化和多功能结构、新颖的传感器以及具有高度可靠的环境控制能力、能够屏蔽辐射的储能系统。可持续技术改进的交织性质使纳米材料成为航空航天应用的理想材料。纳米材料可以集成到复杂的航空几何结构中,减少制造技术中的废物产生。这也可用于轻量化和无需耗时维护的机身和结构的设计。石墨烯结构由单层厚度的六方晶格碳原子组成,具有高强度、高刚度、低密度、高电导率和导热率。石墨烯具有高的载流子传输速率,表现出比铜导体好的导电性,比硅半导体更好的材料。石墨烯基复合材料应用于航空航天工业,能有效地减轻重量,提高材料强度,从而减少排放,减少燃料消耗,最终实现更绿色和更清洁的环境。以石墨烯为基础的先进纳米材料在航空工业中,得到了广泛的认可和应用。本文主要从以下三方面进行综述: (1)简述石墨烯结构及其性能特征;(2)主要介绍石墨烯在空天推进和动力领域的热门应用方向,例如复合推进剂,热管理,电极材料,光帆材料等方面;(3)石墨烯未来在空天领域的应用前景和挑战。一、石墨烯结构及其特性石墨烯由单原子厚度的sp₂杂化碳原子同素异形体组成,呈二维(2D)平面蜂窝状晶格。也是构成石墨、碳纳米管、富勒烯等多种碳的同素异形体的基本单元。如图1所示,具有二维碳原子结构的石墨烯,可以通过堆叠形成三维的石墨,也可通过卷曲形成一维的碳纳米管,或者通过包裹形成零维的富勒烯。图1 (a)石墨烯及碳的同素异形体;(b)石墨烯的晶格结构,属于相邻两个碳格A和B的碳原子以圆点表示;(c)石墨烯的能带结构;(d)石墨烯起伏表面模型图。早在1940年,就有理论认为,二维的石墨烯处于非稳定热力学状态,无法在有限温度下自由存在。因此,一直仅是一个学术概念。直至2004年,曼彻斯特大学利用简单的机械剥离方法成功获得单层石墨烯,从而证实它可以稳定存在。石墨烯的蜂巢晶格结构由密集分布在六边形点阵上的碳原子构成,原子排列十分紧密。碳原子以sp₂电子轨道杂化,在平面内形成3个σ键,键角120°,键长约为0.142nm(图 1(b)),2pz轨道电子在垂直于平面方向形成大π键。石墨烯具有特殊的能带结构,由简单的紧束缚模型可以计算得出,它的导带(π*带)和价带(π带)在布里渊区的两个锥顶点K和K´交于一点,称为Dirac点,进而形成圆锥状的低谷。同时,通过观测发现,石墨烯并不是一个完美的平整的二维结构,而是在微观状态下表现出一定的起伏(图 1(e)),这也被认为是石墨烯能够在室温下自由稳定存在的原因。由于其优异的化学稳定性、高载流子迁移率、低密度和光学透明度等特性,在传感器、光子和电子器件等领域被认为是一种很有前景的材料。这一新型碳材料也从此开辟了一个崭新的研究方向,以其令人兴奋的独特性质,涉及的领域覆盖化学、力学、医学、电子智能及众多交叉学科,并由此创造了潜在的巨大经济价值与广阔的应用前景。二、石墨烯在空天推进领域热门应用方向航空航天应用历来是先进材料的驱动力,从太空飞行器的强化碳-碳热保护系统到先进的推进动力系统。只有工程纳米材料的应用才能满足需求,使得航空航天发展更进一步。(一)复合推进剂石墨烯的应用目前也已经扩展到复合推进剂领域,主要用于提高推进剂的热分解、导热以及力学性能。研究最多的就是复合固体推进剂含能组分的热分解,分解速率的提升对于提高推进剂的燃烧性能至关重要,而热分解又主要依赖于催化剂体系。传统上广泛使用的催化剂主要是一些过渡金属及其氧化物。它们的催化能力依赖暴露出来的金属活性位点的数量,然而其往往容易发生团聚,降低催化活性。为了克服这一问题,纳米碳材料已经被广泛作为催化剂载体,以抑制催化剂颗粒的团聚,提高其催化能力。以石墨烯为基底负载无机纳米颗粒的方法主要有非原位复合和原位复合。非原位复合是将预先制备好的纳米颗粒直接附着在石墨烯上,但是由于兼容性问题以及改性剂可能影响到与含能材料之间的相互作用,所以以原位复合方法制备复合推进剂的方法研究的较多。原位复合是通过在石墨烯表面上由各种前驱体制备出纳米颗粒的方法。根据制备手段不同原位复合可以分为还原法、电化学沉积法、水热法、溶胶-凝胶法。石墨烯原位复合纳米材料的制备方法中,电化学沉积法、溶胶/凝胶法由于工艺复杂或原料昂贵,不适合大规模生产。水热法相对于化学还原法的优势在于避免了还原剂的使用,还可以负载金属氧化物纳米颗粒,纳米颗粒分散度高,粒径小且对负载纳米颗粒的性状调控性更强。在实际应用中,根据负载的燃烧催化剂选择不同的方法制备。DEY等采用微波法制备了直径约20~30nm的Fe₂O₃粒子均匀分散在石墨烯片上的Fe₂O₃/Graphene复合粒子,作为AP的催化剂,并对其催化性能进行研究。研究发现,随着Fe₂O₃/Graphene含量的增加,催化作用也明显增强,同时指出Fe₂O₃/Graphene能够有效加快AP系推进剂的燃烧速率。复合固体推进剂的导热问题是导弹、火箭系统安全性与可靠性研究中的重要问题。一方面,由于推进剂不可避免地需要承受极端恶劣和复杂的温度环境,温度的变化很容易导致内部应力的产生;另一方面,导热系数对推进剂的点火和燃烧性能具有关键性的作用。以高分子粘结剂为基体的复合固体推进剂导热系数通常较低,这使得其在承受大幅度温度冲击时,热量无法快速传递,导致装药内部温度分布不均匀或呈梯度分布,进而产生严重的内部热应力,直接引起内部裂纹甚至结构破坏。石墨烯由于具有极高的导热系数和较轻的质量,目前已经广泛作为导热填料用于复合材料。这种具有二维结构的新型轻质碳材料实际上已经在含能材料导热性能的提升方面发挥了作用,如对于高聚物粘结炸药导热系数的提升。张建侃等总结了石墨烯应用于固体推进剂的研究进展的基础上,提出非氧化石墨烯由于导热系数高,适合经非共价改性后分散于推进剂基体中,增强基体的导热性能。此外,复合固体推进剂力学性能的不足将导致药柱无法承受冲击、振动、过载等复杂载荷的作用,进而产生裂纹,增大燃烧面积,引起发动机内压升高,甚至导致爆炸。为了提高复合推进剂的力学性能,在基体中添加纳米材料已经成为提高推进剂力学性能的重要手段。文献指出,石墨烯应用于复合推进剂,可以有效增强推进剂的力学性质。(二)热管理石墨烯纳米材料目前正被纳入各种航天热防护材料和热管理,以提高在各种气或热流动条件下热稳定性和机械完整性的极限。为特殊航天任务材料系统提供多功能的研究也在进行中。由于航空工业的发展,复合材料基体的耐热性和烧蚀性能提出了更高的要求。由于树脂具有良好的加工工艺等性能,被广泛用作耐烧蚀材料的主要基体。为了进一步改善烧蚀材料的性能,石墨烯由于其独特的结构,表现出优异的热稳定性能、力学性能、导电性能等特点,是制备先进复合材料的理想增强体。这些复合材料用于高超声速飞行器前缘的热保护系统、火箭喷管和固体火箭发动机的内部绝缘以及导弹发射设施结构。研究发现,氧化石墨烯/酚醛树脂/碳纤维复合材料的热稳定性和烧蚀性能得到了显著提高,这是因为GO在聚合物基体中的分散良好,GO与酚醛基体之间的界面相互作用强,以及热解后的层状碳结构。与其他样品相比,GO含量为1.25%的样品在烧蚀率、热扩散率和热稳定性方面表现最佳。该复合材料在不同温度下具有恒定的热扩散率,炭产率和烧蚀率分别提高了10%和51%。MA等为了提高碳纤维/ 酚醛复合材料的烧蚀性能,采用纳米填料对纤维增强体界面进行改性。首先,通过将低浓度的GO(0.1%)加入到碳/酚醛(CF/PR)中,结合实验和计算分析氧化石墨烯(GO)对提高复合材料抗烧蚀性能。氧化石墨烯填充复合材料在热阻方面的优势与氧化石墨烯的加入提高了PR的炭收率和纤维的石墨化。分子动力学模拟表明,即使浓度很小,基体内的氧化石墨烯也可以作为炭化PR石墨化晶体生长的核剂。在极端烧蚀温度下,纤维-基体界面处的氧化石墨烯可以与纤维结合。促进了石墨烯-纤维界面stone-throwing-wales缺陷(xy平面)和sp₂杂化(z方向)的形成,进一步提高了纤维的石墨化程度。文中还研究了两种纳米材料填充 CF/PR复合材料的界面、热性能和烧蚀性能。特别是,氧化石墨烯(GO)和石墨氮化碳(g-C3N4)被用于生产低负载(0.1%)的复合材料。通过氧乙炔火焰试验研究了复合材料的烧蚀性能。石墨烯填充和g-C3N4填充复合材料的抗烧蚀性能比原始复合材料分别提高了62.02%和22.36%,线性烧蚀速率的降低是导热系数、烧焦层和纤维石墨化程度共同作用的结果。氧化石墨烯填充复合材料的机理是氧化石墨烯可以显著提高纤维表面的石墨化程度,并进一步提高其抗高温烧蚀的耐热性。而在g-C3N4填充的复合材料中,较厚的纤维直径和烧蚀区炭化层可以分散可燃气体,提高抗氧化性能。此外,将石墨烯均匀地分散在丁苯橡胶基体中,显著提高了聚合物基纳米复合材料的抗烧蚀性能。多孔结构在烧蚀试验过程中形成,它增强了蒸腾和蒸发过程,降低了背面的温度升高。橡胶复合材料的极限拉伸强度和橡胶的肖氏硬度A得到有效提高,而断裂伸长率随着填料与基体比的增加而降低。与有机硅、天然橡胶和乙丙橡胶纳米复合材料相比,丁苯橡胶复合材料在暴露于超高温和剪切流后显示出很好特性。ARABY等制备了苯乙烯-丁二烯橡胶和石墨烯聚合物纳米复合材料。当纳米颗粒含量达到10.5%阈值时,产生导热和界面通道,此时导热系数最高。此外,如图2所示,辐射冷却正在成为一种越来越有吸引力的被动热管理方法,它利用周围环境中的光谱辐射特性。通过机械可重构石墨烯的选择性中间膨胀发射率控制,其中机械拉伸和释放会引起石墨烯的受控形态变化。利用太阳光谱吸收太阳辐射加热(从200nm~2.5μm,可见到近红外波长)并利用大气透射窗口(从8μm~14μm,中红外波长),通过将热量重新发射到外层空间来冷却表面。用于航空航天应用的系统和表面需要动态温度控制以获得最佳系统性能,同时满足个人舒适度和维护设备功能的热需求,并避免过热。能够在不同光谱范围内加热和冷却否定了使用具有相当均匀的高或低发射率值的传统材料,并且由于缺乏对发射率的动态调制,可调节温度的需要是刚性冷却表面无法实现的。同时,由于石墨烯良好的导热性,基于废热反射导热的石墨烯散热器在空间光伏聚光器上得到了应用,不仅降低了成本,在降低质量密度,比功率的提升方面都起到至关重要的作用。图2 (a)基于皱褶石墨烯的选择性发射;(b,c)褶皱节距的变化可利用太阳辐射和大气窗口来辐射冷却(10 μm)和加热(290nm)。(三)电极材料目前,小型化、自动化、以功能为中心的设备的快速发展,使星际任务和近地空间探索的实现更近一步。先进的纳米结构材料的引入促进了全球智能多样化的平台在电力、仪器和通信方面取得进步。然而,仍然缺乏高效可靠的推力系统,能够在长期部署期间支持小型卫星和立方体卫星的精确机动。此外,航空和空间系统需要可靠的电力生产、存储和传输,无论是短期还是长期活动。现有的能源系统正在被纳米材料创新所取代或补充。以石墨烯为基础的更好的工程纳米材料正在不断改进。MARKANDAN等使用氧化铝增韧氧化锆(ATZ)作为结构材料制造了一个微型推进器,氧化钇稳定氧化锆-石墨烯(YSZ-Gr)作为电极材料。YSZ-石墨烯不仅可以作为电解分解硝酸羟铵溶液的电极,还可以起到阻尼作用。这种微型推进器作为主推进系统具有潜在的应用,可用于卫星星座编队飞行中的快速轨道转移。离子推进器阴极(如图3(a)所示)的关键挑战在于减少或完全消除阴极的推进剂消耗,显著提高阴极的使用寿命,以及减少白炽部分的热损失。通过使用纳米多孔材料、纳米管和石墨烯,可以确保减少气体消耗。这个问题的最佳解决方案是通过使用高发射材料和表面结构完全消除通过阴极的气体通量。垂直排列的石墨烯薄片显著提高推进器效率的,作为无推进剂体系下的良好候选者而备受关注,如图3(b)所示。图3 (a)常用的热发射阴极示意图;(b)纳米多孔材料,垂直排列的石墨烯薄片直接生长在纳米多孔氧化铝上(比例尺:200nm)。(四)光帆材料基于石墨烯的轻型帆的推进系统因其灵活性和无需携带燃料这一特性而成为行星际和星际任务的候选技术。轻型航行也是唯一现存的空间推进技术,可以让我们在人类的一生中访问其他星系。为此举办的蜻蜓计划竞赛,就旨在评估激光驱动的光帆星际探测器发送到另一个恒星系统的可行性。这种大规模光操纵石墨烯光帆对实现星际探索和直接空间运输是具有深远意义的。如图4(a)所示,ZHANG等使用大块石墨烯泡沫在宏观尺度上观察到其直接光推进。这种三维石墨烯材料的新形态,使其不仅能够吸收不同波长的光,而且可以使用瓦级的激光,甚至阳光,按照一种新颖的光致电子喷射机制,直接推进到亚米尺度。如图4(b)所示,GAUDENZI与其合作伙伴制作了由铜网格支撑的石墨烯微膜二维帆叶,并在微重力环境下测试了光诱导位移。提出的材料设计消除了帆所需的光学和机械性能,从而大大降低了帆的总质量,并为利用石墨烯机械强度的高反射2D帆打开了大门。此外,PERAKIS等设计了石墨烯作为夹层的低密度和高反射率的三明治轻帆,达到指定加速度比目前最先进的镀铝的聚酯薄膜太阳帆材料性能更好。图4(a)石墨烯海绵在激光照射下向上推进和光致旋转示意图;(b)帆在激光照射下的垂直位移,显示了帆在微重力和真空中的不同位置(侧视图):释放后(左)和在450nm、100mW的激光下加速350ms后(右) 。(五)其他领域由于太空环境由极端温度、真空、太空碎片和太阳黑子活动引起的大变化构成,那么先进的纳米复合材料被用于航空航天飞机结构和太空环境恶劣气候的涂层以及微电子系统的开发就变得非常的有意义。石墨烯霍尔效应传感器具有低热漂移,适用于航空航天应用的电力电子模块中的电流实时监测,可在高达500K的温度下工作。随着温度的升高,临界电子性质的变化,特别是载流子浓度和载流子迁移率的变化,这些参数是受实现传感器的石墨烯层狄拉克点Dirac点所独特影响的。利用门控优化石墨烯霍尔传感器可以实现低温度系数下的高灵敏度霍尔效应测量。此外,在其他星球上的生境开发受到多种标准的制约,其中之一就是空间碎片的撞击破坏。Kuzhir在纳米级厚度的铜催化剂膜和介质SiO₂基底之间通过催化化学气相沉积工艺合成Ka波段多层石墨烯薄膜,石墨烯薄膜的厚度由原子力显微镜直接表征,仅显示了样品上纳米级的小波动。所研究的薄膜厚度不超过5nm,且有一定的粗糙度。石墨烯只有千分之一的皮肤深度,吸收损耗造成的电磁屏蔽效率非常高,达到35%~43%的入射功率水平上。制造的石墨烯薄膜在室温下具有高度的导电性,在可见的范围内具有非常高的透明性,并具有非常好的热学和力学性能,可能成为制造纳米级厚度的电磁干扰防护涂层的有趣的技术材料。此外,特殊的三维导电链结构对轻质,柔性的导电纳米复合材料具有很强的吸引力,尤其是在降低材料的制造价格和良好的加工性能方面。聚二甲基硅氧烷(PDMS)复合材料通过将石墨烯排列成仿珍珠层状序列三维结构,在石墨烯含量不足的情况下表现出更高的力学性能、各向异性电导率和优越的电磁辐射屏蔽效率。掺杂0.4%质量分数的导电颗粒电磁辐射屏蔽效率达到42dB,沿排列方向的电导率为32S/m。在2500 ℃下热处理气凝胶后,聚合物纳米复合材料的电磁辐射屏蔽效率和电导率分别变化为65dB和0.5S/m。在0.15%的超低浓度,热处理温度800℃条件下,其电磁辐射屏蔽效率可达25dB。表明各向异性石墨烯/PDMS层板在超低石墨烯含量下通过结构调控获得了更高的电磁屏蔽效率。环境控制和生命支持系统技术是纳米材料的沃土,长期的人类太空探索带来了最大的挑战。无论是在相对安全的低地球轨道内的短期任务,还是艰难的长期任务,如前往遥远的星球。可靠的空气、水和食物供应;废物管理系统;功能性的可居住空间都是必不可少的。包括在国际空间站上的低轨道运行,已经为生命支撑技术提供了一个有用的试验场,随着航天国家为前往火星等目的地的长期任务做准备,在低轨道运行中测试技术被认为是一项重要的指标。目前的生命支撑技术的可靠性和性能相对较差,需要采用高比表面积和导电纳米材料作为提高系统整体性能的途径之一。碳纳米管仲胺功能化以实现二氧化碳去除,这是生命支持技术不可或缺的功能,并解决当前系统的局限性,包括可再生性和高功耗。在最好的条件下,水的净化和回收是具有挑战性的,但微重力环境的增加和多年耐用性的必要性推动了基于纳米材料的水过滤系统的几个例子。富勒烯在水净化方面已显示出非常好的前景,美国宇航局赞助的使用碳纳米管的纳米级过滤技术已发展成为一种商业产品。尽管可扩展性仍然存在问题,但多孔石墨烯是一种积极研究的水过滤材料,吸引了大量的关注,如图5所示。图5 (a)纳米多孔石墨烯水脱盐示意图;(b)具有亲水键的纳米孔示意图。三、结束语本文首先对石墨烯的结构和理化性质进行了介绍,并简要阐述各性能在具体应用中的重要作用;然后,综述了石墨烯纳米材料在航空航天领域的各方面(复合固体推进剂、热管理和智能光帆等)前沿领域的应用现状。石墨烯及其复合材料的制备已得到较快发展。其中,石墨烯在复合固体推进剂中的应用目前主要集中在提高推进剂含能组分的热分解和燃烧性能方面,而在导热和力学性能方面的研究则相对较少,且制备方法单一,以简单的共混为主,缺乏针对性的设计和性能的控制。而且对石墨烯的性能增强机理缺乏深入的分析。在热管理方面,导热系数、产炭性能和纳米颗粒分散对聚合物纳米复合材料的烧蚀性能和绝缘性能都有影响。酚醛树脂仍然是这一应用中被广泛研究的聚合物,纳米陶瓷颗粒与碳基的复合纳米填料的结合似乎是下一个热管理趋势。此外,在太空电力推进领域,新型石墨烯基纳米材料和微电子机械系统支持的离子液体推进器解决方案,这是为微加工和纳米结构推进器阵列的实现提出了方案。另外,一种可能的低成本,高时效的纳米制造工艺,用于飞机储能和生命支持设备。与传统解决方案相比,这些纳米复合材料应用了纳米材料的整合,并与太空任务和探索计划相结合,可以节省成本和时间。石墨烯在很多领域的研究仍处于探索阶段,石墨烯材料在极端环境中的行为将扩大我们的基本理解和潜在应用,将促进人类在太空的探索。石墨烯基纳米材料未来的研究重点需要着眼于以下几个方向:(1)一种降低开发成本的潜在解决方案是创新材料-建模和模拟与实验测试和表征方法相结合,可以降低开发和鉴定成本。将有助于跨越纳米工程材料的性能转化为宏观尺度上的现实。(2)大规模构造石墨烯材料的集成方法,以保持在石墨烯纳米尺度上注意到的性能和批量实现。它们占地面积小,功耗低,耐辐射,非常适合太空应用。(3)将纳米石墨烯材料集成到最先进类型的电力推进装置中,利用纳米材料的独特特性,提高其效率和使用寿命。另外,进一步创造出一个自适应(自清洁表面,自愈合修复机制,自我愈合)推进器。
  • 6大海外分会场 200位行业大咖——2021中国国际石墨烯创新大会邀您免费参会
    中国国际石墨烯创新大会已连续成功举办七届,参会人数逐年刷新纪录,影响力持续提升,七届大会共吸引了全球30多个国家和地区的1200多位新材料领域的专家、4000多家单位、23000多人参会,目前已发展成为全球石墨烯前沿技术成果、创新产品的汇聚地、风向标和国际盛会,被誉为“全球石墨烯秋季大会”。与大会同步举办的“中国国际石墨烯材料应用博览会”,通过汇聚全球石墨烯产业化成果,不断为全球石墨烯产业发展注入新的生机与活力。2021(第八届)中国国际石墨烯创新大会将于2021年10月22-24日在上海大学召开,大会将聚焦产业链供应链、国际合作、产学研用融合三个方面,携手终端用户打造多场商业化论坛;同时,为了深化国际合作,营造全球影响力,加速国际成果对接,促进国内外石墨烯产业交流,为各国石墨烯企业联手打造一个国际展示平台,助力企业走出国门,走向世界,联盟还将与欧盟石墨烯旗舰计划、Graphene Info、Phantoms Foundation、Nano Malaysia等众多国外机构打造多场海外分会场、国际石墨烯颁奖晚会、国际石墨烯新材料大赛等多场国际特色活动。届时,来自30个国家地区的200位全球顶级专家将通过线上线下相结合的方式齐聚上海,打造一场具有创新性、多元化的全球石墨烯嘉年华盛会。与烯同行 精彩纷呈 亮点多多30+场分论坛 百位行业大咖凝聚全球创新共识 智汇上海话未来在为期3天的大会上,将围绕石墨烯前沿进展、标准认证、国际合作、以及汽车、散热、涂料、家电、新能源、节能环保等领域举行30多场分论坛,200多位各领域专家将通过多种形式齐聚上海,与广大参会者一起探讨未来石墨烯产业发展之路!6大海外分会场彰显国际高度为了深化国际合作,营造全球影响力,加速国际成果对接,促进中国与国外石墨烯产业交流。除上海大学主会场外,大会今年还将与德国、西班牙、英国、马来西亚、日韩、澳大利亚等国家权威行业机构合作共同举办6大海外分会场。石墨烯联盟将与各海外分会场联合主办方发挥各自资源优势,邀请本土大型企业客户参会(如空客、塔塔钢铁、LG、三星、三菱化学、华为等),为各国石墨烯企业联手打造一个国际展示平台,助力企业走出国门,走向世界。商业化论坛:携手行业伙伴打造商业合作新平台 共享发展新机遇为了帮助石墨烯企业进一步开拓市场,解决终端应用企业对先进技术、材料的需求,同时也发挥大企业对产业的带动示范作用,大会组委会将与国内大企业以及其供应链企业合作,围绕汽车、散热、大健康、家电、新能源、纺织、涂料等领域,共同打造商业化论坛,打通产业链、打通供应链、深化产业链上下游的协同合作,推动石墨烯产业化高质量发展。“商务会客室”全新出发,500强企业200+需求"零距离”对接,注人产业发展新动能大会继续设立100场一对一商务洽谈会,通过线上+线下相结合的方式,邀请华为、海尔、国家电网、陕汽、塔塔钢铁、比利时微电子研究中心(IMEC)涉及智能家电、移动通讯、冶金制造、工程机械、路桥工程、航天等领域的国内外500强终端应用企业,面对面与企业代表交流洽谈、精准对接,就石墨烯产业化过程中存在的问题进行深入探讨,把脉企业发展,推动石墨烯产业化进程,共同开启全球石墨烯产业发展新时代。商务会客室的规模将由2020年的30场、45家终端企业、对接60项需求扩展到2021年的举办100场、涉及100家500强终端企业、对接200项需求、力争促成60项合作意向。石墨烯奥斯卡之夜缔造行业盛典首届国际石墨烯颁奖典礼(IGA 2020),由全球20个国家和地区共50位石墨烯行业专家共同发起成立,来自6个国家和地区的13家石墨烯单位或个人角逐最佳石墨烯企业、终身荣誉奖、最佳石墨烯产品、石墨烯产业促进奖、石墨烯产业示范奖5大奖项,此活动一经举办就得到了全球各国石墨烯人士的大力支持,成为了行业含金量最高的奖项。大会期间将同步举办第二届国际石墨烯颁奖典礼(IGA 2021),进一步扩大范围,评审委员会将扩增到80-100个席位覆盖30个国家地区,并将进一步扩大评奖范围。同时联盟将与欧盟石墨烯旗舰计划(Graphene Flagship)、纳米马来西亚(Nano Malaysia)、IDTechEx、Graphene Info、Nanotech Japan、澳大利亚石墨烯中心(ARC Graphene Hub)、巴西国家石墨烯中心等联合发布全球石墨烯企业竞争力百强榜,彰显中国石墨烯产业发展的全球影响力,同时《2021全球石墨烯产业研究报告》也将在同期发布。首届国际新材料大赛缔造产业创新发展新引擎大会期间,组委会还将与国际材料研究学会联盟合作,共同举办首届国际新材料大赛,将从全球范围内征集新材料领域的数百项优秀的创新创业项目,并在大会期间举行总决赛,助力引资引智,打造上海石墨烯新材料的全球影响力。助推产业发展 培育民族服装品牌新烯望为了推动石墨烯高端功能纤维产业化、激发大学生创造力+石墨烯科普、培育民族品牌,助力石墨烯新型纺织产品市场推广。组委会将联合纺织服装行业的相关权威单位共同举办2021(第二届)国际石墨烯纺织品设计大赛,活动围绕培育民族服装品牌新烯望展开,将面向全国30多所院校的100多位服装设计专业的大学生,征集参赛作品,最终将决出15个作品入围决赛。“科技强国追梦人”百集系列短视频献礼建党100周年大会期间还将发布由石墨烯联盟、上海大学等单位联合制作的“科技强国追梦人”百集系列短视频,视频将以钱学森、李四光、邓稼先、师昌绪等老一辈科学家为背景,通过讲述他们怀揣科技强国梦想,在祖国实现人生价值,为中华民族的伟大复兴做出杰出贡献的感人事迹,来激励新一代的科技人员,弘扬这些科技强国追梦人胸怀祖国的爱国精神、勇攀高峰的创新精神、严谨治学的求实精神和淡泊名利的奉献精神。“科技强国追梦人”百集系列短视频将成为向建党100周年的献礼;成为塑形铸魂科学家精神的平台;成为倡导爱国情怀、责任使命的媒介;助力营造良好的创新生态,汇聚建设科技强国的磅礴精神力量。汇聚全球石墨烯创新成果,展现长三角一体化发展成就2021中国国际石墨烯材料应用博览会将与大会同期举行,博览会将通过汇聚全球100多家石墨烯企业的科技创新成果,来自长三角区域的众多国内重点平台、石墨烯标杆企业也将携新型石墨烯商业化产品或成果亮相博览会的舞台。同时,Graphenea、Abalonyx、Versarien、Nano Malaysia、IIT、ICN2等国外石墨烯应用企业通过“云观展、云参展”的方式齐聚一堂,众多黑科技“烯”产品惊艳亮相,为全球石墨烯产业发展注入新动能。会议名称:2021' 中国国际石墨烯创新大会电话:400-110-3655官网:www.grapchina.cn邮箱:meeting01@c-gia.cnQQ群:296531551、397051421微信:SMXLM2013、CGIA-2013(添加为好友,邀请入群)微信订阅号:CGIA2013(支持在线咨询)
  • 戏说纵向加热石墨炉(收官之作)
    前 言:  自从70年代起其至今,我使用过好几款仪器的石墨炉,如:PE403,PE5000,PE3010,GGX-3,180-80,Z-8000,Z-5000,Z-2000,ZA3000等。凑巧的是,上述仪器的石墨炉全部是纵向加热类型的。为了活跃论坛这个&ldquo 草根&rdquo 平台,我就将这些年对纵向加热型石墨炉的认识和体会展现给版友。  遗憾的是,一来本人的理论水平有限,二来有关石墨炉的文献与论文,从60年代的石墨炉鼻祖利沃夫和马斯曼起,一直到目前的国内外众多的原吸大咖止,比比皆是,令人目不暇接,且全部是正说。因此,如果我也采用&ldquo 正说&rdquo 石墨炉的形式,则深感力不从心,故只能&ldquo 戏说&rdquo 了,望大家见谅!  (一)纵向石墨炉的历史:  1959年,前苏联科学家利沃夫(L,vov)设计出了石墨炉坩埚原子化器。  1967年,德国学者马斯曼(H.Massmann)从利沃夫的石墨原子化器得到灵感,设计出电热石墨炉并于1970年被PE公司应用到商品原吸仪器上。  由于马斯曼设计的纵向电加热石墨炉首次成为商品仪器,所以之后有人就将这种纵向加热结构的石墨炉称之为&ldquo 马斯曼炉&rdquo ,以示纪念。  (二)纵向石墨管的结构:  首先要搞清楚何为&ldquo 纵向&rdquo ?所谓的纵向就是指作用在石墨管上的加热电流I的流通方向与通过石墨管光轴的方向一致。见图-1 所示:  图-1 纵向加热石墨炉示意图  纵向加热石墨炉的整体外观和结构示意以及实体分解如图-2,3,4所示:  图-2 纵向石墨炉外观图(Z-2000)  图-3 纵向石墨炉结构示意图  图-4 纵向石墨炉实体分解图(Z-2000)  从图-3 和图-4 可以看出,纵向石墨炉主要是由:石墨管,石墨环,电极和石英窗组成。  由于纵向石墨炉问世最早,结构相对简单,石墨管加工的一致性好且成本低廉,加之技术成熟,所以该类型的石墨炉应用较为广泛 目前国内外的原子吸收光度计的生产厂家绝大部分仍然采用的是该类型的石墨炉。  (三)纵向石墨管的种类:  无论是纵向石墨炉还是横向石墨炉,最终做热功的还是石墨管 为此有必要介绍一下纵向石墨管的种类和特点。图-5 所示的就是一部分纵向加热的石墨管的外观图。  图-5 形形色色的纵向石墨管  不知大家注意没有,在上图中最右侧的那个&ldquo 高大上&rdquo 的石墨管,就是我在70年代时使用过的美国PE-403型原子吸收分光光度计中石墨炉上的石墨管,可惜当时没有想起要保存下一只该管子的实物作为留念,不能不说是一件憾事!  (1)筒形石墨管:  纵向加热石墨炉从问世开始(以PE公司原吸为代表),石墨管就是筒形的,直至目前许多国内外仪器生产厂家例如:PE公司,热电公司,瓦里安公司,GBC公司的部分型号的仪器仍然使用着这种石墨管。如下面所示:  图-6 几种进口仪器使用的筒形石墨管  最早的传统筒形石墨管有一个弱点,那就是:由于管子的管壁厚度一致,也就是管子整体的任何一个部位的电阻值是均匀的,所以当石墨管通电加热时,理论上管子的整体的温度应该是均匀一致的才对。这种石墨管的剖面图如下:  图-7 传统筒形石墨管的剖面图  可是遗憾的是,由于纵向石墨管两端紧贴着两个质量很大的石墨环和电极之故(见图-4),所以在原子化加热开始的瞬间,石墨管两端的温度就会因为石墨环和电极的热传导作用而低于石墨管的中央部分的温度 其后经过暂短的时间后(约零点几秒),管子整体才会达到热平衡。这,就是在许多资料中所经常被垢病的&ldquo 温度梯度&rdquo 现象。  为了克服这种&ldquo 温度梯度&rdquo 的弊端,于是后人们便产生了提高筒形石墨管两端电阻值的设想。这样原来的一个阻值均匀的石墨管整体R就会被等效看做为三个串联的单体,即(R左R中   那么如何提高筒形石墨管两端的电阻值呢?方法只有一个,那就是减少管子两端管壁的厚度。我们在初中物理学到过,一个导电体的截面积与其电阻值成反比。所以减少石墨管两端管壁的厚度就可以提高电阻值。但是要想减少管子两端管壁的厚度,却不能通过将管子外径切削变薄来实现 其原因是:石墨管两端还要保持与石墨环大面积的紧密接触才能减少热损耗。所以即要想提高电阻又要保持管子与石墨环的紧密接触,那只能在管子的内壁上做文章。具体的做法是:用车刀在管子内壁两端刻上几刀沟槽,这样既不影响管子与石墨环的接触也可以提高了两端的电阻值了,可谓一举两得。其示意图和实体图见图-8和图-9 所示:  图-8 改良后的筒形石墨管示意图  图-9 改良后的筒形石墨管剖面实体图  (2)鼓形石墨管:  改良型石墨管尽管缩短了管子整体的热平衡时间,但是效果还是不太理想。于是有的仪器厂家就设想:如果让纵向石墨管中央放置样品的部位先行到达原子化温度不就可以忽略石墨环的散热影响了吗?要想做到这一点,就要从改良型筒形石墨管做反向思维了 那就是让石墨管的三部分变为(R左R右)了,于是乎,鼓形石墨管则应运而生了 其外观如下次:  图-10 鼓形石墨管外观  看到上面的鼓形石墨管,也许有人会问:这种石墨管的外径中间粗(8mm)两端细(7mm),如果依照前面导体的截面积与电阻成反比的定律,那么此管子的中央部位外径比两端的要粗1mm,其截面积一定大啊!按道理应该中间部位的电阻要小于两端才对,怎么反而说比两端的阻值要大呢?  下面我将此类管子的实际剖面图展现出来,大家就一目了然了,见图-11所示:  图-11 鼓形石墨管的剖面实例图  从上面的照片可以看到,尽管鼓形管的中间外径较两端大1毫米,但是其管壁厚度却小于两端的厚度,两者之差为(2mm-1.5mm)=0.5mm 千万别小看了这区区的0.5毫米的厚度,他却使石墨管中央部分的截面积整整小了约1/4。这样的差别,就会使该管子在原子化加热的瞬间,其中间部位迅速到达预设的原子化温度。如果用肉眼从石墨炉上盖的进样孔观察石墨管的升温状态就会发现这一过程 如图-12,13所示:  图-12 鼓形石墨管在原子化阶段升温瞬间的状态  图-13 鼓形石墨管在原子化阶段迅速达到平衡的状态  从上面两张照片图可以清晰地看到,鼓形石墨管在原子化开始的瞬间的确是从中央部位先行到达预设的原子化温度的,然后再向两端迅速延伸直至达到整体的热平衡,而这个平衡时间是非常短暂的。目前此类型石墨管主要是应用在岛津和日立的原吸上面。  此外这种鼓形石墨管还有一个优点,那就是管子中间的凹陷部位注入样品后液体不会向两端扩散 这样就保证了全部样品集中在温度最高的区域,有利于原子化。  (3)异形石墨管:  这类石墨管主要是喇叭型和哑铃型两类 由于目前几乎难以见到,故不再赘述。  (4)双进样孔鼓型石墨管:  这是一种新型的石墨管,其特点是:石墨管中央注入样品的部位被分割为两个空间 这样设计的目的是可以加大进样量,对低含量的样品起到了一个富集的效果 但是采用这种石墨管的仪器对自动进样器的精度要求是很高的,目前为止,这种双孔进样方式只有日立ZA3000型原子吸收上采用 而在横向加热石墨管上是不能实现的。该型管子的外观图和剖面图如下所示:  图-14 双孔石墨管的外观图 图-15 双孔石墨管剖面图  (5)平台石墨管:  此类石墨管就是在管子的中央安放一个悬浮的石墨平台,样品加注在平台上以完成原子化过程。平台石墨管的设计理念就是实现石墨炉分析鼻祖B.V.L&rsquo vov提出的&ldquo 恒温原子化&rdquo 的理念而问世的。该石墨管的剖面图如下:  图-16 平台石墨管  (四)纵向石墨炉的特点:  (1)升温速率:  众所周知,无论石墨炉是何种形式的,其最终做功而产生的焦耳热的关键部件是由石墨管来完成的。而影响石墨炉灵敏度和重现性的一个重要的因素则是:升温程序由灰化阶段转为原子化阶段瞬间的升温速率的快慢。  为何这个转换速率对分析的灵敏度的影响是那样大呢?其实原因很简单:当样品完成灰化步骤后,石墨管由灰化阶跃到原子化阶段的时间越短(即升温速率快)样品产生的基态原子数目越多,自然检测到的信号就越强。反之,如果石墨管升温速率慢的话,一部分样品在还未形成基态原子前就会被载气吹跑掉了,自然灵敏度就下降了。这也就是为何石墨炉在原子化阶段采取停止载气的做法的缘由 任何事物都是一分为二的,虽然可以通过停止载气来提高检测信号的灵敏度,但是样品信号的背景值也会随之加大了,熊掌鱼翅不可兼得。  那么影响石墨管升温速率的因素又是什么呢?答案是:石墨管本身的质量的大小 在同等的升温条件下,质量越小升温速率越快。举一个试验例子:如果将一个大铁球和一个小铁球同时放到火炉中,哪一个先红?毋庸置疑,还是小铁球先红(即达到热平衡早),我想这个试验结果大家均会给予认可的。目前的纵向石墨管无论是筒形的还是鼓形的其质量均在1克左右 见下表-1:  表-1  而横向石墨管的质量均比纵向石墨管大的多,一般在2.5~5.4克之间,见下表-2:  表-2  对于横向加热的石墨管而言,由于其本身的质量大于纵向石墨管,所以实际上更加注意升温速率的问题 这些石墨管的设计理念与纵向鼓形石墨管的设计如出一辙,其结构也是中央管壁薄两端管壁厚,从而造成管子整体中央电阻值大二两端小,并且这个厚薄的差异较纵向鼓形石墨管还要明显,远远大于0.5mm。见下图所示:  图-17 PE公司横向石墨管剖面图  图-18 Jena公司横向石墨管侧面图  图-19 GBC公司横向石墨管侧面图  所以,在升温速率上:从整体来看纵向石墨管优于横向石墨管(质量不同) 从局部来看二者接近(使用空间一样)。  (2)温度梯度:  自从纵向加热石墨炉问世以来,关于石墨管整个腔体内空间的温度梯度问题一直就是一个饱受诟病的争论焦点。为此,石墨炉分析鼻祖利沃夫(L,vov)先生就提出了一个&ldquo 恒温原子化&rdquo 的理念。大家熟悉的平台石墨管就是出于这个目的而研发出来的。  前面已经讲到,由于纵向石墨管两端存在石墨环和水冷电极的散热作用,故在原子化的瞬间致使管子的整体产生了一个两端低,中间高的&ldquo 温度梯度&rdquo 现象 这是一个不争的事实。  但是经过了一个暂短的时间后,石墨管会立即达到热平衡了。见下图所示:  图-20 筒形石墨管原子化阶段的升温模型  图-21 鼓形石墨管原子化阶段的升温模型  从上面的两张图的比较可以看出,鼓形管由于中间部分的温度高,故其升温速率要稍高于筒形管。  那么,横向加热的石墨管的究竟有没有&ldquo 温度梯度&rdquo 呢?见下模型图:  图-22 横向石墨炉工作原理  图-23 横向石墨管原子化阶段的升温模型  从图-22,23可以看出,横向石墨管在与电极接触的上下两端,同样也存在水冷电极的散热效应,所以对于横向石墨管整体而言同样也存在着温度梯度,只不过是在光轴通过的区域没有温度梯度罢了。因此纵向与横向石墨管的温度梯度的区别是:从整体来看,二者均有,仅是部位不同 从光轴观察空间来看,在原子化的瞬间,横向石墨管优于纵向石墨管 但是管子温度到达平衡后,二者相差无几了。既然横向石墨管的中间部位没有温度梯度的弊端,但是目前有些横向石墨管(例如PE的)仍然采用平台式的,这是为什么?  现在的问题关键是,纵向石墨管在原子化的瞬间,管子整体确实存在着温度梯度,这是一个无可争辩的事实。这个过程可用下面的模型图来说明:  图-24 鼓形石墨管原子化瞬间的升温模型图  通过上面的模型图不难看出几点:  1)在原子化瞬间鼓形管的确存在温度梯度,并且鼓形管的中央已经先行到达了预设的原子化温度(参看图-12)。  2)当石墨管整体温度到达平衡后,两端与石墨环接触的狭小部位的温度严格地讲要略低于整体的温度,这是因为石墨环的电阻要小于石墨管,因此在做功时其温度肯定比石墨管低,但是却要比水冷电极的温度高多了 由此看来,石墨环在这里不仅仅起到加持石墨管的作用,另一个不可忽略的作用就是:在石墨管和电极之间起到一个温度缓冲的隔离作用 如此就可将石墨管两端的温度梯度的影响降到了最小的程度。  3)鼓形石墨管的容积约600微升,而样品为20微升,仅占总容积的1/30,且位居管子中部。我的疑问:管子两端瞬时的温度梯度能对管子中央部位的20微升的样品产生多大的影响?我想这可能就如同地球一样,尽管南北两极温度很低,但是生活在赤道的居民没有感到寒冷吧?  4)当鼓形石墨管温度平衡后与横向加热石墨管的状态所差无几(参看图-13)。  5)石墨环的质量越小,温度梯度的影响也就越小。  6)石墨炉电路采用温控方式可以减少温度梯度的影响。  (3)零点漂移:  纵向石墨管从室温升高至3000° 时,管子本身因热涨的原因会延伸1毫米。由于纵向石墨管的延伸方向与光轴呈现同心圆的状态,所以尽管子受热膨胀,但是不会因物理挡光而使零点信号漂移。这个状态可由下图模型说明:  图-25 纵向石墨管受热膨胀方向与光轴的关系  但是当横向石墨管在受热膨胀时,其延伸方向会与光轴方向形成正交,从而影响了零点的位移。所以经常听到使用横向加热石墨炉的用户反映:&ldquo 为何我的石墨炉在空烧时会产生一个很大的吸收啊?&rdquo 其原因就在于此。这种横向石墨管在加热时的位移模型图如下所示:  图-26 横向石墨管受热膨胀方向与光轴方向的正交关系  实际上,这种石墨管膨胀方向与光轴形成正交的结果还不仅仅是零点的漂移的问题,因为石墨管在原子化阶段,管腔里面的待测元素和背景的活动非常复杂,据说要用量子力学来解释。正因如此,一直以来许多科学大咖对这个课题的研究从未停止过。  (五)纵向石墨管的加工和价格:  通过前面的介绍可以看到,无论是筒形的和鼓形的石墨管,均是圆桶形的 因此加工起来就非常简单了,仅仅使用车床切削即可 并且由于加工工序简单,所以加工出来的成品的同一性,如尺寸,质量等就很容易保证,所以价格低廉。  而横向石墨管又别称&ldquo 异形石墨管&rdquo ,所以加工起来就相对复杂多了,需要好几道工序,如PE800的石墨管,不但要切削,还要大量的铣床工序,这可以从下图的外观造型上得到印证,所以其价格较为昂贵就在所难免啦!  图-27 PE800石墨管  备 注:  (1)由于本文为&ldquo 戏说&rdquo ,可能难免有些观点不严谨或不科学,那么各位看官就权且当做饭后茶余的消遣罢了 不妥之处,尽可莞尔一笑。  (2)由于本文仅仅是谈谈个人多年来对于自己使用的纵向石墨炉的体会和看法,之所以例举了横向石墨炉的一些特点,也仅仅是为了做对比说明,仅此而已,并无丝毫褒贬和厚此薄彼之意,特此说明。
  • 石墨炔与石墨烯,谁是超级材料?
    据报道,美国科罗拉多大学研究人员日前成功合成出石墨炔,此项成果或为电子、光学和半导体材料研究开辟全新的途径。事实上,石墨炔的合成研究一直是科学家们孜孜以求的目标,早在2010年,我国的李玉良院士团队就在世界上首次合成石墨炔。我们很多人都听说过大名鼎鼎的石墨烯,也知道2010年的诺贝尔物理学奖就是颁发给了石墨烯材料的研发者。石墨炔与石墨烯,仅一字之差,它们之间是否存在某种联系?石墨炔能否和石墨烯媲美?这里我们就来深入了解一下。21世纪是石墨烯的世纪  让我们先从更早出世的石墨烯说起。  听上去,石墨烯和石墨似乎有着某种联系,事实也确实如此。石墨烯和石墨、金刚石、碳60、碳纳米管等都是碳元素的单质。它们都是碳家族的一员,互为同素异形体,含有碳元素但具有不同的排列方式,从而表现出不同的物理性质。  比如金刚石(钻石的原身),它呈正四面体空间网状立体结构,碳原子之间形成共价键;当切割或熔化时,需要克服碳原子之间的共价键,由于金刚石中所有的价电子都参与了共价键的形成,没有自由电子,所以金刚石不仅硬度大,熔点极高,而且不导电。  石墨是片层状结构,层内碳原子排列成平面六边形,每个碳原子以3个共价键与其它碳原子结合,而层与层之间的距离则比较大,层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。天然石墨耐高温,热膨胀系数小,导热、导电性好,摩擦系数小。铅笔之所以在纸上轻轻一划就会留下痕迹,正是这种松散堆砌的结果。  石墨烯是由碳原子构成的只有一层原子厚度的二维晶体,可以说石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至几十层的石墨烯。  换句话说,把石墨一层一层地剥下来就是石墨烯了。从力学性质上说,石墨烯同石墨一样,其各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。  科学家已经证实了石墨烯是目前世界上已知的强度最高的材料,比钻石还坚硬,是世界上最硬的钢铁强度的100多倍。瑞典皇家科学院在颁发2010年诺贝尔物理学奖时曾这样比喻:“利用单层石墨烯制作的吊床可以承载一只4千克的兔子”。有人这样引申说,由于石墨烯厚度只有单层原子,透光率高达97.7%,因此如果真有那样的吊床,它不仅对于肉眼,甚至对于很多仪器来说都是不可见的,我们看到的将是一只悬停在半空中的兔子。还有估算显示,如果重叠石墨烯薄片,使其厚度与食品保鲜膜相同的话,便可承载2吨重的汽车。  从热电性质上来说,在石墨烯的“二维世界”里,电子运动具有很奇特的性质,即电子的质量仿佛是不存在的,其传导速度可达光速的1/300,远远超过了电子在一般导体中的运动速度。加上石墨烯结构在常温下的高度完美性,使得电子的传输及对外场的反应都超级迅速,这使得石墨烯具有超常的导电性和导热性。  而且更重要的是,石墨烯还可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的线度上依然能稳定地工作。若是用石墨烯来替代硅生产超级计算机,计算机的运行速度将会比现在快数百倍。因此很多人相信,石墨烯将会成为硅的接班人,引领技术领域一个新的微缩时代的来临。  除了具有超高的强度和韧性外,石墨烯几乎是完全透明的,即使是最小的单分子原子(氦原子)也无法穿过,只吸收2.3%左右的光,还有不透水、不透气以及抵御强酸、强碱的能力,这使它有可能成为制作保护膜的理想材料。石墨烯既能导电又高度透明的特点,使得它非常适合作为透明电子产品的原料,例如触摸显示屏、太阳能电池板的原料等。  研究人员利用锂离子可在石墨烯表面和电极之间快速大量穿梭运动的特性,开发出一种新型储能设备——微型石墨烯超级电容器。这种装置的充电或放电速度比常规电池快100倍到1000倍,能在一分钟内给手机甚至汽车充满电。  正因如此,所以有人说,如果20世纪是硅的世纪,那么21世纪就是石墨烯的世纪。  2004年,英国曼彻斯特大学物理学家安德烈海姆和康斯坦丁诺沃肖洛夫,在实验中成功地从石墨中分离出石墨烯。2010年,两人因此共同获得了诺贝尔物理学奖。“下一代奇迹材料”石墨炔  石墨烯已经如此神奇了,那么石墨炔呢?它有什么不一样的神奇之处吗?  石墨炔和石墨烯一样,也是只由碳原子构成,也是只有一层原子厚度的二维晶体。不同的地方在于,石墨烯的平面原子结构是六边形,也被称为蜂巢晶格结构;而石墨炔的平面原子结构则能具有数种不同的二维结构,其理论上能以无数种形态存在,目前已经至少有6种石墨炔异构体被报道。  正是因为拥有异构体结构,石墨炔具有某些独特的电子传导、力学和光学特性。此外,石墨炔还天生具有电荷载子,不像石墨烯需要额外掺杂,因此能作为制作电子元件所需的半导体材料。  早在1968年,理论化学家鲍曼就通过理论计算证实了石墨炔结构的存在。但要想在实际中合成制备出石墨炔,还面临着很多巨大的困难。我们可以这样理解,石墨烯的平面碳原子结构和石墨的单层平面碳原子结构毕竟是相同的,因此合成制备石墨烯还可以以石墨为抓手,而合成石墨炔的难度显然是更大了。  科学家们一直在为此不懈努力。在2010年,中科院化学所李玉良院士团队在石墨炔研究方面取得了重要突破,在世界上首次合成了石墨炔,开辟了碳材料的新领域。李玉良和他的团队从20世纪90年代中期开始探索平面碳的合成化学研究。在石墨炔的合成中,他们从源头的分子设计开始进行研究,渐渐地试着合成一些分子的片段。直到有一天在阅读文献的过程中,李玉良研究员突然联想到了一种化学的方法有可能使石墨炔大面积成膜。他们在铜片表面上通过化学方法原位合成石墨炔并首次成功地获得了大面积(3.61平方厘米)碳的新的同素异形体——石墨炔薄膜。  今年5月9日发表在《自然合成》上的研究论文,则在石墨炔合成制备上提供了一个新的途径。此文通讯作者、科罗拉多大学波尔德分校化学教授张伟和他的团队,通过使用被称为炔烃换位反应的有机反应过程中,在热力学和动力学的控制下重新分割或切割和重组烷基化学键,也成功地制作出石墨炔。  石墨炔被誉为是最稳定的一种人工合成的二炔碳的同素异形体。由于其特殊的电子结构及类似硅的优异半导体性能,石墨炔有望广泛应用于电子、半导体领域。  锂在石墨中的扩散方式是面内扩散,也就是层间扩散。与石墨不同的是,石墨炔同时有二维平面结构和三维孔道结构,锂在其中有面内和面外两种扩散方式,这使得石墨炔在锂离子电池方面具有很好的应用潜力。石墨炔是一种理想的储锂材料,可以作为锂离子电池的高能量密度存储的负极材料。科学家也预测它在新能源领域将产生非比寻常的影响。  石墨炔这种材料或许还有一些令人意想不到的神奇功能。据2020年发表在《科技日报》上的一则报道,山东理工大学低维光电材料与器件团队发现,石墨炔具有优异的紫外非线性特性,可以“恰到好处”地吸收紫外线。相关成果发表在国际知名期刊《纳米尺度》上。所谓紫外非线性材料,就是能够在紫外线强度比较低的情况下允许其通过,但若紫外线强度高于某一阈值,那么该材料就会神奇地将超额的紫外线阻挡住,形成对生物细胞的保护,从而使其成为理想的紫外防护材料。  英国《纳米技术》杂志曾这样评价:“石墨炔是未来最具潜力和商业价值的材料之一,它将在诸多领域得到广泛的应用。”  在合成石墨炔领域,我国科学家有着开创性的成果。而要获得大规模工业制备石墨炔的方法,还需要全球科学家们付出更多艰苦的努力,前景令人期待。
  • 石墨烯和石墨表面的共价修饰纳米图案
    石墨烯和石墨表面的共价修饰纳米图案研究人员在本文中展示了一种共价修饰的方法,并由此在石墨烯以及高定向热解石墨(HOPG)的表面成功地控制了纳米图案的形成过程。他们在对制得的样品进行了纳米级的表征后发现可以通过改变电化学反应的条件来调控所得纳米图案的尺寸。这种可以在表面构建纳米图案结构的方法使得目前电子产品微型化这一趋势可以进一步发展,同时也有益于其它各种各样纳米技术的应用。虽然目前已经存在一系列的自下而上的技术(也就是从单个分子的基础上搭建特定结构 )并被应用于在石墨烯以及HOPG基底上形成纳米图案结构。但是这些结构通常由非共价键形成,因此其稳定性受到很大的局限。 由来自比利时、越南和英国的科研人员组成的团队报道了一种通过共价修饰来控制纳米图案形成的方法。石墨的表面暴露在电解液中,而电解液包含了芳基重氮盐 NBD(4-nitrobenzenediazonium)以及TBD(3,5-bis-tert-butylbenzenediazonium)。然后在电化学池中通过循环伏安法以及计时电流法进行接枝反应。 研究人员通过原子力显微镜(AFM)和扫描隧道显微镜(STM)对样品进行了表征并在修饰后的石墨烯或HOPG表面发现了近乎圆形的斑点。这种结构被称为”nanocorrals”,研究人员认为其是由实验过程中在近表面形成的气泡引起的。AFM图像表明这种nanocorral的直径(约为45-130 nm)以及密度(20−125/μm2)可以通过分别改变电化学活化条件以及电解质比例的方法来进行人为调控。 这一实验方法可以十分便捷的制备出可调控的图形结构,可以在纳米约束反应中用作微小的“培养皿”。这种方法还可以促进超分子自组装领域以及其它表面反应的研究。Instrument usedCypher ES Techniques used研究人员通过循环伏安法制得样品后,借助了牛津仪器快速扫描AFM Cypher ES,以轻敲模式(tapping mode)对样品的表面形貌进行了纳米级的表征。Cypher ES具备着对样品环境进行精确控制的能力,在本实验中研究人员由此保持了样品处于32°C的恒温下。除了精确的多元环境控制功能,Cypher ES还具备着快速扫描、简单易用以及优于传统AFM的空间分辨率等优点。 Citation: Thanh Phan, Hans Van Gorp, Zhi Li et al., Graphite and graphene fairy circles: a bottom-up approach for the formation of nanocorrals. ACS Nano 13, 5559 (2019). https://doi.org/10.1021/acsnano.9b00439 Note: The data shown here are reused under fair use from the original article, which can be accessed through the article link above.
  • 石墨烯测量与标准论坛暨CSTM石墨烯技术委员会成立仪式成功举办
    2021年10月24日,石墨烯测量与标准论坛暨CSTM石墨烯技术委员会成立仪式于北京石墨烯论坛2021期间在北京稻香湖景酒店成功举办。论坛由北京石墨烯研究院、中国计量科学研究院、深圳中国计量科学研究院技术创新研究院联合组织,60余位全国从事石墨烯标准、计量、检验检测、认证认可工作的专家、学者和领导出席,共同就国家质量技术基础(NQI)对石墨烯产业的支撑和石墨烯NQI技术问题进行了深入交流。北京石墨烯研究院副院长彭海琳致辞深圳中国计量科学研究院技术创新研究院副院长宋振飞致辞中国标准化研究院副院长邱月明致辞论坛先后由北京石墨烯研究院质检中心主任周新与中国计量院新材料计量研究室主任任玲玲主持;北京石墨烯研究院副院长彭海琳、深圳中国计量科学研究院技术创新研究院副院长宋振飞、中国标准化研究院副院长邱月明相继致辞,随后进入报告环节。中国计量院新材料计量研究室主任 任玲玲报告题目:《石墨烯材料计量标准合格评定与产业高质量发展》“计量、标准、合格评定”简称NQI,是未来世界经济可持续发展的三大支柱。任玲玲主任系统介绍了NQI的组成、基本概念以及在材料全生命周期中的着力点,分别从材料基础研究到生产过程、产品不同产业周期举例说明计量、标准对其质量控制和提升的重要性。并重点介绍了NQI在石墨烯领域的重要研究成果及效益;国家市场监管总局成立的两个石墨烯NQI中心的核心任务,及其对石墨烯基础研究、产业发展的带动作用。国家纳米科学中心研究员 谢黎明报告题目:《石墨烯标准化研究的现状与挑战》石墨烯具有优异的光学、电学、热线、力学等性能,在高频光电器件、特种光纤、电池、导热膜等领域应用前景广阔。而产业的发展离不开标准支撑,石墨烯的标准制订至关重要。谢黎明研究员在报告中介绍了国内外石墨烯标准研制现状及存在的技术挑战,他指出,国际上ISO、IEC、美国ASTM等机构都在研制石墨烯标准,其中IEC标准最为全面,覆盖术语、测试指南、结构检测、物性测量等,具有较大影响力;我国SAC-TC279标准化委员会也陆续发不了几项石墨烯标准,未形成良好的系统性,我国石墨烯标准研制存在立项少、研制力量不足等短板,同时还存在诸多挑战,如缺乏石墨烯晶畴无损快速检测方法、缺陷浓度定量检测方法等。因此,我国石墨烯标准研制还需要更紧密的产学研合作,应加强顶层设计,有计划的开展系统性石墨烯标准工作。中关村材料试验技术联盟秘书处主任 王蓬报告题目:《CSTM标准与评价体系建设》标准是世界“通用语言”,是经济活动和社会发展的技术支撑。近日,《国家标准化发展纲要》发布,提出优化标准供给结构,提升市场自主制定标准的比重;CSTM以此为基础,致力于以标准和质量评价推动材料产业的高质量发展。CSTM标准体系围绕材料属性、应用领域和通用技术三个维度建立矩阵式的组织架构,真正实现“一材多用一用多选”,“一技多用一用多技”;建设以市场为导向的,具有系统性、先进性、适用性、时效性、多元性、包容性和动态性中国材料试验标准体系。CSTM专业质量评价针对材料全产业链、全生命周期、全流程、全域数据流开展专业性评价,以评价认证为导引,发挥质量要素(标准、检验检测、认证认可等)间协调互动作用,助力材料产品质量提升,材料产业高质量发展。北京石墨烯研究院高级工程师 柳絮报告题目:《石墨烯科研实验室管理的理论研究与实践》开展科研实验室认可,规范科研活动过程,可以有效地保障科研成果的真实性和有效性,推进科研诚信制度建设,提升科研实验室的创新能力。目前北京石墨烯研究院依据相应准则,以“国家市场监管技术创新中心(石墨烯计量与标准技术中心)”和“国家新材料石墨烯产业计量测试中心”为基础,围绕石墨烯标准带制定与标准物质研制,石墨烯测量技术与表征方法研究,石墨烯薄膜、纤维和器件技术研究三个主要研究方向,组织开展石墨烯科研实验室认可工作。中国检验检疫科学研究院首席专家 席广成报告题目:《超细金属负载3D多孔石墨烯表面增加拉曼传感》由于其指纹级的高分辨率和快速、易携带等优点,无损、免标记的表面增强拉曼散射(SERS)技术已经成为了最重要的分析技术之一,被广泛应用于污染物检测、未知风险物筛查、生物组织成像、反应过程机制探查、材料结构表征等重要研究领域。对于SERS技术来说,其性能主要由基底材料决定的,目前研究最深入的SERS基底为贵金属金和银,但金使用成本较高,而银易氧化。石墨烯最近被证明是一种高灵敏的SERS基底材料,席广成团队将超细银颗粒与多孔石墨烯结合起来,利用多孔石墨烯的富集功能和银的表面等离子体共振效应,获得了极高灵敏度的SERS基底;并研制了高性能准金属表面增强拉曼散射传感器,建立了在线高通量表面增强拉曼光谱检测方法。北京石墨烯研究院质检中心主任 周新报告题目:《太赫兹技术在石墨烯表征测量领域的研究进展与展望》太赫兹波是指频率在0.1~10THz范围内的电磁波,该频段是宏观经典理论向微观量子理论的过渡。研究发现,石墨烯的能带结构与其独特性质使其与太赫兹领域有着天然的内在联系。来到北京石墨烯研究院质检中心后,分析化学专业出身的周新主任便开始探索太赫兹技术在石墨烯表征测量领域的应用。他表示,太赫兹提供了方便、快捷、无损的石墨烯电学、磁学参数的测量方法,适用于薄膜材料的批量快速测量;且随着太赫兹技术和CVD法制备石黑烯薄膜的研究进展,该检测技术的研究空间将进一步提升;太赫兹还会在石墨烯薄膜器件在线检测中大显身手。同时,太赫兹检测石墨烯的方法标准化工作亟待同行共同研究;未来会有更多商品化的太赫兹检测石墨烯仪器上市。国家石墨烯产品质量检验检测中心(江苏)高级工程师 刘峥报告题目:《石墨烯产品检测方法介绍》刘峥在报告中简单介绍了市场上常见的各类石墨烯原材料及产品,认为石墨烯产品将向着水净化产品、燃料电池、太阳能电池、芯片电子器件、传感器成像设备、生物医药治疗装置、航空航天材料等应用领域发展;系统介绍了石墨烯原材料和相关产品的检测方法,包括基本物性分析、形貌表征、元素分析、电学性能、热学性能、力学性能和光谱分析;最后探讨了当前石墨烯产品检测标准化工作和产品认证中存在的问题。CSTM/FC00/TC04石墨烯技术委员会成立报告介绍后,举行了CSTM/FC00/TC04石墨烯技术委员会成立仪式,任玲玲宣读相应批复文件。该技术委员会由北京石墨烯研究院发起筹建并承担秘书处单位,北京石墨烯研究院质检中心主任周新被选为主任委员。石墨烯NQI技术中心主任对话会随即,举办国家石墨烯NQI技术中心主任对话会。对话会由国家市场监管总局发展研究中心副主任姚雷主持,邀请了国家市场监管技术创新中心(石墨烯计量与标准技术)、国家石墨烯材料产业计量测试中心(北京)、国家石墨烯材料产业计量测试中心(深圳)、国家石墨烯产品质量检验检测中心(江苏)、国家石墨烯产品质量检验检测中心(广东)、国家石墨烯产品质量检验检测中心(山东)和常州第六元素材料科技股份有限公司等7家单位参加,刘忠范院士作为国家市场监管技术创新中心(石墨烯计量与标准技术)主任全程参与了对话。对话会围绕“发挥NQI作用支撑石墨烯产业规范健康发展”主题进行了探讨,重点围绕石墨烯产业发展现状对NQI的需求,以及NQI支撑石墨烯产业发展存在的问题和解决的思路展开了讨论,对话嘉宾就进一步开展技术和业务协同的必要性和重要性产生了共鸣,通过对话,坚定了石墨烯NQI技术发展的信心,并对持续开展合作与交流达成了共识。论坛现场
  • 国际石墨烯创新大会在即 我国将参与国际石墨烯标准制定
    据悉,由青岛国家高新技术产业开发区和中国石墨烯产业技术创新战略联盟共同举办,青岛国际石墨烯创新中心承办的“2016中国国际石墨烯创新大会”将于9月22日在青岛国际会展中心召开。本次展会将围绕石墨烯新能源、环保、润滑剂等领域集中开展,同时我国石墨烯标准委员会将参与国际石墨烯的标准制定,成为展会一大亮点。  吸引30多个国家和地区企业  为期3天的活动中,来自30多个国家和地区的600家公司、2000多位石墨烯行业人士,将通过40多场分会对石墨烯的基础研究、应用技术及产业化推广展开交流和探讨。大会还将同期举办“2016中国国际先进碳材料应用博览会”,吸引了国内外优秀的石墨烯原材料供应商、制备及检测设备供应商及下游应用领头企业前来参展。  9月22日上午,在青岛国际会展中心5号馆5307会议室,还将举办石墨烯大会青岛专场活动。活动涵盖中国石墨烯产业技术创新战略联盟理事单位授牌、石墨烯创新项目落户签约仪式等,突出展示青岛地区间石墨烯产业发展创新合作成果,推动青岛国际石墨烯创新中心建设成为“技术领先、科研集中、产业集聚、辐射全球”的高水平石墨烯技术研发和产业应用平台。  石墨烯标准制定成亮点  在青举办的2015中国国际石墨烯创新大会上,石墨烯发现者、2010年诺奖得主安德烈海姆教授应邀出席做了主题演讲,并受聘为 “青岛市经济顾问”和“青岛高新区石墨烯工程技术研究中心名誉主任”。本届大会上,安德烈海姆教授将继续参会并带来更精彩的主题报告,参会代表将现场聆听顶级学者对石墨烯产业未来发展的独到见解。  本届大会上,中国石墨烯产业技术创新战略联盟标准化委员会参与国际石墨烯标准制定是一大亮点。大会期间,中外将联合举办国际石墨烯标准化论坛,标志着中国在联合制定国际石墨烯标准方面迈出关键一步。欧盟石墨烯旗舰计划负责人将与中方共同布局全球石墨烯知识产权合作,讨论合作开展知识产权保护、交易等促进企业技术发展的平台建设工作。  石墨烯:“新材料之王”  据从事多年石墨烯研究的青岛华高墨烯有限公司总经理钟成介绍,石墨烯其实是一种新型的纳米材料,本来就存在于自然界。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯,但难以剥离出单层结构。 2004年,英国曼彻斯特大学物理学家安德烈盖姆和康斯坦丁诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010 年诺贝尔物理学奖。  作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”。
  • 划出石墨烯的“及格线”,我国独立完成石墨烯重要国际标准发布
    日前,由中科院山西煤炭化学研究所(简称山西煤化所)独立提出并完成、历时4年修改完善的燃烧法测量石墨烯基材料灰分含量国际标准,经中国、加拿大、韩国、德国等多国科学家审核后正式发布。  该方法完善了石墨烯基材料测试标准体系,显著提高了石墨烯基材料灰分测试效率和分析结果的准确性,得到国内外科学家和产、学、研、检、用单位的高度认可。它是山西煤化所709课题组主持的第二项石墨烯领域国际标准。  合格石墨烯有了新标准  “我们提供了石墨烯材料生产全流程的灰分含量质量监控方法,解决了行业上下游的痛点。”山西煤化所709课题组长陈成猛、成员黄显虹介绍了该标准出台的幕后故事。  近年来,石墨烯材料的应用场景逐渐增多,但杂质过多影响石墨烯产品品质乃至石墨烯复合材料性能,因此必须将材料灰分含量严格限制在一定范围内。石墨烯材料的灰分测量并无经验可借鉴,很多生产、使用石墨烯的企业对于灰分指标“束手无策”。这对全行业来说都是一项空白。  “经过数年研究,我们认为杂质含量需要控制在0.1%以内。高于这个标准线的石墨烯产品便不合格,会影响下游石墨烯复合材料的制备和应用。”黄显虹表示,“目前,石墨烯行业实际上缺少很多关键性的控制和测试标准,灰分含量只是其中很小一部分,其测试方法标准化也仅仅开了个头。”  2017年,709课题组向国际电工委员会提出了“石墨烯基材料-灰分含量:燃烧法”国际标准提案,向全世界行业专家征求意见,最终在2021年7月正式立项。该标准提案由黄显虹和陈成猛担任项目组组长。项目组利用4年时间打磨出一套低成本、高效率灰分测量解决方案。2022年11月4日,国际标准IEC/TS 62607-6-22(纳米制造-关键控制特性-第6-22部分:石墨烯基材料-灰分含量:燃烧法)正式发布。  “我们每年向国际电工委员会纳米电工产品与系统技术委员会成员国科学家汇报两次进展。由于前期工作基础夯实,该标准提案自立项起一年半时间就正式发布,通过速度比大部分国际标准快很多。”黄显虹介绍。  陈成猛表示,石墨烯领域国际标准的出台,将给各个国家出台自己的标准提供一个重要参照,最终很有可能被采纳为国家标准、行业标准。这对于加快壮大新生的石墨烯产业非常重要。  实非不愿,而是不会  从天然石墨到石墨烯材料的过程,就是通过各种手段将石墨薄片的厚度减小为几个石墨烯片层的过程。此时,材料的很多重要性质发生了改变。同时,很多产品受到生产过程中所用化学品的污染。这种“污染”与石墨烯的生产工艺密不可分。  “无论是企业还是研究机构,无法测量石墨烯中的灰分实非不愿,而是缺少方法指导正确测试。石墨烯基材料存在的低密度、强静电、热膨胀效应让测量难以进行。”黄显虹表示。  科学家在石墨烯片层之间引入的官能团刻蚀、破坏了片层的表面和边缘,扩大了片层之间的距离,而且这些片层的表面和层中间夹杂了很多阴阳离子杂质。利用热还原法制备石墨烯材料产生热膨胀效应,这是测量氧化石墨和氧化石墨烯灰分的最大难点。再加上石墨烯材料(还原氧化石墨烯)本身存在强静电且堆积密度极低,四处飞溅,严重影响测量准确性。  科研机构常使用离子体质谱分析仪测试材料中的杂质,但价格昂贵、分析流程长,另外取样代表性不足。因此,709课题组推荐使用更常见且价格更低廉的马弗炉,并开发了一种可靠的检测方法,可以承载更大质量的样本。燃烧法测量石墨烯基材料灰分含量具备了在全行业推广的条件。  控制石墨烯“炸裂”  为了掌控每一步生产过程,石墨烯各类中间品和最终产品都有必要随时监控杂质含量。“剥离”石墨烯片层的过程更像是“炸裂”的过程。  709课题组基于对石墨烯制备技术的深刻理解和对马弗炉热膨胀现象的观测,针对取样、容器选择、称重方法和升温程序等环节,测试了上百次,提出了一系列解决方案。  “关键就在一瞬间。我们最终把热膨胀效应变为‘延迟播放’,避开了氧化石墨烯‘炸裂’,使整个过程准确可控。”2019年夏天,黄显虹重复观察、捕捉不同氧含量的氧化石墨材料发生热膨胀效应的瞬间景象,实验总时长达到5000小时。  “经过4年打磨,我们逐渐完善了一整套检测办法。在国际标准项目立项之前独自探索,在测试方法初具雏形后,我们向10家国内产学研机构发出比对试验邀请,得到了理想的数据。灰分测量的解决方案诞生了。”黄显虹介绍道。  2020年,课题组完成了含氧官能团定量表征及Boehm滴定方法国际标准制定,2022年完成了燃烧法测量石墨烯基材料灰分含量的相关国际标准。陈成猛表示,这项国际标准完善了石墨烯基材料测试标准体系,使产学研机构有了测试分析工具,为规范和促进石墨烯行业健康有序发展提供了技术支撑。与此同时,石墨烯领域研究还需要厘清分歧、达成共识,国家标准制定工作任重道远。
  • 石墨烯前沿最新综述精选(内附石墨烯网络研讨会参会福利)
    石墨烯具备超强导热性与导电性、以及轻质高强、柔性、透明等无比伦比的特性,被誉为“新材料之王”,应用前景十分广阔。自2004 年问世以来,关于石墨烯的研究热度持续不减,新兴研究领域不断被开拓。本文对近期石墨烯领域的部分综述进行盘点汇总,以此总结该领域最新前沿科研成果,以飨读者。(鉴于篇幅的原因不能面面俱到,如有遗漏,欢迎大家留言补充。)宁波材料所在石墨烯复合硅碳负极材料及其高能量密度锂离子电池方面取得进展动力电池、消费类电池等终端产品对高能量密度锂离子电池需求越来越强。目前,产业界主要采取硅碳复合路线来提升硅基负极应用水平,但高比容量的硅碳负极材料嵌/脱锂过程体积膨胀巨大,循环过程中活性材料会发生结构失效导致电接触变差,表面固体电解质膜反复破裂/再生导致电解液快速消耗,锂离子电池可逆容量迅速衰减。针对硅碳负极材料的体积膨胀问题,中国科学院宁波材料技术与工程研究所刘兆平研究团队从源头出发,创新性地构筑了高机械稳定的自机械抑制石墨烯复合硅碳负极材料。刘兆平团队将氧化亚硅和石墨烯浆料在液相体系混合均匀,其中沥青作为添加剂,通过喷雾干燥、高温热处理和化学气相沉积等一系列工艺,制备类球形的石墨烯/沥青裂解碳封装硅氧化物复合负极材料(SiOx/Graphene/C,简称SGC),SGC复合负极材料可维持石墨烯宏观结构的完整性和机械稳定性。自机械抑制石墨烯复合硅碳负极材料制备研究表明,SGC复合负极材料可抑制SiOx摄锂量,降低体积膨胀,提升循环稳定性。该高性能石墨烯复合硅碳负极材料已成功实现产业化,研制出能量密度达350-400Wh/kg的系列新型高能量密度锂离子电池。俄罗斯借石墨烯涂层开发出新材料:用“微电厂”取代电池技术俄罗斯国立研究型技术大学与俄罗斯科学院微电子技术问题研究所科研人员,通过沉积石墨烯涂层技术开发出一种独特的硅纳米复合材料,这一研发成果将加速直接放置在电子产品印刷电路板上的“微电厂”技术的发展。俄罗斯国立研究型技术大学半导体与电介质材料科学系副教授叶卡捷琳娜戈斯捷娃解释说:“我们提出了独一无二的方法,在硅结构整个深度的孔道内壁上沉积多层石墨烯涂层。目前没有其他方法可以生产用于高效微燃料电池的电极。这种电源不仅可以为设备提供长期备用电源,而且可能会随着时间的推移取代电池。”郑大《ACS Nano》:MXene/石墨烯气凝胶实现超强电磁波吸收!郑州大学申长雨院士和刘春太教授课题组通过定向冷冻法和肼蒸汽还原法制备得到一种新型的含有磁性Ni纳米链锚定的三维MXene/石墨烯复合气凝胶(命名为NiMR-H)。特殊的取向结构和介电/磁性组分的异质界面有利于获得优异的吸波性能,具有良好的阻抗匹配、多重极化和电/磁耦合效应。NiMR-H气凝胶制备示意图及结构形貌表征图中国科大实现二维石墨烯室温铁磁性中国科学技术大学国家同步辐射实验室教授闫文盛研究组与副研究员孙治湖合作,通过磁性金属原子精确可控掺杂策略,实现二维石墨烯的室温铁磁性。该研究组利用两步浸渍—热解的方法,在氮原子辅助下,将钴原子掺杂在石墨烯晶格中,样品在室温下饱和磁化强度为0.11emu/g,居里温度达到400K。通过同步辐射软、硬X射线谱学技术和多种X射线谱学解析方法,研究人员证实样品中的钴是以平面四边形四氮化钴结构单元原子级分散于石墨烯晶格中的,排除了磁性起源于钴相关第二相的可能,四氮化钴结构单元是室温铁磁性的主要来源。精确可控的钴原子掺杂激活石墨烯室温铁磁性曹原一周连发两篇《Nature》:魔角石墨烯再次突破021年4月1日,来自美国麻省理工学院的曹原(通讯兼第一作者)&Pablo Jarillo-Herrero等研究者,通过进行热力学和输运测量,研究了魔角扭曲双层石墨烯(MATBG)的对称性破缺多体基态和非平凡拓扑现象。同时,也使魔角石墨烯的理论和实验都更趋近于一个统一的框架,为我们开发新型的量子材料,带来了更多可能。4月7日,曹原再发《Nature》,本文是关于魔角石墨烯中的Pomeranchuk效应的熵证据。当前相关态的杂化特性和能量尺度的大分离对于双层扭曲石墨烯中相关态的热力学和输运性质具有重要意义。山西大学:利用OAT法实现超高垂直石墨烯薄膜生长山西大学激光光谱研究所陈旭远教授团队在三维竖直石墨烯制备及储能应用领域取得突破性进展,研究成果近日发表在《ACS Appl. Mater. Interfaces》上。该团队开发了一种氧辅助“修正”(OAT)工艺以消除过密的石墨烯片层,阻止片层随时间增长而聚集,克服了生长过程中竖直石墨烯厚度饱和的现象。未聚合的竖直石墨烯陈旭远团队利用这种方法合成了高达80微米的超高竖直石墨烯,并应用于超级电容器中,获得了241.35mF cm–2的面积比电容,展现出了优越的电化学性能及储能能力。值得注意的是,80微米的高度并非该合成技术所能达到的最大值,通过氧辅助“修正”工艺可以获得任意高度的竖直石墨烯。这项工作对于高负载竖直石墨烯的合成具有重要的指导意义。与IC兼容的制造工艺和出色的储能能力使得OAT竖直石墨烯在集成芯片、器件领域中具有非常大的应用潜力。 《ACS Macro Letter》3D打印明胶氧化石墨烯墨水实现自发成肌分化釜山国立大学Dong-Wook Han与韩国亚洲大学Ki Dong Park教授团队在高分子领域顶刊《ACS Macro Letters》上发表了其最新研究成果,由富含酚的明胶(GHPA)和氧化石墨烯(GO)组成的3D可打印生物墨水,是诱导肌发生的材料的组成部分,可通过双重酶介导的交联反应原位形成水凝胶网络。原位可固化的GO/GHPA水凝胶可以成功地用作3D可打印的生物墨水,以提供合适的细胞微环境,并促进C2C12骨骼肌成肌细胞的成肌分化。总体而言,研究团队建议功能性生物墨水可能在肌肉组织工程和再生医学中有用。GO/GHPA水凝胶基质的3D生物打印和理化特性“石墨烯检测技术及应用进展”主题网络研讨会随着业界对石墨烯的高度关注,我国石墨烯研发和产业化得到了快速发展,但其产业化仍然面临诸多挑战和问题。石墨烯的“杀手锏”级应用仍在探索中,石墨烯标准、检测体系不完善,产品鱼龙混杂,市场亟需标准化。基于此,仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程报告主题报告人单位绝缘衬底表面石墨烯晶圆生长研究进展王浩敏中国科学院上海微系统与信息技术研究所待定刘峥国家石墨烯产品质量监督检验中心待定谭平恒中国科学院半导体研究所石墨烯导热增强复合材料与热界面材料林正得中国科学院宁波材料技术与工程研究所二维半导体及异质结的生长与光电性能调控肖少庆江南大学石墨烯等低维纳米材料的标准化动态和展望丁荣全国纳米技术标准化技术委员会低维纳米结构与性能工作组更多报告邀请中……报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/) 报名参会加入会议交流群,随时掌握会议动态
  • 石墨冰火两重天 非金属矿协会建议编制十三五石墨产业规划
    11月24-25日在重庆召开的第五届中国石墨产业发展研讨会暨2016年石墨专业委员会年会上,代表围绕石墨产业发展的热点、前沿问题进行探讨交流,从新的机遇和挑战中寻求新“希望”,谋求新发展。中国非金属矿工业协会专职副会长唐靖炎表示,要加强顶层设计,组织编制“十三五”中国石墨产业规划,统筹行业发展,提高发展的有效性和引导性。 据了解,我国石墨矿资源丰富,产量和消费量位居世界第一。目前,我国石墨产业正处于转型升级的关键时期,天然石墨及其材料广泛应用于航空航天、新能源、医学、信息技术、高端装备制造、节能环保、核工业、新材料等新兴产业,成为支撑未来高新技术发展的重要战略资源。随着锂离子电池,特别是动力电池等新能源行业的快速发展,以及石墨烯系列新材料的研发与进入产业化,石墨受到越来越多的各方关注。但同时随着全球经济的下滑,导致石墨在传统应用领域的需求不断减少,呈现出冰火两重天的状况。 作为我国石墨领域的高层次、高水平研讨会议,与会专家、代表围绕石墨生产技木、石墨新材料尤其是石墨烯的发展、新能源及环保领域炭石墨材料的进展等问题进行交流互动。 中国非金属矿工业协会专职副会长唐靖炎表示,石墨是我国重要的战略性资源,素有“黑金子”之称。当前,我国石墨产业正面临热与冷下的机遇与挑战,一方面,石墨作为国防、军工等现代工业及新技术产业发展中不可或缺的战略资源,已成为国际国内、政府、金融和企业家关注的热点;一方面受传统产业的影响,石墨产业产能过剩,开工不足,价格下滑,经受着寒冬的考验。他建议石墨产业要转变展展方式,加快创新步伐,围绕发展高技术含量、高应用价值、高市场收益产品与产业目标,推动产业由原料加工向材料深加工、产品低端生产向中高端制造、高耗加工向绿色加工转型升级。要加强顶层设计,组织编制“十三五”中国石墨产业规划,统筹行业发展,提高发展的有效性和引导性。
  • 单层石墨烯一维褶皱到扭转角可控的多层石墨烯的转变机理研究获进展
    近年来,转角石墨烯受到国内的关注。转角石墨烯所具有的大周期莫尔晶格(Moiré pattern)及其所带来的能带折叠效应可以诱导出丰富、新奇的电子结构。尤其是在一些特殊的小角度上,电子结构中所出现的平带会衍生出较多不寻常的现象,如超导、强关联、自发铁磁性等。       目前,多数研究采用机械剥离和逐层转移的物理方法对转角石墨烯样品进行制备,而该方法存在条件苛刻、产出率低、界面污染等问题。为发展更加高效的制备技术,科学家通过对化学气相沉积法中衬底的设计,陆续突破了几种类型的转角石墨烯的规模化制备难题。然而,关于多层石墨烯的转角周期的可控制备方面,尚无比较普适的解决办法。       近日,中国科学院深圳先进技术研究院、上海科技大学、中国科学院上海微系统与信息技术研究所、中国人民大学和德国慕尼黑工业大学,寻找到一种石墨烯的折纸方法,可实现高层间周期的转角石墨烯的可控制备。研究发现,铂金表面生长的石墨烯会形成一定的褶皱,褶皱长大后向两旁倒下,并在一些位置撕裂形成一个四重的螺旋位错中心。褶皱倒下时会折叠其一侧的石墨烯,带来与褶皱的“手性”角(也就是褶皱的方向与石墨烯晶向的夹角)具有两倍关系的单层转角。科学家称之为“一维手性到二维转角的转化关系”,并利用折纸模型对该现象进行了形象的演示。该研究进一步探讨了所形成的螺旋位错再生长带来的新奇现象,并发现各层石墨烯会随着再生长形成具有周期性的四层转角结构,其中第1、3层与原始石墨烯的晶向相同,而2、4层的晶向由褶皱手性角所决定。因此研究提出了一种新的周期转角多层石墨烯的制备方法,即通过控制石墨烯褶皱形成的方向,制备具有特殊层间转角周期的多层石墨烯。该方法可用于多种可以形成褶皱的其他二维材料。      相关研究成果以《通过石墨烯螺旋的一维到二维的生长将手性转化为转角》(Conversion of Chirality to Twisting via 1D-to-2D Growth of Graphene Spirals)为题,发表在《自然-材料》(Nature Materials)上。研究工作得到国家自然科学基金、中国科学院和国家重点研发计划等的支持。图1. 石墨烯折纸现象的记录与演示。(a-d)原位ESEM实验所记录的褶皱形成、倒下和再生长的过程;(e-h)相应过程的示意图;(i-l)利用折纸模型演示褶皱的形成、倒下和再生长。图2. 螺旋位错附近的再生长过程。(a-d)原位SEM实验所记录的多个反向螺旋位错附近的再生长过程;(e-h)动力学蒙特卡洛对该过程的模拟演示;(i)原子尺度分辨率STM所表征的石墨烯褶皱“手性”角;(j-l)利用折纸模型演示褶皱倒下时形成的螺旋位错及下层石墨烯出现的转角;(m-t)螺旋位错再生长所带来的四层周期转角结构示意图。图3. 石墨烯螺旋的再生长和合并。(a-f)原位ESEM实验所记录的褶皱出现到最终生长成多层转角石墨烯的全过程;(g)TEM表征下的多层转角石墨烯;(h)原子分辨率的多层转角石墨烯表征图;(i-k)动力学蒙特卡洛对该过程的模拟。      图4. 多层螺旋石墨烯和多层堆垛石墨输运性质的区别。(a)原子力显微镜观察到的螺旋位错中心;(b-d)输运性质检测时的实验设置;(e-g)多层螺旋石墨烯和多层堆垛石墨的电阻和磁阻随温度变化的关系。
  • 石墨烯高端产业应用“石墨烯表面波探测技术”全球首发
    12月6日,中国最早从事石墨烯技术研发的企业北京碳世纪科技有限公司召开技术发布会,发布全球首个石墨烯高端产业应用——“石墨烯表面波探测技术”。这一技术的问世将掀起全球探测技术革命。  石墨烯是一种碳原子以sp² 杂化轨道组成的六角形呈蜂窝巢晶格状,只有一个碳原子厚度的二维材料,被称作是“新材料之王”。  石墨烯表面波探测技术是指石墨烯表面形成的波在探测技术方面的应用。这一技术的优势在于具有超高的灵敏度和超快的响应速度,无论是科学还是技术领域均在世界上处于领先水平,将发挥出巨大商业与社会价值,引领全球探测技术革命。  该技术可以替代基于传统SPR技术的探测系统,远高于SPR的响应速度和灵敏度,为科学研究提供更加准确、快捷的数据信息,能够极大地提高探测技术在科技、医疗、安防等行业中的应用效果,甚至帮助特殊人群完成“不可能完成的任务”。碳世纪CTO徐亭博士做石墨烯表面波探测技术演示  石墨烯表面波探测技术的具体应用包含气态应用、液态应用和固态应用。  在气态应用方面,可提供超快、高灵湿度探测与气体特异性检测。可应用到非接触、无声人机交互系统 非接触、无声安防系统 聋哑人“说话”系统 重症监护系统(呼吸监测) 毒气、易爆气体监测 即时、无痛疾病诊断 工业用气体监测系统等。 例如聋哑人“说话”系统,这一技术可以探测到聋哑人口腔湿度细微的变化,将湿度频率数据转换成语言信息,借助音响设备发声,帮助聋哑人用常人的声音表达自己。在非接触、无声安防系统的应用上,可以针对每一个人不同的气场信息订制安防方案,提高人身、财产安全保障。  在液态应用方面,可提供超快、高灵敏分子探测和单细胞检测,应用到蛋白质工程、制药工程、癌症预防、血液检测、疫苗研发、抗癌药物筛选、抗癌药物机理研究等。运用这一技术,可以即时探测到癌症细胞的一举一动,为医生提供准确、快捷的病理信息,提高对患者用药量的准确度,达到更有效的治疗效果。  在固态应用方面,可提供超快的二维材料厚度测量和二维材料品质鉴定,应用到石墨烯测量与鉴定、其他二维材料测量与鉴定和单分子层、膜材料测量与鉴定。碳世纪董事长闫立群与碳世纪科学家本色出演话剧《烯芯有声》,以话剧形式分享石墨烯表面波探测技术  发布会上,业界人士对石墨烯表面波探测技术给予了很高的评价。“这在石墨烯领域是非常高端的技术,同时给探测技术带来的是颠覆性的变革,”一参会嘉宾表示。  碳世纪董事长闫立群表示,科学指发现与突破,技术是要转为生产力,改变人们的生活。碳世纪始终坚持并践行的一份梦想就是运用石墨烯把科学发现转化为生产力,真正的实现“科学与技术让人们的生活更美好”。碳世纪董事长闫立群在发布会上讲解公司石墨烯技术与应用  碳世纪作为一家专精于石墨烯工业化生产和石墨烯下游应用技术及产品研发与产业实践的高新技术企业,具备极强的创新性与创新精神。目前已建成全球首条石墨烯(单层碳原子)吨级生产线,成功研制了石墨烯光致电推动技术、石墨烯发动机油节能改进剂、超级电容器用石墨烯改性活性炭、石墨烯改性塑料、石墨烯空气净化系列产品和技术等。
  • 新型石墨烯材料问世
    近日,中科院等离子体所低温等离子体应用研究室研究员王祥科和中科院化学所研究员胡文平合作,成功制备出分散性均匀的功能化石墨烯材料,并对该材料进行磺酸化处理,实现了对持久性有机污染物的有效去除。相关研究论文日前在材料领域的顶级期刊《先进材料》发表。  石墨烯材料具有独特的物理化学性质,近年来引起国际上的广泛关注。石墨烯与有机污染物之间可以产生非常强的络合反应,从而对有机污染物有很强的吸附能力。但在溶液中,石墨烯易于团聚,从而会降低自身的吸附能力。  王祥科、胡文平等通过大量的实验研究表明,在石墨烯表面进行磺酸基功能化处理,不但可以提高石墨烯的分散性,而且可以提高石墨烯的吸附能力。研究结果显示,这种功能化石墨烯对萘和萘酚的吸附能力达到了每克2.4毫摩尔,是目前吸附能力最高的材料。目前,该种材料的制备成本较高,但随着技术的发展,将有望实现低成本、规模化制备,因此在未来的环境污染治理中有非常重要的应用前景。  王祥科介绍说,研究发现,对石墨烯进行氧化处理,在其表面修饰含氧功能基团后,氧化石墨烯对金属离子也具有很好的吸附效果。此外,课题组在等离子体技术制备石墨烯纳米材料研究中,利用等离子体技术可以直接在石墨表面剥离制备石墨烯,不需要化学试剂,简化了制备过程,并且该过程是环境友好的。  据介绍,常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
  • Agilent用石墨密封垫,短型,100%石墨促销
    产品名称:Agilent用石墨密封垫,短型,100%石墨,用于FID检测器和进样口端 (货号:GGEQ-690505) 型号规格:密封垫内径 0.5mm,适用色谱柱内径 0.1mm-0.32mm,10个/包 品牌:CNW 产品价格:310元促销价格:232.5元促销时间:2011年3月7日至2011年3月20日 更多产品促销请进安谱公司网站 www.anpel.com.cn
  • 太赫兹在石墨烯领域的潜力 2项技术入选2020年度石墨烯十大新闻
    近日,2020年度石墨烯十大新闻出炉,其中2项技术与太赫兹技术有关:石墨烯放大器电路可释放“太赫兹间隙”图 拉夫堡大学研究人员创造了一种独特的基于石墨烯的装置,该设备可以释放太赫兹波长,并使革命性的新技术成为可能。(图片来源:拉夫堡大学)麻省理工学院研究人员使用石墨烯和氮化硼将太赫兹波转换为可用能量麻省理工学院的研究人员开发了一种基于石墨烯的器件,可能能够将周围的太赫兹波转换为直流电。(图片来源:麻省理工学院)
  • 综述 | 石墨烯导热研究进展
    摘要:石墨烯具有目前已知材料中最高的热导率,在电子器件、信息技术、国防军工等领域具有良好的应用前景。石墨烯导热的理论和实验研究具有重要意义,在最近十年间取得了长足的发展。本文综述了石墨烯本征热导率的研究进展及应用现状。首先介绍应用于石墨烯热导率测量的微纳尺度传热技术,包括拉曼光谱法、悬空热桥法和时域热反射法。然后展示了石墨烯热导率的理论研究成果,并总结了石墨烯本征热导率的影响因素。随后介绍石墨烯在导热材料中的应用,包括高导热石墨烯膜、石墨烯纤维及石墨烯在热界面材料中的应用。最后对石墨烯导热研究的成果进行总结,提出目前石墨烯热传导研究中存在的机遇与挑战,并展望未来可能的发展方向。关键词:石墨烯;热导率;声子;热界面材料;悬空热桥法;尺寸效应1 引言石墨烯是具有单原子层厚度的二维材料,因为其独特的电学、光学、力学、热学性能而备受关注。相对于电学性质的研究,石墨烯的热学性质研究起步较晚。2008年,Balandin课题组用拉曼光谱法第一次测量了单层石墨烯的热导率,观察发现石墨烯热导率最高可达5300 W∙m−1∙K−1,高于石墨块体和金刚石,是已知材料中热导率的最高值,吸引了研究者的广泛关注。随着理论研究的深入和测量技术的进步,研究发现单层石墨烯具有高于石墨块体的热导率与其特殊的声子散射机制有关,成为验证和发展声子导热理论的重要研究对象。对石墨烯热导率的研究很快对石墨烯在导热领域的应用有所启发。随着石墨烯大规模制备技术的发展,基于氧化石墨烯方法制备的高导热石墨烯膜热导率可达~2000 W∙m−1∙K−1。高导热石墨烯膜的热导率与工业应用的高质量石墨化聚酰亚胺膜相当,且具有更低成本和更好的厚度可控性。另一方面,石墨烯作为二维导热填料,易于在高分子基体中构建三维导热网络,在热界面材料中具有良好应用前景。通过提高石墨烯在高分子基体中的分散性、构建三维石墨烯导热网络等方法,石墨烯填充的热界面复合材料热导率比聚合物产生数倍提高,并且填料比低于传统导热填料。石墨烯无论作为自支撑导热膜,还是作为热界面材料的导热填料,都将在下一代电子元件散热应用中发挥重要价值。本文综述了石墨烯热导率的测量方法、石墨烯热导率的研究结果以及石墨烯导热的应用。首先介绍石墨烯的三种测量方法:拉曼光谱法、悬空热桥法和时域热反射法。然后介绍石墨烯热导率的测量结果,包括其热导率的尺寸依赖、厚度依赖以及通过缺陷、晶粒大小等热导率调控方法。随后介绍石墨烯导热的应用,主要包括高导热石墨烯膜、石墨烯纤维及石墨烯导热填料在热界面材料中的应用。最后对石墨烯导热研究的发展进行展望。2 石墨烯热导率的测量方法由于石墨烯的厚度为纳米尺度,商用的测量设备(激光闪光法、平板热源法等)无法准确测量其热导率,需要采用微纳尺度热测量方法。常见的微纳尺度传热测量技术包括拉曼光谱法、悬空热桥法、3𝜔法、时域热反射法等几种。下面将重点介绍适用于石墨烯的热导率测量方法。2.1 拉曼光谱法单层石墨烯热导率是研究者最感兴趣的话题。2008年,Balandin课题组最早用拉曼光谱法测量了单层石墨烯的热导率。单层石墨烯由高定向热解石墨(HOPG)经过机械剥离法得到,悬空于刻有沟槽的SiNx/SiO2基底上,悬空长度为3 μm。测量时,选用拉曼光谱仪中波长为488 nm的激光同时作为热源和探测器,光斑大小为0.5–1 μm。激光对石墨烯产生加热作用导致石墨烯温度升高,而石墨烯拉曼光谱的G峰和2D峰随温度产生线性偏移,从而可以得到石墨烯的升温。利用热量在平面内径向扩散的傅里叶传热方程,可以得到石墨烯的平面方向内热导率。通过这一方法,测得石墨烯热导率测量结果为(5300 ± 480) W∙m−1∙K−1,是已知材料中热导率的最高值。拉曼光谱法第一次实现了单层石墨烯热导率的测量,但是其测量过程中存在较大的误差,导致不同测量结果存在差异:材料热导率由傅里叶传热方程计算得到,其中材料的吸收热量Q和升温ΔT两个参数都难以准确测量。首先,测量过程中采用了石墨块体的光吸收6%作为吸热计算的依据,与单层石墨烯在550 nm的光吸收率2.3%存在较大差异,导致测量结果可能被高估一倍左右。其次,升温ΔT通过石墨烯拉曼光谱G峰和2D峰的红移或反斯托克斯/斯托克斯峰强比计算得到,两者随温度变化率较小,需要较高的升温(ΔT ~ 50 K),导致难以准确测量特定温度下的热导率。基于拉曼光谱法,研究者不断改进测量技术,降低实验误差。在早期测量中由于石墨烯下方的SiNx基底热导率较低,约为5 W∙m−1∙K−1,在传热模型中将SiNx视为热沉存在一定误差。后来,Cai等通过在带孔的SiNx/SiO2薄膜表面蒸镀Au的方式,提高了石墨烯的接触热导,满足了热沉的边界条件,同时用功率计实时测量了石墨烯的吸收功率。同时,由于石墨烯覆盖在SiNx/SiO2薄膜上有孔和无孔的区域,可以分别测量悬空石墨烯和支撑石墨烯的热导率。张兴课题组使用双波长闪光拉曼方法,引入两束脉冲激光,周期性地加热样品并改变加热光与探测光的时间差,这样做可以将加热光和探测光的拉曼信号分开,为准确测量样品温度提供了新思路。在后续的研究中,拉曼光谱法也被应用于h-BN、MoS2、WS2等二维材料热导率的测量。2.2 悬空热桥法悬空热桥法是利用微纳加工方法制备微器件并测量纳米材料一维热输运的常用方法,多用于纳米线、纳米带、纳米管热导率的测量。微器件由两个SiNx薄膜组成,每个SiNx薄膜连接在6个SiNx悬臂上,并且沉积有Pt电极用作温度计,两个薄膜分别作为加热器(Heater)和传感器(Sensor),样品悬空加载薄膜上,电极通电后加热样品,通过电极电阻的变化测量样品的升温,从而计算热导率。Seol等最早将这一方法应用在石墨烯热导率的测量中,石墨烯被制备成宽度为1.5–3.2 μm,长度为9.5–12.5 μm的条带,覆盖在厚度为300 nm的SiO2悬臂上,两端连接在四个Au/Cr电极上作为温度计,测量得到SiO2衬底上的单层石墨烯热导率为600W∙m−1∙K−1。SiO2衬底上石墨烯热导率低于悬空石墨烯热导率及石墨热导率,是因为ZA声子和衬底间存在较强的声子散射。悬空热桥法的挑战在于如何将石墨烯悬空于微器件上,避免转移过程中出现石墨烯脱落、破碎的问题 。Li 课题组通过聚甲基丙烯酸甲酯(PMMA)保护转移法首先实现了少层石墨烯热导率的测量:首先将机械剥离法得到的少层石墨烯转移到SiO2/Si衬底上,然后旋涂PMMA作为保护层,用KOH溶液刻蚀SiO2并将PMMA/石墨烯转移至悬空热桥微器件上,再利用PMMA作为电子束光刻的掩膜版,通过O2等离子体将石墨烯刻蚀成指定大小的矩形进行测量。Shi课题组利用异丙醇提高了石墨烯的转移效率,测量了悬空双层石墨烯的热导率。Xu等进一步改良了实验工艺,通过“先转移,后制备悬空器件”的方法实现了单层石墨烯热导率的测量:首先将化学气相沉积(CVD)生长的单层石墨烯转移到SiNx衬底上,再利用电子束光刻和O2等离子体将石墨烯刻蚀成长度和宽度已知的条带,然后沉积Cr/Au在石墨烯两端作为电极,最后用KOH溶液刻蚀使其悬空。这一方法的优势在于避免了PMMA造成污染,但是对操作和工艺都提出了很高的要求。悬空热桥法也被应用于h-BN、MoS2、黑磷等二维材料热导率的测量。基于悬空热桥法,李保文课题组进一步发展了电子束自加热法,利用电子束照射样品产生加热,消除通电加热体系中界面热阻造成的误差。2.3 时域热反射法时域热反射法(Time-domain thermoreflectance,TDTR)是一种以飞秒激光为基础的泵浦-探测(pump-probe)技术,由Cahill课题组于2004年基于瞬态热反射方法提出,常用来测量材料的热导率和界面热导。在时域热反射法测量中,一束脉冲飞秒激光被偏振分束镜分为泵浦光和探测光,泵浦光对待测材料进行加热,探测光测量材料表面温度的变化。泵浦光和探测光之间的光程差通过位移台精确控制,并在每一个不同光程差的位置进行采样,得到材料表面温度随时间变化的曲线,这一曲线与材料的热性质有关。通过Feldman多层传热模型进行拟合,得到材料的热导率。实际测量中 通 常 在 材 料 表 面 沉 积 一 层 金 属 作 为 传 热 层(transducer),利用金属反射率(R)随温度(T)的变化关系(dR/dT),通过探测金属反射率的变化检测材料表面温度变化。时域热反射方法的优点在于能够同时测量材料沿c轴和平面方向的热导率,并且能够得到不同平均自由程声子对于热导率的贡献。Zhang等利用这一方法同时测量了石墨烯沿ab平面和c轴方向的热导率,发现石墨烯沿c轴方向的声子平均自由程在常温下可达100–200 nm,远高于分子动力学预测的结果。测量不同厚度的石墨烯(d = 24–410nm)表现出c轴方向热导率随厚度增加而增加的现象,常温下的热导率为0.5–6 W∙m−1∙K−1,并且随着厚度增加而趋近于石墨块体的c轴热导率(8 W∙m−1∙K−1) 。这一现象反映出,在常温下石墨烯c轴方向热导率是由声子-声子散射主导,为探讨石墨烯的传热机理提供了实验支撑。时域热反射方法的局限在于难以测量厚度较小的样品,这是因为当热流在穿透样品后到达基底,需要将基底与样品之间的界面热阻、基底的热导率作为未知数在传热模型中进行拟合,造成误差较大。对于块体石墨,时域热反射方法测量平面方向热导率为1900 ± 100 W∙m−1∙K−1,与Klemens的预测结果一致。对于厚度为194 nm的薄层石墨,测量热导率为1930 ± 1400 W∙m−1∙K−1,误差明显增大。Feser等通过调控光斑尺寸改变传热模型对石墨平面方向传热的敏感度,利用beam offset方法测量了HOPG热导率。Rodin等将频域热反射(FDTR)与beamoffset的方法结合起来,同时准确测量了HOPG的纵向和横向热导率。Chen课题组发展了无传热层(transducer less)的二维材料热导率测量方法,这种方法既可以采取FDTR频域扫描的测量方式,也可以与beam-offset方法结合,提高对平面方向热导率测量的准确度。这些测量方法为薄层材料热导率测量提供了可能的技术路径,即通过对待测样品的物理结构设计(transducerless)和传热模型设计(调控光斑尺寸与测量频率),选择性地增加对平面方向热导率的敏感度,使得即便在样品很薄、热流穿透的情况下,多引入的未知数在传热模型内具有较小的敏感度,从而实现少层/单层石墨烯平面方向热导率的测量。时域热反射法也被应用于黑磷、MoS2、WSe2等二维材料热导率的测量。基于时域热反射方法发展出频域热反射(FDTR)、two-tint、时间分辨磁光克尔效应(TR-MOKE)等测量方法以提高测量准确度。以上主要总结了石墨烯热导率的常用微纳尺度测量技术,包括拉曼光谱法、悬空热桥法和时域热反射法,不同方法的主要测量结果汇总于表1。表 1 石墨烯热导率测量主要研究结果值得注意的是,部分悬空热桥法测量的热导率显著偏低,是由于PMMA污染抑制了石墨烯声子散射。当样品厚度在微米尺度时,可通过激光闪光法进行测量,这种方法常用于块体石墨和湿化学方法制备的石墨烯薄膜,对于经过热处理还原和石墨化的石墨烯薄膜,激光闪光法测量热导率在1100–1940 W∙m−1∙K−1,热导率的差别主要来自石墨烯薄膜的制备工艺。受限于篇幅,我们将四种测量方法的示意图及主要原理汇总于图1,关于微纳尺度热测量的详细总结可参考相应综述文章。图 1 常见热测量方法示意图3 石墨烯热导率的研究进展石墨烯的热传导主要由声子贡献。和金刚石类似,石墨烯在平面方向由强化学键C―C键构成,并且由于碳原子较轻,具有极高的声速,从而在平面方向具有和金刚石相当的热导率(~2000W∙m−1∙K−1) 。关于石墨烯热传导的主要声子贡献来源,学界的认知随着研究的更新而发生变化。最早,人们预期石墨烯传热主要由纵向声学支(LA)和横向声学支(TA)贡献,这两支声子的振动平面都是沿石墨的ab平面方向。这样的预期是合理的,因为另一支横向声学支(ZA)声子的振动平面垂直于ab平面,而石墨烯作为单原子层材料,垂直平面的振动困难。而且ZA声子的色散关系是~ω2,在q →0时声速迅速减小为0,因而对石墨烯热导率几乎不产生贡献。后来,Lindsay等7通过对玻尔兹曼方程进行数值求解发现,由于单层石墨烯的二维材料特性,三声子散射中与ZA声子关联的过程受到抑制,这一规则被称为“选择定则(Selection rule)”。基于这一原因,ZA声子散射的相空间减小了60%;同时,考虑到ZA声子的数量较多,ZA声子实际成为了单层石墨烯中热导贡献最大的一支,占比约为70%。随着计算方法的进步,研究者对石墨烯中声子传导的理解逐步加深。Ruan课题组在考虑四声子散射的条件下计算了单层石墨烯的热导率,由于ZA声子数量多,导致由ZA声子参与的四声子散射过程多,通过求解玻尔兹曼输运方程(BTE)发现,ZA声子对于单层石墨烯热导率的贡献实际约为30%。Cao等通过分子动力学计算发现,考虑高阶声子散射时ZA声子对石墨烯热导率的贡献将降低。另外,第一性原理计算表明石墨烯中存在水动力学热输运和第二声现象,以及实验测量和分子动力学计算中发现石墨烯存在的热整流现象,都使得石墨烯的声子输运研究不断更新。下面针对理想的单层石墨烯单晶材料讨论其热导率的依赖关系。3.1 石墨烯热导率的厚度依赖石墨烯作为单原子层材料,表现出不同于石墨块体的声子学特征。很自然地产生一个问题,随着石墨烯的原子层数增加,石墨烯会以何种形式、在何种厚度表现出接近石墨块体的热学性质。前文Lindsay等的工作从计算角度给出了解释,在多层石墨烯和石墨中,三声子散射与原子间力常数的关系不同于单层石墨烯,导致选择定则不再适用,ZA声子的散射变大,热导率下降。这一趋势可以从图2a中明显观察到,当石墨烯的厚度从单原子变为双原子层时,ZA声子贡献的热导率大幅下降,石墨烯整体热导率降低。随着原子层数目增加,热导率持续下降。对于原子层数在5层及以上的石墨烯,其热导率已十分接近石墨块体。这一趋势也与Ghosh等对悬空石墨烯热导率的测量结果一致,在原子层数超过4层之后,石墨烯热导率接近块体石墨(图2c)。而对于放置在基底上的支撑石墨烯和上下均有基底的夹层石墨烯(Encased),热导率随层数变化没有明显规律,这主要是因为ZA声子与基底相互作用,对热导率的贡献低于悬空石墨烯,而ZA声子与基底相互作用的强度随原子层数增加而变化,导致热导率随层数变化表现出不同规律(不变或增大) 。研究石墨烯本征热导率仍需对少层及单层石墨烯热导率进行测量,对样品制备和实验测量都具有很大挑战。图 2 石墨烯热导率的尺寸效应3.2 石墨烯热导率的横向尺寸依赖由傅里叶传热定律,材料热导率,其中Cv为材料体积比热容,v为声子群速度,l为声子平均自由程。对于给定的温度,热容与声速均为定值,因而材料热导率主要由声子平均自由程决定。通常情况下,块体材料在三个维度上的尺寸都远大于声子平均自由程,声子为扩散输运,声子平均自由程主要由声子-声子散射确定,是材料固有的性质,表现出热导率与横向尺寸无关。但是对于石墨烯而言,由于制备待测样品的长度在微米级,与平面内声子平均自由程相当,存在弹道输运现象,表现出石墨烯的热导率与横向尺寸存在依赖关系。石墨烯平面方向声子平均自由程可通过计算得到。Nika等通过第一性原理计算分别对LA和TA声子求得Gruneisen参数,得到石墨烯平面方向声子平均自由程在10 μm左右,即石墨烯尺寸小于10 μm时会表现出明显的热导率随尺寸增加而增加现象(图2b)。后续计算表明,在考虑三声子过程和声子-边界散射角度的情况下,石墨烯热导率在横向尺寸L小于30 μm时遵循log(L)增加的规律,在横向尺寸为30 μm左右时达到最大值,并随横向尺寸增加而下降。检验计算结果需要对不同尺寸的单层石墨烯进行热导率测量,这对实验操作的精细度提出了极高要求。Xu等利用悬空热桥法测量了不同长度(300–9 μm)的单层石墨烯热导率,观察到其热导率随长度增加而单调增加。测量结果与分子动力学预测的热导率随长度以log(L)趋势增加的结果相符,证明了石墨烯作为二维材料的热性质(图2d)。但是作者也没有排除另外两种可能:(1)低频声子随尺寸增加而被激发,对传热贡献较大;(2)石墨烯尺寸增加改变三声子散射的相空间,影响选择定则7。由于石墨烯作为二维材料的特性,以及声子平均自由程较大、热导率较高,仍然需要进一步的理论和实验探究以深入挖掘石墨烯热导率随横向尺寸变化的物理原因。在实际应用的单晶及多晶石墨烯材料中,热导率的影响因素还包括晶粒尺寸、缺陷、同位素、化学修饰等,相关研究及综述已有报道。4 石墨烯导热的应用上一节中介绍了石墨烯具有本征的高热导率,从理论计算和实验测量中均得到了验证。上述实验测量中,研究者往往采用机械剥离法和CVD法制备石墨烯,这两种方法制备的样品具有质量高、可控性强的特点,适用于研究石墨烯的本征性质。但是,由于机械剥离法和CVD法制备石墨烯具有产量低、制备周期长、难以规模化等特点,不适用于石墨烯的宏量制备。相对应地,通过还原氧化石墨烯、电化学剥离等湿化学方法可以大批量制备石墨烯片,石墨烯片通过片层间的化学键作用可形成石墨烯膜、石墨烯纤维、石墨烯宏观体等三维结构,从而可实际应用于导热场景。4.1 高导热石墨烯膜的应用石墨烯薄膜可用作电子元件中的散热器,散热器通常贴合在易发热的电子元件表面,将热源产生的热量均匀分散。散热器通常由高热导率的材料制成,常见散热器有铜片、铝片、石墨片等。其中热导率最高、散热效果最好的是由聚酰亚胺薄膜经石墨化工艺得到的人工石墨导热膜,平面方向热导率可达700~1950 W∙m−1∙K−1, 厚度为10~100 μm,具有良好的导热效果,在过去很长一段时间内都是导热膜的最理想选择。在此背景之下,研究高导热石墨烯膜有两个重要意义,其一,是由于人工石墨膜成本较高,且高质量聚酰亚胺薄膜制备困难,业界希望高导热石墨烯膜能够作为替代方案。其二,是由于电子产品散热需求不断增加,新的散热方案不仅要求导热膜具有较高的热导率,也要求导热膜具有一定厚度,以提高平面方向的导热通量。在人工石墨膜中,由于聚酰亚胺分子取向度的原因,石墨化聚酰亚胺导热膜只有在厚度较小时才具有较高的热导率。而石墨烯导热膜则易于做成厚度较大的导热膜(~100 μm),在新型电子器件热管理系统中具有良好的应用前景。因此,石墨烯导热膜的研究也主要沿着两个方向,其一,是提高石墨烯导热膜的面内方向热导率,以接近或超过人工石墨膜的水平。其二,是提高石墨烯导热膜的厚度,扩大导热通量,同时保持良好的热传导性能。以下将从这两方面分别讨论。4.1.1 提高石墨烯膜热导率的关键技术高导热石墨烯薄膜的常见制备方法是还原氧化石墨烯。首先通过Hummers法得到氧化石墨烯(GO,graphene oxide)分散液,然后通过自然干燥、真空抽滤、电喷雾等方法得到自支撑的氧化石墨烯薄膜,并通过化学还原、热处理等方法得到还原氧化石墨烯(rGO)薄膜,最后通过高温石墨化提高结晶度,得到高导热石墨烯薄膜。影响高导热石墨烯膜热导率最重要的因素是组装成膜的石墨烯片的热导率,主要由氧化石墨烯的还原工艺决定。由于氧化石墨烯分散液的制备通常在强酸条件下进行,破坏石墨烯的平面结构,同时引入了环氧官能团,造成声子散射增加。氧化石墨烯的还原工艺对还原产物的结构、性能影响较大,因而需要选择合适的还原工艺制备石墨烯导热膜。氧化石墨烯膜在1000 ℃热处理后可以除去环氧、羟基、羰基等环氧官能团,但是石墨烯晶格缺陷的修复仍需更高温度。Shen等通过自然蒸干的方式制备了氧化石墨烯薄膜,并通过2000 ℃热处理的方式对氧化石墨烯薄膜进行石墨化,C/O原子比由石墨烯薄膜的2.9提高到石墨化后的73.1,X射线衍射(XRD)图谱上石墨烯薄膜11.1°峰完全消失,26.5°的峰宽缩窄,对应石墨(002)方向上原子层间距为0.33 nm,测量热导率为1100 W∙m−1∙K−1,热导率优于由膨胀石墨制备的石墨导热片。Xin等用电喷雾方法制备大尺寸氧化石墨烯薄膜并在2200 ℃下高温还原,得到热导率为1283 W∙m−1∙K−1的石墨烯导热膜,通过SEM截面图观察发现具有紧密的片层排列结构,且具有较好的柔性。通过拉曼光谱、XPS和XRD表征可以看出,2200 ℃为氧化石墨烯还原的最适宜温度,当还原温度更高时,石墨烯的电导率和热导率提升不再显著(图3)。图 3 高导热石墨烯膜的制备与表征影响高导热石墨烯膜热导率的第二个因素是石墨烯的片层尺寸。前文Xu等的工作表明,单层石墨烯的导热声子平均自由程可达~10 μm量级,选择大尺寸的石墨烯片层有利于减少声子与材料边界的散射,提高热导率。Kumar等用片层大小超过80 μm的石墨片作为原材料,经Hummers法制备得到平均片层大小约30 μm的氧化石墨烯分散液,并通过真空抽滤得到氧化石墨烯薄膜,经过57%的HI处理还原后得到石墨烯膜,测量得到强度达到77 MPa,热导率超过1390 W∙m−1∙K−1。Peng等用平均片层尺寸108 μm的GO制备了氧化石墨烯薄膜,并通过3000 ℃热处理还原,得到热导率高达1940 W∙m−1∙K−1的石墨烯薄膜。除了通过还原氧化石墨烯薄膜,石墨烯膜还可通过石墨烯分散液的方法制备。Teng等利用球磨方法将石墨块体剥离成石墨烯片层,并得到浓度为2.6 mg∙mL−1的石墨烯的N-甲基吡咯烷酮(NMP)分散液。再通过抽滤、烘干、2850℃热处理得到石墨烯薄膜,测量热导率为1529 W∙m−1∙K−1。一般认为,由石墨烯分散液制备石墨烯薄膜的最大优势在于保留了石墨烯的平面结构,使得薄膜具有比较高的本征热导率。这一优势从理论上讲具有合理性,但是仔细分析便可发现并非绝对:由于制备石墨烯分散液往往需要施加强机械力(研磨、球磨等),石墨烯分散液中的片层尺寸通常较小(小于1 μm);而且由于缺少含氧官能团,石墨烯片层间的相互作用较弱,存在着优劣势相互抵消的可能性,所以在实际应用前仍需要经过石墨化过程。我们认为,这一方法的优势在于易规模化、生产效率高。由于不存在片层相互作用,石墨烯分散液抽滤成膜速度较快(~几小时),易于连续抽滤;对比氧化石墨烯抽滤成膜,通常需要几天方可得到几十微米厚度的薄膜。同时,由于制备石墨烯分散液可由机械研磨完成,易于实现规模化、标准化,因而具有良好的工业应用前景。4.1.2 提高石墨烯膜厚度的关键技术制备较厚的石墨烯导热膜也是研究者关心的课题。理论上讲,增加石墨烯膜的厚度只需刮涂较厚的氧化石墨烯薄膜即可。但实际操作中存在如下问题:(1)刮涂厚膜的成膜质量不高。由于氧化石墨烯分散液的浓度较低(低于10% (w)),除氧化石墨烯外其余部分均为水,需要长时间蒸发。氧化石墨烯片层与水分子以氢键相互作用,蒸发时水分子逸出,使得氧化石墨烯片层之间通过氢键形成交联,在表面形成一层“奶皮”状的薄膜。这层薄膜使氧化石墨烯分散液内部的水分蒸发减慢,且导致氧化石墨烯片层取向不一致,降低成膜质量。(2)难以通过一步法得到厚膜。由于氧化石墨烯分散液浓度较低,无论刮涂、旋涂还是喷雾等方法都无法一次制备厚度为~100 μm的氧化石墨烯薄膜。Luo等研究发现,氧化石墨烯薄膜在蒸干成形后仍然可以在去离子水浸润的情况下相互粘接,出现这种现象是因为氧化石墨烯片层在水的作用下通过氢键彼此连接,使得氧化石墨烯薄膜可以像纸一样进行粘贴起来。Zhang等利用类似的方法将制备好的氧化石墨烯薄膜在水中溶胀并逐层粘贴,经过干燥、热压、石墨化、冷压之后,得到厚度为200 μm的超厚石墨烯薄膜,热导率为1224 W∙m−1∙K−1,通过红外摄像机实测散热效果优于铜、铝及薄层石墨烯导热膜(图4)。目前制备百微米厚度高导热石墨烯薄膜的研究相对较少,除了溶胀粘接的方法之外,还可以通过电加热、金属离子键合等方法实现氧化石墨烯薄膜的搭接,有望为制备百微米厚度高导热石墨烯膜提供新思路。石墨烯导热膜的部分研究成果总结于表2中。图 4 百微米厚度石墨烯导热膜的制备、表征与热性能测试表 2 石墨烯导热膜主要研究成果4.2 高导热石墨烯纤维的应用高导热石墨烯纤维是一种新型碳质纤维,通过石墨烯分散液经过湿法纺丝的方法有序组装而成。其主要优势在于同时具备良好的力学、电学和热学性能,并且可以通过湿法纺丝的方法大量制备,易于实现规模化,与纺织工艺结合,可达到千米级的产量。石墨烯纤维与石墨烯薄膜的原材料相似,通常为氧化石墨烯分散液或官能化的石墨烯分散液,因而其热导率的主要影响因素也具有共同之处,石墨烯的片层大小和石墨烯片层间的界面强度有重要作用。值得注意的是,Xin等的研究发现,组装石墨烯纤维时使用两种不同片层大小的石墨烯分散液进行级配具有最好的物理性能。他们将大片层(横向尺寸~23 μm)与小片层(横向尺寸~0.8 μm)的石墨烯分散液混合纺丝,热处理后得到了热导率高达1290 W∙m−1∙K−1的石墨烯纤维,导热性能优于单一组分制备的石墨烯纤维。大片层石墨烯为长平均自由程声子提供了传热空间,小片层石墨烯在大片层石墨烯之间起到键合作用,提高了石墨烯片层之间的界面致密度,从而提升了石墨烯纤维热导率。4.3 石墨烯在热界面材料中的应用石墨烯作为高导热材料,可作为导热填料应用于热界面材料(Thermal interface material,TIM)中。热界面材料是应用于芯片封装中的一种材料,主要作用是填充芯片中的空气间隙,起到给芯片提供力学支撑、电磁屏蔽、辅助散热的作用。传统的热界面材料使用的是填充有陶瓷、金属、碳材料等作为导热填料的树脂基复合材料,利用高分子材料的力学性能提供保护,通过添加导热填料提高散热能力。由于树脂的热导率非常低(小于0.5 W∙m−1∙K−1),并且商用的导热填料热导率也较低(氧化铝热导率~35 W∙m−1∙K−1),整体热界面材料的热导率多为1–10 W∙m−1∙K−1之间。研究者尝试将高导热的石墨烯作为导热填料,提高热界面材料的导热能力。以下重点介绍石墨烯增强树脂基复合材料的热导率的主要影响因素。4.3.1 分散性石墨烯片层作为填料,在基体中的分散性对复合材料的导热性能有至关重要的影响。传统的热界面材料中,导热填料在基体中的分散性良好,填充比例可以高达90% (w),即便导热填料为球形结构,也可以形成完整的导热网络,而导热网络的形成对于复合材料导热性能的提升至关重要。石墨烯作为片层状材料,在树脂基体中必须相互搭接,方可形成有效导热网络。为了实现这一目标,要求石墨烯在树脂基体中具有良好的分散性。常见的制备方法包括基于氧化石墨烯分散液和石墨烯分散液两种工艺路径。对于氧化石墨烯分散液,由于氧化石墨烯中存在大量羟基、羧基等基团,与极性溶剂相溶性较好,可以制备较高浓度的分散液(~30 mg∙mL−1),提高在树脂基体中的填充量。这种方法的主要挑战在于需要对氧化石墨烯进行还原以提高热导率。对于石墨烯分散液,由于保留了石墨烯的平面结构而具有相对较高的高热导率,但是由于官能化程度较低,石墨烯与树脂基体界面为范德华力搭接,存在分散性不佳的问题。提高分散性的一种方法是对石墨烯进行化学键修饰,通过化学反应给石墨烯引入特定基团,使石墨烯与高分子基体形成化学键,提高分散性。Guo等利用NH2-POSS与水合肼与氧化石墨烯共同作用,在氧化石墨烯表面接枝氨基并进行还原,得到化学修饰的石墨烯。将此种化学修饰石墨烯与聚酰亚胺基体混合,得到热导率为1.05 W∙m−1∙K−1的复合材料,固含量为5% (w),比聚酰亚胺热导率高4倍。Zhang等通过硅烷偶联剂ATBN在膨胀石墨表面引入氨基,提高了石墨烯与环氧树脂基体的键合强度,同时增强了环氧树脂固化的力学性能,得到热导率为3.8 W∙m−1∙K−1的石墨烯增强复合材料,比环氧树脂热导率高出19倍。这种方法的主要优势在于形成石墨烯与小分子之间的化学键,提高石墨烯与树脂基体间的界面强度。主要问题在于化学反应过程通常会引入缺陷,使得石墨烯自身的热导率下降。Shen等研究发现化学键改性的效果与石墨烯片层大小有关:当石墨烯片层尺寸小于临界尺寸(通常为微米级)时,化学键改性对热导率提升起主要作用;当石墨烯片层尺寸大于临界尺寸时,热导率主要由石墨烯自身决定。提高分散性的另一种方法是对石墨烯进行非化学键修饰,这种方法主要利用石墨烯与小分子之间形成π−π键共轭,并利用小分子上的其他基团与高分子基体形成相互作用。形成共轭π键并不需要破坏石墨烯的C―C键,从而减少了化学反应过程中缺陷的产生。Teng等利用含芘结构的高分子Py-PGMA对石墨烯在丙酮分散液中进行非化学键修饰,起到“桥梁”的作用:一方面芘结构与石墨烯形成共轭π键,另一方面PGMA中的环氧结构与环氧树脂基体在加热与固化剂作用下进行偶联,提高了石墨烯在环氧树脂基体中的分散度,得到了热导率为1.9 W∙m−1∙K−1的环氧树脂复合材料。另外还可以通过机械方法提高石墨烯与树脂基体间的界面强度,包括使用强力超声方法提高分散度、真空抽滤混合、热压等。总结来看,提高分散度往往意味着在保留石墨烯本征的高热导率与提高石墨烯和高分子基体的界面热导间做出权衡,如何定量分析两个因素对复合材料热导率的影响将是值得研究者关注的问题。4.3.2 三维导热网络石墨烯在树脂基体中形成导热网络是提高热界面材料热导率的重要条件。相比于传统热界面材料中填充球形氧化铝,石墨烯因为其二维材料的特性,比表面积大,更容易形成导热网络,因而在相同填料比的条件下更具优势。由于石墨烯片层具有较大的宽厚比,自发形成三维导热网络并不容易。一种方法是利用模板法通过CVD生长得到三维结构的石墨烯泡沫。这种方法以具有孔结构的材料为模板,通过CVD方法在表面沉积得到石墨烯,再通过刻蚀剂去除模板,得到石墨烯泡沫。Shi课题组及首先测量了CVD法生长的石墨烯泡沫的热导率,发现其热导率为1.7 W∙m−1∙K−1,而石墨烯固含量仅为0.45% (volume fraction,x)。后来,该课题组将石蜡灌封进石墨烯泡沫形成复合材料(图5a–b),测量得到其热导率为3.2 W∙m−1∙K−1,比石蜡自身的热导率提高了18倍,并且石墨烯的填充比仅为1.23 (x)。后续工作中,Kholmanov等在石墨烯泡沫中通过CVD法原位生长碳纳米管,在泡沫孔结构中形成导热网络(图5c–d),将丁四醇灌封后形成导热复合材料,热导率为4.1 W∙m−1∙K−1,比无碳纳米管填充的石墨烯泡沫-丁四醇复合材料热导率提高了1.8倍(图5d–e)。考虑到CVD法制备的石墨烯以少层石墨烯为主,这一方法在建立三维导热结构的最大程度减少了石墨烯的填充比,适用于超轻、超薄的精细结构导热应用。图 5 石墨烯泡沫作为三维导热网络的高导热聚合物基复合材料另一种方法是利用石墨烯片层自组装形成水凝胶,再通过冷冻干燥、冰模板法等方法形成三维的石墨烯宏观结构。水凝胶中石墨烯的含量可低至2.6% (w),其余部分均由水组成,因而由水凝胶形成的石墨烯三维结构可以有效降低石墨烯固含量。Wong课题组利用定向凝固的方法用大尺寸的氧化石墨烯液晶制备了氧化石墨烯三维结构,石墨烯片层受过冷度的影响形成纵向排列为主的定向结构。通过高温还原后灌封环氧树脂,得到复合材料的热导率为2.1W∙m−1∙K−1,比环氧树脂自身热导率提升超过12倍,并且填充比低至0.92% (x)。这种方法实际上是以石墨烯气凝胶为骨架,填充聚合物形成复合材料。其优势在于石墨烯气凝胶的制备工艺与调控手段已经很成熟,且比起CVD方法生长的石墨烯泡沫更易实现规模化制备。不足之处在于需要经过还原反应得到石墨烯,而氧化石墨烯制备过程中的缺陷不易完全修复。石墨烯填充的高导热聚合材料主要工作汇总于表3。表 3 石墨烯填充高导热复合材料主要研究成果从以上工作可以看出,通过气相沉积方法和湿化学方法均可得到三维石墨烯导热宏观结构,浸渍聚合物后可以得到高导热的三维石墨烯网络增强复合材料。其主要优势是用较低的填充量即可形成导热网络,而主要挑战在于石墨烯宏观结构要具有一定的强度,否则在与聚合物复合过程中容易出现碎裂。比起传统的混料过程,制备石墨烯泡沫与石墨烯气凝胶工艺相对复杂,如何实现工业生产中的实际应用仍需在工艺路线上继续创新。5 总结与展望自从单层石墨烯热导率被实验测得以来,石墨烯导热的研究取得了长足的发展。本文总结了石墨烯热导率的测量方法,重点介绍了拉曼光谱法、悬空热桥法和时域热反射法。探讨了石墨烯热导率的影响因素,并介绍了石墨烯在导热器件中的应用。在石墨烯导热研究方兴未艾的同时,我们注意到理论研究、实验测量和实际应用中仍然存在挑战。首先,是石墨烯高导热的声子学解释。2010年Lindsay提出ZA声子是单层石墨烯中热导率贡献最大的声子模,这一理论成功解释了单层石墨烯热导率高于石墨块体。而当考虑四声子散射时,ZA模声子的贡献又低于LA、TA。如何理解单原子层中的ZA声子振动、如何预测高阶声子散射对石墨烯热导的贡献,仍需要深入的理论计算提供支持。其次,是准确测量石墨烯热导率的长度依赖和厚度依赖。随着测量技术进步,拉曼光谱法和悬空热桥法能够准确测量单层石墨烯的热导率。但是如何实现指定厚度石墨烯的转移、如何实现大尺度悬空石墨烯样品的放置,仍具有一定的技术挑战。这一部分研究是最难、最有意义也最令人感兴趣的,预期未来微纳尺度传热测量方法将继续进步,对理论预测的结果进行验证。最后,是石墨烯导热应用的工艺因素。目前,石墨烯导热膜的热学性能和力学性能已经与石墨化聚酰亚胺膜相当,并在特定领域实现了商业应用。而在这一课题中,高导热石墨烯材料的制备与技术工艺密切相关。如何实现石墨烯片层高热导率与石墨烯片层紧密搭接的双目标优化,如何低成本大规模地构建石墨烯三维导热网络,要回答这些问题仍需对石墨烯制备工艺进行深入摸索与不断改良。随着石墨烯导热研究在理论计算和实验测量的不断深入,我们相信,高导热石墨烯材料将在电子器件、能源存储、生物医学、国防军工等领域发挥更大的价值。6 “石墨烯检测技术及应用进展”主题网络会议仪器信息网联合国家石墨烯产品质量监督检验中心、全国纳米技术标准化技术委员会低维纳米结构与性能工作组,将于2021年5月11日举办 “石墨烯检测技术及应用进展”主题网络会议。邀请业内专家以及厂商技术人员就石墨烯最新应用研究进展、检测技术、检测方法、质量评价体系及标准化等展开探讨,推动我国石墨烯产业健康发展。会议日程报告主题报告人单位绝缘衬底表面石墨烯晶圆生长研究进展王浩敏中国科学院上海微系统与信息技术研究所待定刘峥国家石墨烯产品质量监督检验中心待定谭平恒中国科学院半导体研究所石墨烯导热增强复合材料与热界面材料林正得中国科学院宁波材料技术与工程研究所二维半导体及异质结的生长与光电性能调控肖少庆江南大学石墨烯等低维纳米材料的标准化动态和展望丁荣全国纳米技术标准化技术委员会低维纳米结构与性能工作组更多报告邀请中… … 报名方式扫描下方二维码或点击以下链接即可进入报名页面。(会议链接:https://www.instrument.com.cn/webinar/meetings/Graphene2021/) 报名参会加入会议交流群,随时掌握会议动态
  • 新政出台 石墨烯行业迎利好
    p  近日,工信部、发改委、科技部联合印发了《关于加快石墨烯产业创新发展的若干意见》。该意见指出,要抓住机遇培育壮大石墨烯产业,把石墨烯产业打造成先导产业。同时提出了“四个推进”,即推进产业发展关键技术创新 推进首批次产业化应用示范 推进产业绿色、循环、低碳发展 推进拓展应用领域。/pp  石墨烯是在光、电、热、力等方面具有优异性能,极具应用潜力、可广泛服务于经济社会发展的新材料,已经在能源装备、交通运输、航空航天、海工装备等产品上呈现良好的应用前景。/pp  我国拥有巨大的石墨资源储备,发展石墨烯得天独厚的优势。据统计,全球天然石墨储量约为7100万吨,其中中国储量约为5500万吨,占全球储量的77%,居世界首位。近几年,我国在石墨烯的研发上投入很多,也先后取得了不小的成绩,使得我国也位列石墨烯技术强国。/pp  有业内人士表示,批量化生产和大尺寸生产是阻碍石墨烯大规模商用的最主要因素。而我国最新的研究成果已成功突破这两大难题,制造成本已从5000元/克降至3元/克,解决了这种材料的量产难题。利用化学气相沉积法成功制造出了国内首片15英寸的单层石墨烯,并成功地将石墨烯透明电极应用于电阻触摸屏上,制备出了7英寸石墨烯触摸屏。/pp  不过看似一切美好的石墨烯产业仍旧有许多问题亟待解决。石家庄科学产业技术研究院研究员胡伟告诉《中国产经新闻》记者,“虽然我国在石墨烯技术上取得了一定的成绩,但关键核心制造技术与发达国家相比仍旧有所差距。此外,我们在石墨烯的应用上也还需要扩大范围。”/pp  最近炒得火热的华为手机电池将使用石墨烯制成,最终被证明并未实现,华为和曼切斯特大学关于石墨烯技术的合作仅仅着眼于通信领域。胡伟告诉记者,虽然量产的技术已经得到实现,但石墨烯仍旧没有迎来大规模的商用。我国目前石墨烯技术仍旧处于产业化的初级阶段,未来在技术、工艺和产业链对接方面还需要投入大量资源与研究。/pp  虽然目前我国石墨烯产业仍旧存在许多问题,前景仍旧可期。根据新政的指导意见,指明要将石墨烯产业发展成为先导产业。将在2020年完善石墨烯产业体系,实现石墨烯材料的标准化、系列化和低成本化,并在多领域实现规模化应用。强调了产学研用协同发展的重要性,并具体落实了石墨烯材料规模化制备技术创新、知识产权体系建设、产业发展服务平台搭建3个发展方向。/pp  胡伟表示,三部委发布的新政指导相关部门在未来加大对石墨烯核心技术的研究,有效改善我国石墨烯行业技术薄弱的问题。此外,在产业链和应用上也指明了方向。我国的石墨烯应该走出实验室,真正地应用在各行各业中。而对于一个新兴产业来讲,标准化是健康发展的基础。我国石墨烯下游企业需求极大,如果发展顺利,将迎来一个千亿元的大市场。/p
  • 石墨烯:新材料王者之路有多长?
    p  去年,华为掌门人任正非曾表示,未来10~20年,将迎来石墨烯颠覆硅的时代。随后,有西方媒体报道,西班牙研发出石墨烯电池,充电8分钟可续航1000公里。近年来,石墨烯似乎已成为无所不能的新材料之王。/pp  中国科学院长春应用化学研究所(以下简称长春应化所)研究员牛利等人近日在石墨烯材料的制备及应用研究方面取得重要进展,该成果获得2015年吉林省自然科学奖一等奖。/pp  牛利在接受《中国科学报》记者采访时表示:“虽然石墨烯材料具有相当特殊的物理及化学属性,但距离真正的实际应用还有很长的路要走。”/pp  strong超级材料/strong/pp  石墨烯存在于自然界,只是难以剥离出单层结构,厚1毫米的石墨大约包含300万层石墨烯。/pp  2004年,英国曼彻斯特大学的两位科学家安德烈· 盖姆和康斯坦丁· 诺沃肖洛夫从高定向热解石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。/pp  他们不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。两人也因此获得2010年度诺贝尔物理学奖。/pp  据牛利介绍,石墨烯是碳原子紧密堆积成单层二维蜂窝状结构的一种碳质新材料,具有极好的电学、力学、热学以及光学性能。/pp  常温下,石墨烯电阻率比铜或银更低,是世界上电阻率最小的材料。石墨烯因电阻率低、电子迁移的速度快,有望用来发展更薄、导电速度更快的新一代电子元件或晶体管。/pp  石墨烯既是最薄的材料,也是最韧的材料。曾有实验证实,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克,却可以承受一只一千克的猫。/pp  另外,石墨烯几乎是完全透明的,只吸收2.3%的光,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。/pp  石墨烯的特殊性能使其迅速成为国际先进材料研发的新热点,引发了国内外科研人员的跟踪研究,牛利团队就是其中之一。/pp style="text-align: center "img title="untitled1.png" src="http://img1.17img.cn/17img/images/201512/insimg/397ad04f-a6c9-4ae0-b410-480666e616ca.jpg"//pp style="text-align: center "诺沃肖洛夫团队捐赠给斯德哥尔摩的石墨、石墨烯和胶带/pp  strong性能改良/strong/pp  这些年,牛利带领长春应化所现代分析技术工程实验室材料电化学课题组,密切关注国际石墨烯材料研发发展的最新趋势,围绕二维石墨烯材料理论设计、制备合成、性质表征以及其在电分析化学领域的应用开展了系列研究工作。/pp  由于石墨烯片层之间具有强烈的相互作用,使其非常难以剥离。牛利告诉记者:“传统的氧化剥离方法是通过强氧化剂,让石墨烯边缘发生氧化作用,出现片层结构扭曲。这种方法由于使用大量的强氧化剂,如高锰酸钾、浓硫酸等试剂,制备的石墨烯材料结构可控性差,缺陷多,产率也较低。”此外,该方法直接产生的是石墨烯氧化物,还需要进一步的还原处理才能得到最终的石墨烯材料。/pp  牛利团队利用微波能量辅助,同时辅以有机小分子插层剂,在石墨片层间通过微波逐渐渗透插层剂,使石墨烯片层逐渐剥离。“这项技术方法无需经过石墨烯氧化阶段,不仅可以直接制得高度还原性的石墨烯材料,还可以低成本、大批量制备高品质的石墨烯材料。”/pp  当前,国际上制备石墨烯薄膜多采用昂贵的CVD(化学气相沉积)方法,牛利团队发现,这种方法很难控制薄膜的厚度,特别是难以进行复杂的图案化设计。另外,化学还原剂无论是液态还是气相的,都会导致二次化学试剂的使用。/pp  “我们采用电化学技术,仅仅通过界面的电子转移过程,就可以控制石墨烯氧化物在界面的电化学还原沉积程度,这种方法技术简单、成本低廉、绿色环保,同时结构厚度、性状可控。”牛利说。/pp  牛利团队还探索了新型石墨烯及其杂化材料在电极界面修饰、分析传感及其他相关领域的应用。/pp style="text-align: center "img style="width: 499px height: 420px " title="untitled2.png" src="http://img1.17img.cn/17img/images/201512/insimg/f7e4c11e-2c48-4aa2-93bd-047c011cbc1e.jpg" width="499" height="509"//pp style="text-align: center "显微镜下的石墨烯“单晶”/pp  strong目标驱动/strong/pp  他们设计制备了石墨烯片层、薄膜和石墨烯杂化材料,并进一步探索了石墨烯及其杂化材料的化学结构特征和反应机理,将石墨烯及其杂化材料应用在传感分析、复合材料以及能源环境领域。/pp  “作为工业技术,石墨烯要实现产业化,仍有许多未能克服的困难。”牛利指出,尽管国际上已经发布一些研究结果,将石墨烯用于电池电极材料、电容器器件构造、力学增强材料、导热薄膜等应用领域中,但这些领域的研究还有诸多的科学及工程技术问题亟待解决。/pp  因为石墨烯的制备方式目前在技术上还存在缺陷,通过实验室内研制的石墨烯成本居高不下。曾有研究人员计算出目前的石墨烯价格高达5000元/克,比黄金还贵十几倍。/pp  围绕化学制备石墨烯材料,低成本、大批量制备高品质石墨烯是个值得关注的技术问题。围绕微电子学及器件领域,科研人员还需要解决如何降低器件材料的制备成本、提高器件结构的均一性,如何将微观操作及纳米构造技术用于石墨烯器件中等问题。/pp  目前在石墨烯材料的一些应用领域,如储能器件、导热材料、透明薄膜等方面,虽然已经有围绕需求的、具有应用前景的研究工作报道,但由于缺乏明显的直接应用领域及工程技术方法的结合应用,导致研究工作与应用需求还存在一定的距离。/pp  牛利告诉记者:“将基础研究与工程技术方法有机结合,特别是与应用目标驱动结合,将会使石墨烯材料研究成果更好地投入到实际应用中。”/p
  • 石墨烯“织就”锂离子“梦幻华服”
    p style="text-indent: 2em "如果说那薄如蝉翼、六角网格纹路质地的材料是巧夺天工的织锦,那么这位八零后的女科学家就是一位新锐的时尚设计师,她以新潮的艺术思维、灵巧的双手把“织锦”幻化成“梦幻华服”。她就是中国科学院金属研究所博士、北京圣盟科技有限公司首席科学家赵金平。而她和团队制作“梦幻华服”的“织锦”就是被称作“新材料之王”的石墨烯。/pp style="text-indent: 2em "7月16日上午,在北京科技会堂,赵金平向汇聚于此的业内专家展示、讲解自己和团队取得的一项重大突破:石墨烯包裹改性锂离子电池正、负极材料技术。该技术形象地说就是给锂离子电极材料“量体裁衣”,从而大幅提升电池性能。/pp style="text-indent: 2em "①独创两套包覆法/pp style="text-indent: 2em "规模化试产成功/pp style="text-indent: 2em "通过现场展示的放大5万倍的扫描电镜图,赵博士娓娓讲述着石墨烯“梦幻华服”特有的科技之美:“如此图所示,石墨烯非常均匀地包覆在三元材料锂离子表面,不仅不会破坏被包覆的三元材料,而且形成了更加稳定的结构。”/pp style="text-indent: 2em "传统电极材料在充放电循环过程中,体积极容易增大膨出,严重时会导致粉化,极大影响电池性能。石墨烯具有超高导电性、柔性,将其包覆在电极材料表面,如同为其“穿上”了量身定制的“魔法衣”,既能增强电子转移速率,提高导电性,又能约束其体积变化,大幅提高放电容量、充放电次数等性能。/pp style="text-indent: 2em "近年来,国际上研究石墨烯包覆技术的学者很多,不过大多停留在学术探讨层面,极少实现技术,更不要说实现产业化。赵金平团队正是迎着技术难题而上,通过数年持之以恒努力,在全球率先实现了石墨烯包覆电极材料尤其是三元正极材料和碳硅负极材料等的技术突破,申请数项国家专利。特别难能可贵的是,该技术投入规模化试产成功,为商业化量产奠定了基础。/pp style="text-indent: 2em "对石墨烯包覆技术的秘诀,赵金平透露说,就如同给电极材料制作衣服,要“合身”“美观”,就必须量体裁衣、个性化定制,也就是说,要针对不同电极材料的结构和表面特性,制作适宜的石墨烯材料,采用相应的包覆方法。具体来说,她带领团队针对正极材料和负极材料,分别开发了“两相界面包覆法”和“液氮冷萃法”。/pp style="text-indent: 2em "②性能指标大幅提升/pp style="text-indent: 2em "推动提前实现能量密度2020/pp style="text-indent: 2em "“就放电容量而言,经过500次循环后,石墨烯包覆的三元材料和加入了添加剂的石墨烯包覆的三元材料的容量保持率分别为87.3%和98.08%,其循环稳定性比传统三元材料分别提升了40%和50.56%。经过1000次循环后,加入了添加剂的石墨烯包覆的三元材料容量保持率还能达83.87%。”赵金平对石墨烯包覆后的三原材料性能指标如数家珍。/pp style="text-indent: 2em "负极材料经过石墨烯包裹后不仅循环稳定性有所提升,其容量也大幅度提高。赵金平以氧化铁材料为例介绍说,通过“液氮冷萃法”,加入添加剂后,石墨烯均匀地包裹在氧化铁表面,其容量提高67.1%,稳定性提高18.2%。最值得期待的是石墨烯包裹硅负极材料的性能表现,目前,她和团队正在做相关实验和测试,相信相关数据一定会让人特别振奋。/pp style="text-indent: 2em "在认真评审后,由国家新材料产业发展专家咨询委员会委员、清华大学材料科学与工程系教授翁端,国家“千人计划”专家、中科院大连化学物理研究所研究员吴忠帅,中国国际石墨烯资源产业联盟常务副理事长阮汝祥等10人组成的专家委员会认为,“石墨烯包覆锂离子电池正、负极材料技术达到国际先进水平,同意通过科技成果评价。”该技术应用到车用动力电池上,就可望实现单体能量密度达到300瓦时/千克,而这正是《智能汽车关键技术产业化实施方案》提出的2020年车用动力电池能量密度指标。/pp style="text-indent: 2em "赵金平特别指出,石墨烯包裹技术和石墨烯基电池材料优异的性能已经通过国家动力电池创新中心和风帆有限责任公司的检测,后者还出具了相关样品的检测报告。在技术专利方面,目前,赵金平团队基于石墨烯的包裹技术已申请2项国家专利,还有数项专利正在申报中。/pp style="text-indent: 2em "③突破源于3个方面/pp style="text-indent: 2em "领先气质诠释创新中国/pp style="text-indent: 2em "石墨烯作为电子迁移率超高、热传导效应性能超好的神奇二维碳纳米材料,自2004年被发现以来,特别是其发现者因此获得2010 年度诺贝尔物理学奖以来,成为耀眼的“明星”材料,将其用于提升锂离子电池性能的研究更是不断掀起热潮。然而,教育部查新工作站发布的相关科技查新报告显示,除了赵金平团队研发成果申请的专利外,在国内外已公开发表的文献和专利中,尚未见有利用针对锂离子电池正极材料的“两相界面包覆”工艺和针对负级材料的“液氮冷萃”工艺,制备比容量大、循环稳定性好的石墨烯改性锂离子电池电极材料的报道。/pp style="text-indent: 2em "赵金平团队为何能取得原创性技术突破呢?在业内专家看来,大体上在于3个方面。一是优质石墨烯供应充足。赵金平团队的研究占据了一个先天优势:所在公司北京圣盟科技是全球石墨烯制备的领先企业,可以为技术开发提供高品质石墨烯支持,而这正是取得突破至关重要的基础条件。否则,以品质不高的石墨烯或者石墨粉投入科研,取得突破是难以想象的。二是长期的技术积累和不怕困难的拼搏精神。赵金平和团队在石墨烯科研领域耕耘了近10年,相关包覆技术创新是长期摸索的必然。迎难而上、苦心钻研的拼搏是成功的必备条件。在实验中,由于三元材料颗粒较大,石墨烯包裹困难,她带领团队硬是攻关了近一年半,锲而不舍,不断尝试,终获成功。三是中国石墨烯科研实力居前,引领世界。据《经济日报》今年年初报道,中国是石墨烯研究和应用开发最为活跃的国家之一,在全球石墨烯专利中,近六成来自中国。正是国内良好的石墨烯科技创新环境和氛围,培养造就了赵金平团队勇于创新的精神和能力。 /p
  • 霍尔德发布|石墨COD回流消解器采用石墨面均匀加热
    化学需氧量(COD)是一个重要的水质指标,用于衡量水中有机物污染的程度。COD值越高,说明水中含有的需要被氧化的还原性物质越多,也就是有机物污染越严重。在河流污染和工业废水性质的研究中,COD可以作为一个重要的参数来评估水体的污染状况。同时,在废水处理厂的运行管理中,COD也是一个关键的指标,可以用来监测处理效果,确保出水达到环保标准。石墨COD回流消解器主要由主机、冷却装置、加热装置、玻璃器皿等4大部分组成,采用微机技术进行定时控制加热电炉板和风扇,可对12个回流装置同时进行加热。石墨面加热,均匀度更好,更加安全。石墨COD回流消解器采用玻璃毛刺回流管代替球形回流管,并以风冷加水冷技术取代自来水冷却方式。冷却部分主要由毛刺冷凝管和双风机完成,加上上部分球形回流管内冷却水和机内风机的双重作用,确保了样品的回流冷却。符合水质cod《水质化学需氧量的测定重铬酸盐法》HJ828-2017标准。 产品参数1、测量范围:5~800mg/L,800~10000mg/L (经稀释) 2、同时加热样品数量:8-10-12个3、测量时间:不大于2小时 4、测量误差:邻苯二甲酸氢钾标准溶液(500mg/L),相对标准偏不大于5.0%,工业有机废水(500mg/L),相对标准偏不大于8.0%5、环境温度:0~45℃6、准 确 度:COD与经典回流法比对,结果在正常偏差范围内7、加热功率:3000W平均功率:1600W8、温度可调范围:32-400℃9、恒温精度:±2℃10、升温时间:室温至180℃<30min11、采用石墨材质加热板,温度更均匀。
  • 石墨国检中心落户郴州
    近日,我国唯一专业从事天然石墨、人造石墨、碳素和电极糊等产品质量检验检测的国家级技术机构———国家石墨产品质量监督检验中心(以下简称石墨国检中心)顺利通过验收,正式落户郴州,由国家认证认可监督管理委员会正式授权对外开展监督检验、技术咨询等相关业务。  石墨国检中心于2006年12月由郴州市质监局部署筹建。目前,该中心已拥有一支由博士生导师和高级工程师为带头人的专业技术检测队伍,拥有原子吸收、ICP直读光谱、原子荧光、万能材料试验机等先进检测仪器设备56台(套),检测能力覆盖石墨、碳素等4大类的20种产品170项参数,其中可按照国外先进标准进行检测的参数达80多项。2009年11月上旬,该中心顺利通过了国家计量认证和资质认定、实验室认可“三合一”现场审评。  正式授权后,该中心将进一步发挥国家级检验检测中心的权威作用,为打造湖南石墨产业带提供技术支撑,为推进郴州向世界级石墨基地迈进做出积极贡献。
  • 我国石墨烯研究获重要进展
    石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建其它维数碳质材料(如零维的富勒烯、一维的纳米碳管和三维的石墨等)的基本单元,具有极好的结晶性及电学质量,可广泛应用于微电子、柔性显示、航空航天、能源、化学传感等领域。自第一片石墨烯材料于2004年英国曼彻斯特大学安德烈• 海姆教授和康斯坦丁• 诺沃肖洛夫研制出来并于2010年荣获诺贝尔物理学奖后,石墨烯迅速成为国际先进材料研发的新热点,引发了诸多发达国家的科学家跟踪研究。  石墨烯结构  该课题组一篇论文获2009年度“中国百篇最具影响国际学术论文”  中国科学院长春应化所现代分析技术工程实验室材料电化学课题组近3年来密切关注国际石墨烯材料研发发展的最新趋势,围绕这一前沿性的重要科学问题,在中科院知识创新工程重要方向项目的支持下,从基础和应用基础研究入手,围绕石墨烯的制备、化学修饰、性能研究等,开展了系列卓有成效的研究工作,并积极探索其在众多领域的应用,取得了系列创新性的研究进展,不但在石墨烯的制备、化学修饰、性能研究等方面取得了长足的进步,还研制、开发出多种高强度、高韧性树脂材料等 此外,还在石墨烯透明电极、生物传感等方面进行了初步的探索,取得了一系列相关研究结果,得到了国内外同行的广泛关注。近年来已在 Anal. Chem.、Chem. Commun.等国际著名核心期刊上发表相关文章15篇。其中发表于2009年Anal. Chem.上面的文章“Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene”仅1年左右时间就被引用100余次,并被中国科学信息技术研究所评选为2009年度“中国百篇最具影响国际学术论文”。
  • 美公司将利用石墨泡沫冷却提高LED性能
    发光二极管点亮光明前程 发光二极管的英文简称为LED,通常它由镓与砷、磷的化合物制成。在接通电源后,其中的电子与空穴复合时能辐射出可见光。人们发现,磷砷化镓二极管发红光,磷化镓二极管发绿光,碳化硅二极管发黄光。与小白炽灯泡和氖灯相比,发光二极管的特点包括工作电压很低 工作电流很小 抗冲击和抗震性能好,可靠性高,寿命长 通过调制电流强弱可以方便地调制发光的强弱。基于这些特点,发光二极管在许多光电控制设备中用作光源,在电子设备中用作信号显示器。  冷却可提高发光二极管性能  在大力提倡节约能源的今天,发光二极管作为照明灯越来越受到人们的青睐,其市场在不断扩大。据介绍,上海世博园区内使用了10.5亿颗发光二极管灯泡,世博场馆室内照明光源中约有80%采用发光二极管作为照明光源,相较于普通白炽灯省电达90%左右。专家表示,2010年中国发光二极管销售产值将突破1500亿元人民币,相当于2008年的两倍。  面对广阔的市场需求,人们在努力提高发光二极管照明灯的性能。研究发现,虽然发光二极管工作电压和电流很低,但是它仍然存在着发热问题。发光二极管的温度每降低10华氏度,其发光部件的寿命就能增加一倍,因此冷却对提高发光二极管照明灯的性能十分重要。  新石墨泡沫冷却材料闪亮登场  美国能源部橡树岭国家实验室(ORNL)材料科学和技术部研究人员詹姆斯克勒特发明了一项称为石墨发泡的技术。利用该技术,人们能够获得石墨泡沫(graphite foam)材料。用石墨泡沫帮助冷却发光二极管照明灯,可以更有效地控制其发热,从而延长其寿命并降低价格。此举有望扩大发光二极管照明灯的用户群。  克勒特说:“在(石墨发泡)技术降低发光二极管照明系统、稳定并延长其寿命的同时,该技术能够取代普通照明灯设备的更换和维护开支,每年为城市节约数百万美元。”他希望石墨发泡技术能够为顾客节约开支。  与传统的利用金属铜和金属铝等散热材料相比,新技术制成的石墨泡沫具有多种优点,比如,石墨泡沫导热性高、重量轻和加工容易。这些特点使得石墨泡沫材料拥有更好的设计适应性,成为更轻、更廉价和更高效的发光二极管照明灯冷却材料。  据悉,石墨泡沫具有的特殊石墨晶体结构是形成其良好导热性的关键。晶体结构的“骨架”中充满了气穴,与石墨相比,石墨泡沫的密度只有石墨的25%,因此其重量较轻。石墨泡沫特有的纽带网能够快速地将热源的热量散发掉,因而它是一种理想的冷却材料。  作为首推的节能照明用品,发光二极管照明灯因其耗能低、紧凑和平均寿命长的特点得到了越来越多的利用,其在街道照明和停车场照明等方面的应用需求也在不断提高。  LED北美公司专门为在城市、商业和工业领域的应用提供发光二极管照明灯产品。为不断提高发光二极管照明灯的性能,确保自己在与对手长期的竞争中处于有利地位,日前公司与橡树岭国家实验室签订了石墨发泡技术合作协议,获得了该技术的使用权。公司准备用该技术生产石墨泡沫,并用石墨泡沫以被动式冷却方式帮助发光二极管照明灯部件散热。  LED北美公司设立在橡树岭国家实验室名为“技术2020”的实验孵化基地内,公司和实验室建立起了良好的关系。公司创始人之一安德鲁威廉表示,与橡树岭国家实验室为邻,公司与实验室的研究人员可以更方便地密切合作,以完善石墨泡沫材料与发光二极管照明灯。
  • 石墨烯人的奥斯卡——首届国际石墨烯颁奖典礼圆满落幕 大奖花落谁家?
    p strong仪器信息网讯/strong 2020年10月17日晚,2020首届国际石墨烯颁奖典礼(IGA)隆重举行,表彰为石墨烯科研和产业发展做出重要贡献的个人和企业,颁发奖项包括最佳石墨烯产品奖、最佳石墨烯企业奖、石墨烯产业示范奖、石墨烯产业促进奖、终身荣誉奖。/ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/c6f13eea-6270-4ae7-a13d-e65a3ced0e81.jpg" title="8.jpg" alt="8.jpg"//pp style="text-align: center "strong颁奖典礼现场/strong/pp style="margin-top: 15px " 颁奖典礼上,国家新材料专家咨询委员会委员、中国石墨烯产业技术创新战略联盟秘书长李义春做活动介绍并致辞,石墨烯诺贝尔奖获得者、石墨烯发现者Andre Geim教授以录制视频形式致辞,向长期以来关心和支持石墨烯产业发展的全球石墨烯人表示衷心感谢。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/72b6726c-1f8f-497b-a2a4-df7573dd2498.jpg" title="6.jpg" alt="6.jpg"//pp style="text-align: center "strong李义春致辞/strong/ppstrongimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/d90a7bd1-668d-48e7-a02c-66b77bcfc9a2.jpg" title="7.jpg" alt="7.jpg"//strong/pp style="text-align: center "strongAndre Geim视频致辞/strong/pp 首届国际石墨烯国际主席及评审团阵容强大,由来自全球20个国家和地区的,在全球石墨烯行业内具有话语权及影响力的产学界人士组成。根据国际主席团的提名,国际评审团进行投票表决,评选出全球石墨烯行业5大顶尖翘楚。/pp style="margin-top: 15px "strong IGA2020最佳石墨烯产品奖:常州富烯科技股份有限公司的石墨烯导热膜产品/strong/pp style="margin-top: 10px " IGA国际评审主席李义春先生题颁奖词:不甘平凡,坚守寂寞。在资本炒作的热潮里,富烯科技坚持工匠精神,精心打磨产品,五年磨一剑。将石墨烯从实验室中的完美材料,变为大规模进入百姓手中的高端电子产品,填补了国内外石墨烯高导热性电子应用产业化的空白。从无到有,从劣到优,富烯走出了石墨烯高端电子产品商业化真正意义上的第一步。/pp style="line-height: 1.5em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/5c8c44a4-72a8-4eae-a439-62d15da0b839.jpg" title="9.jpg" alt="9.jpg"//pp style="text-align: center "span style="font-size: 14px color: rgb(89, 89, 89) "strong富烯科技代表领奖/strong/span/pp style="margin-top: 15px "strong IGA2020最佳石墨烯企业奖:西班牙Graphenea公司/strong/pp style="margin-top: 10px " IGA国际评审主席Stephan Roche先生题颁奖词:精益求精,工匠精神。Graphenea在晶圆级高质量石墨烯领域上深耕多年,可谓一骑红尘。在定制化石墨烯器件、高性能晶片级石墨烯应用等领域也成果显著,为全球高精尖电子和光电子器件工业开启石墨烯时代奠定了基础。/pp style="margin-top: 10px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/de2e3ac8-bee5-4452-8468-1c699e6d9498.jpg" title="IMG_6477.jpg" alt="IMG_6477.jpg"//pp style="margin-top: 15px "strong IGA2020石墨烯产业示范奖:华为技术有限公司/strong/pp style="margin-top: 10px " IGA国际评审主席Rezal Khairi Ahmad先生题颁奖词:脚踏实地,志高存远。华为用实力开辟市场,用魄力创新科技,作为第一个大规模涉足商用石墨烯散热膜领域的大型终端企业,华为敢做第一个吃螃蟹的人。石墨烯散热技术在华为手机上的成功,为石墨烯产业发展方向打开了一扇新的大门。/pp style="margin-top: 10px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/497cde5a-f433-4af3-836e-7b78ede4d936.jpg" title="IMG_6478.jpg" alt="IMG_6478.jpg"//pp style="margin-top: 15px "strong IGA2020石墨烯产业促进奖:西安丝路石墨烯创新中心/strong/pp style="margin-top: 10px " IGA国际评审主席冯新亮先生题颁奖词:助力产业,创新驱动。自西安丝路成立以来,坚持以创新服务为根本,立足石墨烯企业需求,开拓石墨烯下游应用市场。两年间,先后成立了八大应用研究院,成功为西安当地引入了40余石墨烯企业及项目,帮助西安高新区完成了石墨烯产业从无到有,从少到多的质变。/ppimg style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/fe10ef93-3495-4785-a657-040c0f9991a4.jpg" title="5.jpg" alt="5.jpg"//pp style="text-align: center "strongspan style="font-size: 14px color: rgb(89, 89, 89) "西安丝路石墨烯创新中心代表领奖/span/strongbr//pp style="margin-top: 15px "strong IGA终身荣誉奖 :Andre Geim教授/strong/pp style="margin-top: 10px " IGA国际评审主席Dusan Losic先生题颁奖词:从三维到二维,从恶搞到诺奖,安德烈海姆教授真正意义上的开创了石墨烯的时代。不拘泥于国界,不迂腐于市场,他奔波于学术和产业的浪潮中,却只为向世人证明石墨烯对工业的意义。/pp style="margin-top: 10px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/3d199217-a682-44be-b63e-2c71c49a35db.jpg" title="IMG_6489.JPG" alt="IMG_6489.JPG"//p
  • 2015年第二次全国石墨烯标准化工作会议 暨四项石墨烯标准编制研讨会通知
    各相关单位和专家:按照WG03CGS/WT007-2014《原子吸收分光光度计法测定石墨烯中钾、钠和锰含量》、WG03CGS/WT008-2014《高碘酸钾分光光度计法测定氧化石墨烯中锰含量》、WG03CGS/WT005-2015《石墨烯中非金属元素分析》、WG03CGS/WT009-2015《双光探测器测试系统判定石墨烯的光饱和吸收的方法》的编制工作进度,秘书处定于2015年12月26日至27日在上海市召开2015年第二次全国石墨烯标准化工作会议暨上述四项石墨烯标准的编制研讨会,欢迎各位参加。现将有关事项通知如下:一、会议主体及参会对象主办单位:中国石墨烯产业技术创新战略联盟标准化委员会秘书处(泰州石墨烯研究检测平台)承办单位:中国科学院山西煤炭化学研究所、济宁利特纳米技术有限责任公司、苏州大学协办单位:复旦大学微电子学院、内蒙古石墨烯材料研究院参会对象:联盟标委会委员(单位)、观察员(单位)、工作组成员(单位)、联盟成员(单位)、其他石墨烯相关专家(单位)二、会议内容 1. 各工作组小组讨论(12月26日晚)2. SWG03001工作组研讨会(12月27日 08:30—09:40)(1)工作组组长单位及成员单位介绍(2)WG03CGS/WT007-2014《原子吸收分光光度计法测定石墨烯中钾、钠和锰含量》编制工作情况介绍。报告单位:SWG03001工作组组长单位——中国科学院山西煤炭化学研究所(3)工作组讨论及对外答复、工作组成员证书颁发3. 茶歇(12月27日 09:40—10:00)4. SWG03002工作组研讨会(12月27日 10:00—11:10)(1)工作组组长单位及成员单位介绍(2)WG03CGS/WT008-2014《高碘酸钾分光光度计法测定氧化石墨烯中锰含量》编制工作情况介绍。报告单位:SWG03002工作组组长单位——济宁利特纳米技术有限责任公司(3)工作组讨论及对外答复、工作组成员证书颁发5.大会合影(12月27日 11:10—11:20)6. SWG03003工作组研讨会(12月27日 13:00-14:10)(1)工作组组长单位及成员单位介绍(2)WG03CGS/WT005-2015《石墨烯中非金属元素分析》编制工作情况介绍。报告单位:SWG03003工作组组长单位——中国科学院山西煤炭化学研究所(3)工作组讨论及对外答复、工作组成员证书颁发7. 茶歇(12月27日 14:10—14:30)8. SWG03004工作组研讨会(12月27日 14:30-15:40)(1)工作组组长单位及成员单位介绍(2)WG03CGS/WT009-2015《双光探测器测试系统判定石墨烯的光饱和吸收的方法》编制工作情况介绍。报告单位:SWG03004工作组组长单位——苏州大学(3)工作组讨论及对外答复、工作组成员证书颁发9. 礼送(12月27日 16:00)三、会议时间和地址 1. 会议报到时间:12月26日下午12:00-18:00,欢迎晚宴18:30开始2. 会议于12月27日召开,会期一天。3. 会议地址:上海博思大酒店405会议室,酒店地址:上海市虹口区广秀路100号(靠近广灵一路),联系电话:021-2509 9999。4. 交通上海博思大酒店位于上海财经大学中山北一路369号校区。上海火车站:距离酒店5公里,打车到酒店约25元。地铁:上海地铁3号线赤峰路站距离酒店约700米,步行约9分钟。四、会议费用及相关事宜 1. 会议费用(含会务费、资料费、餐费等):联盟标委会委员、观察员、工作组成员(1000元/人)、其他参会人员(1200元/人)。2. 会务组可帮助预订房间,住宿费自理,豪华大/双床房均为350元/天(含双早)。3. 建议会议费在12月24日前汇至秘书处指定银行账号(见附件会议回执),以便在会议现场领取发票。五、参会报名希各单位接此通知后于12月24日前将《会议回执》反馈至邮箱:standard@graphene-center.org。参会联系人:邵悦13914543362 ,梁铮18936799578。会议网址:http://www.grapheneiso.com/会务组驻酒店现场联系人:陈谷一13651969369赞助参展联系人:袁文军13761090949,sponsor@graphene-center.org 石墨烯标准化委员会秘书处 2015年12月07日 备注:请参会代表提前将会议费汇至以下会议账号户名:泰州石墨烯研究检测平台有限公司,银行:中信银行股份有限公司泰州新区支行,账号:7357310182600040666
  • 7英寸石墨烯触摸屏重庆问世
    一种可以随意卷曲也不会影响使用效果的触摸屏在重庆研制成功。1月22日,中科院重庆绿色智能技术研究院在重庆宣布:他们已经实现了15英寸单层石墨烯的制备,并成功地将石墨烯透明电极应用于电阻触摸屏上,制备出7英寸石墨烯触摸屏。  该研究院微纳制造与系统集成研究中心副主任史浩飞表示,目前该技术在国内居于领先地位。  据了解,触摸屏是目前最简单、自然的一种人机交互方式,赋予了多媒体崭新的面貌。透明电极作为触摸屏的核心组成部分,成为当前的重要研究领域之一。目前,市场上的主导产品采用的材料为氧化铟锡,不仅价格高,而且易碎。新兴的石墨烯触摸屏,具有原材料获取方便、制造成本低、制备工艺简单、低碳环保等优势,优异的柔韧性更使其具有强大的市场竞争力。  史浩飞透露说,广州、深圳等地的风投机构已对石墨烯产生了浓厚的兴趣,正在与中科院重庆研究院洽谈合作。研究人员也正积极进行产业化的设备改造,预计年内达到批量生产的能力。2015年后,市场上有望见到能够卷曲的触摸屏产品。
  • 深度研究!2025年全球石墨烯市场发展展望
    石墨烯是由一个碳原子与周围3个近碳原子结合形成蜂窝状结构的碳原子单层。理想的单层石墨烯片是由一层密集的碳六元环构成的,没有任何结构缺陷,厚度约为0.35nm,是目前为止最薄的二维纳米碳材料。石墨烯是目前自然界最薄最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。目前石墨烯可量产的制备方法主要为氧化还原法和化学气相沉淀法(CVD)。其中氧化还原法的原材料为石墨,CVD法的原材料为甲烷、乙炔等含碳气体。目前的趋势是生产缺陷极小的高品质石墨烯。因此,CVD法在大多数应用中使用频率更高。石墨烯应用领域由于石墨烯具有优异的复合性能,虽然目前其下游应用还没有实现产业化,但是其潜在的应用领域非常广泛。在这些潜在应用领域中,应重点关注复合材料、过滤器、储能、晶体管、传感器、柔性透明电极等。表1 石墨烯潜在应用领域潜在应用领域具体应用医学组织工程、造影剂、生物医学传感器、药物输送、生物样品的过滤、DNA测序等电子晶体管、电极、量子点、自旋电子学、光电子学、光探测器、热管理、电子应用、填充的导电聚合物储能电池阳极、超级电容器、储氢电池过滤水蒸馏、分子过滤、乙醇蒸馏、生物燃料净化传感器压力传感器、纳米电子机械系统、气敏传感器、分子结合传感器、运动传感器、红外传感器、隐形眼镜、磁传感器其他领域建筑材料、润滑、电波吸收、声音传感器、冷却剂添加剂石墨烯的特性组合使其应用广泛。但需要注意,这些应用通常都需要石墨烯的导电性或机械性能。这就导致石墨烯在每个应用领域都存在竞争材料,且与之相比,石墨烯的性能表现各异。◆轻量化复合强化材料交通领域,特别是航空、航天和汽车行业,大部分应用都需要轻量化复合强化材料。以碳复合材料替代金属实现汽车的轻量化,可以有效提高能源效率。政府大力推动汽车能效提高也部分推动了产业的发展。而在轻量化材料的替代过程中,石墨烯将发挥重要作用。石墨烯的性能远超这些应用领域的需求。石墨烯是截至目前人类已知强度最高物质,与单壁碳纳米管相当;韧性是碳纤维的20倍;具有极高的拉伸强度。而且,自下而上的合成可使石墨长在铜或镍的泡沫上。利用催化金属进行蚀刻,可以产生多孔的轻质石墨烯泡沫。石墨烯在轻量化复合强化材料领域应用具有2方面优点:一是多层石墨烯氧化物,可作为3D打印材料;二是可以在催化金属泡沫上合成3D石墨烯或石墨烯气凝胶,其密度仅为0.16g/cm ,是现有最轻的材料。但与其他材料对比,石墨烯作为轻量化复合强化材料,也存在成本高的限制。纤维、纳米线和碳纳米管更容易制成性能高且成本更低的复合材料。石墨烯纳米带性能更为优异,但目前难以制备且价格昂贵。◆生物医学传感器生物医学传感器是对生物物质敏感并将其浓度转换为电信号进行检测的仪器,由固定化的生物敏感材料作识别元件,搭配适当的理化换能器及信号放大装置,构成的分析工具或系统。与碳纳米管相比,石墨烯同样是一种理想的生物传感材料,它拥有碳纳米管的廉价、环境友好、生物兼容性以及活性基团均匀分布等优点,同时,由于含有大量的羧基、羟基等官能团,石墨烯具有良好的溶解性能,这是碳纳米管所不具备的。另一种方法是使用石墨烯和金属薄膜传感器。由于石墨烯可使生物分子紧密结合,从而增强传感器的灵敏度。石墨烯结合得越紧密,传感器的电磁屏蔽效应越小。与其他材料相比,石墨烯可与现有材料相媲美或优于现有材料,但可能还不及其他无机二维材料。碳纳米管、纳米颗粒、纳米线官能化的微机电系统和半导体二维材料,如二硫化钼,也都具有直接功能性,敏感度在很大程度上取决于接受材料和介质。◆过滤器很多行业都需要过滤,包括化学品分离、生物样品提纯、海水净化等。由于石墨烯具有良好阻隔性、可调节纳米孔和可控层间距等性能,因此其在过滤器领域应用十分突出。石墨烯进行过滤有2种方法:一是利用石墨烯薄膜的孔隙过滤。由于水净化等过滤时会带来较高压力,过滤介质需具有较大的强度,而合成石墨烯通常缺陷较少,可视为绝佳过滤介质。石墨烯生产工艺的创新也进一步强化了这一优势。可调节孔隙利于过滤,这是因为只有小于孔隙的物质才可以过滤出去。通过控制氧化性介质添加时间,可进一步控制石墨烯孔隙的大小。二是将薄膜边缘朝上,这样物质就可以穿过石墨烯之间的层间距。这种方法主要用于海水淡化,因为石墨烯的层间距小于海水中的水合离子,可利用多层石墨烯氧化物来进行过滤。与其他材料相比,石墨烯存在不足:石墨烯与沸石的孔隙大小类似,而沸石已经应用于渗透蒸发脱盐,并且最新的研究证明沸石也可通过反渗透进行海水淡化。此外,沸石的孔隙率比石墨烯可控性更高。◆DNA测序石墨烯在DNA测序领域的应用看起来很有前景,但这一市场尚不成熟,现在与其他竞争材料对比还为时过早。石墨烯DNA测序的原理是将基于石墨烯的电子传感器与纳米孔结合使用。让单个DNA分子穿过石墨烯电子传感器,就像一串珠子穿过细小的铁丝网,从而实现实时、高通量的单分子测序。除此之外,还有许多其他类型的DNA测序方法,每种方法在成本、测序时间和准确性方面都各有利弊。相比其他几种方法,石墨烯纳米孔的缺点是吞吐量低,单层测序也不准确,而使用多层石墨烯可以显著提高精度。使用石墨烯进行DNA测序的优点在于可以长时间读取,而不需要将长链DNA分解成小片段。因此,这种方法具有成本低,且便携性高。目前DNA测序方法较多,很难确定哪一个将支配市场。初步调查结果表明,成本和准确性将是最大的驱动力。由于石墨烯传感器具有成本效益优势,因此随着DNA测序在医疗行业中的应用展开,石墨烯有望得到更广泛的应用。◆透明电极透明电极可广泛应用于显示器、触摸屏和太阳能电池等领域,其市场规模超十亿美元。但由于铟的稀缺性,其价格一直上涨,这一行业一直在寻求可替代铟锡氧化物的材料。此外,随着人们对柔性电子技术关注程度的不断提升,相对于刚性易碎的铟锡氧化物,新型透明电极更为追求柔性。而单层石墨烯的透明性和导电性,使其在这一领域的应用相对广泛。石墨烯的厚度和透明度相关。如果在90%透明度时柔性能够达到15Ω/m ,这就基本可适用于所有应用。单层石墨烯可实现这种薄层电阻,而大面积石墨烯,就没有额外的结电阻。由于竞争技术的出现和铟产量的增加,石墨烯在透明电极的应用有限。但石墨烯可用于柔性电子产品,它的表现优于其他纳米技术。随着人们对铟锡氧化物替代品的需求日益增长,一些替代品已经被开发和商业化。石墨烯和铟锡氧化物的主要竞争材料是金属纳米线、碳纳米管和金属网。目前已研究改进提高透明度和结电阻的技术。在过去的10年里,其他材料已实现产业化发展,石墨烯与其相比目前表现不佳。例如,C3 Nano Inc.公司能够实现30Ω/m ,90%的透明度,不足0.6%的模糊度;Rolith, Inc.公司的亚微米金属网能够达到5Ω/m ,96%的透明度,2%的模糊度;而我国无锡石墨烯企业能够实现150Ω/m ,84%的透明度,不足1%的模糊度。石墨烯薄膜可能会减少由于均匀性造成的模糊。石墨烯纳米带性能优于其他材料,其结电阻会降低。石墨烯和纳米技术结合发展比较有前景,这是因为石墨烯可进一步提高结电阻和提高导热系数。◆储能储能可广泛应用于包括便携式电子、汽车和可再生能源的储存等领域。由于环保的要求,可再生能源和新能源汽车的发展将推动这一产业的发展。用于长期放电、快速放电电池和超级电容器需要具有大表面积的材料来积聚和存储电荷。电池的电极也需要高导电性。人们已经开始研究石墨烯在电池和静电双层电容器中的应用。而这些应用中最好使用高品质石墨烯,如三维石墨烯,即石墨烯泡沫和气凝胶。高比表面积能够允许更大的能量容量;微米级孔隙允许电解液快速通过材料。石墨烯,特别是石墨烯泡沫,比现有标准电池优势更为明显。随着人们对储能应用兴趣的提升,石墨烯电极有望广泛应用于电池和超级电容器中。石墨烯在储能领域应用的竞争者是活性炭和石墨。活性炭是一种性价比高、具有高比表面积和纳米级孔隙的材料,这使它成为强有力的竞争者。由于活性炭目前已用于高端电池,石墨烯电极的性能必须非常优异,才能成为新的储能标准。与石墨烯相比,活性炭的主要缺点是孔隙之间的有限连通性,从而限制了电子输运。由于现有活性炭生产方法的限制,基本不可能实现孔隙互联互通的可控性。最近的研究表明,通过将碳源转化为相互关联的碳源,活性炭的性能可显著改善。而利用三维石墨烯改善了石墨烯电极的性能。表面积的增加大大提高了可以储存的能量总量。◆晶体管晶体管是电子学的基础,其研发趋势是更小巧、更有效的晶体管。以石墨烯为开关材料的晶体管在学术界得到了广泛关注。晶体管控制着电子的流动,电子拥有向上的或向下的自旋量子力学性能。石墨烯的高流动性使其具有潜在的场效应。此外,石墨烯能够保持电子在微米层面的自旋能力。石墨烯是不理想的自旋电子主动元件,它具有低自旋轨道耦合性。用石墨烯来操纵电子自旋是不可能的。掺杂石墨烯在自旋—轨道耦合方面有所改进,也就是说,以石墨烯作为自旋晶体管的开关材料仍需进一步创新。由于过渡金属硫化物等竞争材料具有较高性能,石墨烯作为高性能晶体管和自旋电子学活性元素的应用有限,但作为复合强化材料还是很有前途的。石墨烯本质上不是半导体。竞争对手包括各种半导体,从砷化镓等半导体,到二硫化钼等2D半导体。在这一应用石墨烯的主要缺点是,它是一种零带隙的金属。在没有带隙的情况下,石墨烯的关断电流相对较高。引入带隙可以解决这个问题,有2种方法可以实现:掺杂和量子尺寸效应。掺杂的稳定性和石墨烯纳米带的边缘效应都会产生影响。而过渡金属硫化物等半导体二维材料,在作为活性元素的性能方面是优于石墨烯的。而石墨烯在自旋电子学的距离内保持电子自旋的能力是非常罕见的。鉴于这种稀有性,石墨烯很可能实现在这一领域的应用。由于石墨烯不是自旋电子学理想的活性元素,因此需积极研究石墨烯与二硫化钼等复合材料,从而生产自旋电子器件,控制电子自旋。石墨烯产业化发展面临的挑战根据全球新材料研发的历史可以看出,新材料实现商业化成功的途径有2种,一是获得实时利益,二是经过多年研究寻找利基应用,最终发展成为广泛应用。但一种新材料最终会被另一种新材料所取代。石墨烯与这些新材料的不同在于,其应用领域发展快速,而这种快速的增长也会导致更多企业进入市场。石墨烯商业化过程将远快于其他新材料。石墨烯最初的商业产品是对现有产品的迭代改进,如加强头盔和增强现有产品的涂层。这种方法不需要在实验室中找到有利于市场的突破性特性。然而,石墨烯要实现在其他应用领域的广泛使用则需要其性能优于其他竞争材料。据预测,从长期来看,一旦实验室级性能石墨烯实现规模化商业化生产,这些领域的应用将会带来更大规模的石墨烯生产和应用。也就是说,可以实现潜在开创性应用的新型石墨烯目前正实现商业化生产。由于现有生产制备技术的创新,大规模商业化将在未来10年内发生。1. 高品质石墨烯成本过高高品质石墨烯,特别是应用定制石墨烯,供给量低,价格昂贵,将限制石墨烯在短期内的发展。此外,新型石墨烯的批量化生产还需进一步创新,如三维石墨烯、纳米纤维、石墨烯泡沫等。新型石墨烯可用于更多的应用领域,它们的生产对于行业发展至关重要。2. 应用市场过多缺乏聚焦石墨烯的应用领域过多,缺乏聚焦,导致石墨烯发展可能性多种多样,这将限制石墨烯产业的增长率。由于存在不同种类的石墨烯,而每种石墨烯的最理想应用并没有完全研究透,因此探索其所有的应用领域变得至关重要。用于不同应用的石墨烯研发方向多种多样,目前的研究并未聚焦到最有发展前途的方向上。另外,对于复合材料性能优异,发展前景良好。但由于石墨烯发展正处于初级阶段,研发十分困难,这就导致了更长的研发周期。3. 制备和处理工艺的限制为实现产业化,需要利用石墨烯的独特性质,但只有单层无瑕疵石墨烯才具有石墨烯的独特特性。因此,实现高品质石墨烯的生产非常具有挑战性,特别是实现商业化生产。石墨烯各层之间相互吸引,这使得制备石墨烯非常困难,剥离的石墨烯通常都有几层,而不是单层。与碳纳米管类似,要完全剥离出高纯度单层石墨烯,则需要超强酸。而利用CVD法制备石墨烯则更难避免多层。采用成核生长法合成石墨烯,将产生多个晶粒,从而存在晶界缺陷。限制沉积到单层膜也是非常困难的。此外,将石墨烯从催化表面转移到所需的衬底上会导致缺陷。因此,需要克服CVD合成石墨烯的这些挑战急需技术创新。4. 来自其他新材料的竞争石墨烯之所以独特是因为它的性能。但是,由于某些应用只是使用部分性能,因此,每种应用都有较强的竞争技术。对于每种应用来说,都有几种极具竞争力的替代技术。有些优于石墨烯,或是与石墨烯相媲美。这限制了石墨烯在特定领域的应用。全球石墨烯市场发展现状及预测1. 全球石墨烯市场发展现状●石墨烯市场处于萌芽状态由于石墨烯在十多年前才研发出来,目前石墨烯市场还处于萌芽状态,主要包括一些生产和供应企业。据最近关于石墨烯的市场报告显示,在过去几年中,石墨烯产业呈现快速稳定的增长态势,近期年均复合增长率超过30%,高达60.7%。目前企业的收入主要来自于研发类生产企业,而所有经营最终产品的下游应用初创企业几乎没有收入。虽然整个行业的销售有所增长,但个别石墨烯生产公司没有像先前预测的那样做得好。石墨烯生产技术的迅速发展导致了石墨烯生产商大量使用专有技术。一些石墨烯制造商却惨遭淘汰。达勒姆石墨烯科技公司拥有一个专有的自下而上合成方法,盈利400万美元,但4年后倒闭。此外,通用石墨烯公司也盈利870万美元。grafentek公司已经从生产石墨烯转型为生产透明导电氧化物/金属氢化物。●石墨烯生产企业股票表现欠佳尽管市场总体增长,但石墨烯和石墨生产商的股票一直在萎缩。这主要包括几个原因:一是许多关于石墨烯炒作和大型供应企业倒闭的新闻报道增加,人们对石墨烯发展的狂热预期幻灭;二是缺乏商业产品。与其他纳米技术公司一样,由于炒作被搁置,企业尚未实现大范围收购,股票价格从最高估值急剧下降。而一旦石墨烯开始产业化应用,预计石墨烯市场将增长。随着新加入者不断涌现,收购可能成为当前大企业保持市场地位的关键。2. 全球石墨烯细分应用领域市场增长预测预计在未来10年,随着石墨烯应用实现产业化,石墨烯行业将快速增长。石墨烯的应用推动力将从大学实验室转向大型企业。而复合材料、储能、水净化和音频等应用领域将获得最大程度增长。石墨烯产业最大的细分领域将是替代碳纤维在航空航天领域的应用。2020年以后,随着产业化应用领域的发展,特别是海水淡化技术的兴起,研发机构对石墨烯的需求将稳定增长,并成为石墨烯产业应用中规模较小的一部分。●轻量化复合强化材料领域预计在未来几年内,复合强化轻量化材料领域将以5%~10.6%的年均复合增长率增长,复合材料在航空航天领域应用将实现30亿美元产值,在汽车复合材料领域应用将实现产值140亿美元。这一领域产业发展的重点抢占高端轻量化应用市场份额,现有应用市场主要以碳纤维为主,其在航空航天复合材料领域市场份额达到73%,在汽车复合材料领域市场份额达到3%。未来石墨烯市场份额的抢占很可能取决于石墨烯气凝胶和交联氧化石墨烯膜的生产。在这2个领域,石墨烯的技术优势远超其他竞争技术。尽管复合材料产品已经开始应用,但航空航天领域应用的大幅增长预计需要3~7年;而汽车领域应用的大幅增长则需要5~10年。因此,未来需准确评估航空航天领域应用所能带来的收益;严格控制3D石墨烯生产加工,以确保材料的一致性和可靠性。随着3D石墨烯或纤维复合材料不断研发,石墨烯的市场份额将进一步增加。●音响设备领域音箱的小型化使得石墨烯在消费电子产品领域的应用增长,预计年均复合增长率达到17%。3D石墨烯可实现更薄、更小、更高效的音频驱动,因此3D石墨烯的可靠生产将进一步提高其市场份额。在未来3~5年,随着小型节能部件领域对石墨烯需求的增长,预计石墨烯在这一领域的应用将迅速增长。●储能领域未来几年,石墨烯在电池负极市场应用将实现3亿美元产值,年均复合增长达到24%;在超级电容器市场应用将实现1.4亿美元,年均复合增长率达到11%。石墨烯泡沫或其他微孔三维石墨烯将广泛应用,其性能将超越目前需要替代的能源存储电极材料。未来为扩大市场份额,需要改进现有3D石墨烯的生产,降低成本。随着电动汽车的广泛应用,对大容量电池的需求快速增长,以及包括再生制动和太阳能输出功率等应用需求的增长,对超级电容器需求的提升,预计石墨烯在这一领域的应用将在未来3~5年快速增长。●水净化领域未来几年,石墨烯在水净化领域应用的市场将达到120亿美元,年均复合增长率将达到13%。海水反渗透脱盐需要低成本、高通量渗透膜,而海水净化占这一领域市场的70%以上。只要全海水淡化系统的产量迅速上升,石墨烯就很有可能迅速占领市场份额。预计石墨烯将在未来3~5年内实现产业化应用,这期间需要一个较长的孵化期。随着石墨烯实现规模生产,在2020后将实现快速增长。3. 全球石墨烯市场空间预测到2025年,石墨烯在多个领域的应用有望实现快速增长,2017-2025年平均增长率达到72.8%(详见图)。这预示着特定领域应用的石墨烯生产将快速增长,在最有前景的应用领域使用的石墨烯、碳纤维或其他标准材料市场占有率将迅速增加。在后几年中,石墨烯的市场应用采纳率预计会增加,因为产业发展中期推出的初始产品将大大超过竞争对手。而在3D石墨烯实现规模化生产之前,任何意外的延误都会延缓这种快速增长。图 2017-2025年全球石墨烯市场空间预测石墨烯产业发展趋势展望1. 石墨烯生产趋势展望高质量石墨烯规模化生产的困难导致其生产成本较高。目前的生产趋势:一是努力克服高质量石墨烯批量生产加工的局限性。现有客户大部分都来自于学术或其他研究机构,由于其消费量较低,因此带来了潜在的石墨烯供给过剩。尤其是一些本已盈利数百万美元的石墨烯生产企业纷纷倒闭,这一事实更是印证了人们对此的判断。大部分石墨烯生产企业纷纷拓展业务,实现多元化生产,进行新应用产品生产,或投资应用企业。二是现有利基石墨烯的生产,如交联氧化石墨烯、3D石墨烯、纳米薄片、纳米带、量子点。所有这些石墨烯都只在研究初期,未来可用于某些应用,而基础石墨烯正逐步产业化。2. 石墨烯应用领域增长点展望由于现在已有大量企业涉足石墨烯生产领域,而且基于新的生产方法,未来还有更多的企业进入,石墨烯的生产制备还未达到预期的快速增长速度。未来还需要杀手锏级的应用来实现快速增长。●增长点一:更轻更小的储能设备石墨烯在更轻更小储能设备领域的应用将带动石墨烯生产、设备集成等应用领域的发展。电池的创新已落后于其他先进消费电子领域的创新。未来将进一步研发应用具有高导电性和多孔电极的大容量电池和超级电容器;研发新型石墨烯,如3D石墨烯,能够在保持高导电性的同时,实现表面积最大化,目前研发机构正在进行3D石墨烯的潜在规模化商业化研发,需要进一步转化成商业化应用;研发新型石墨烯在能源存储设施的应用;进一步提高高纯石墨烯的制备方法;在替代现有标准方面,这些能源存储设备的新性能将至关重要。●增长点二:复合强化轻量化材料石墨烯在超轻量化复合材料领域的应用将带动石墨烯生产、设备集成、商业化销售等应用领域的发展。石墨烯泡沫和石墨烯气凝胶是最轻最强的材料,这些材料可在现有应用领域替代其他诸如碳纤维等轻量化材料,其应用范围可覆盖从航空材料的轻量化到消费电子的高效播放器等领域。新型石墨烯将进一步实现规模化商业化发展。因此,需要石墨烯生产企业和应用企业进一步加强合作。随着创新的加快和知识产权保护的加强,在其他需要更强轻量化材料领域的应用将进一步展开。
  • 盘点“新材料之王”石墨烯的检测方法及标准
    石墨烯是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的平面二维材料,是目前发现的最薄却最坚硬的纳米材料,具有优异的光学、热学、电学、力学特性,在新能源、大健康、电子信息、节能环保、生物医药等领域应用前景广阔,被称为“新材料之王”。2004年,英国曼切斯特大学物理学家安德烈• 海姆和康斯坦丁• 诺沃肖诺夫成功从石墨中分离出石墨烯,引发学术界轰动,两人也因此获得2010年诺贝尔物理学奖。自此,全球掀起了持续至今的石墨烯研究热潮。作为新兴材料,石墨烯一直备受关注,但也屡屡成为被炒作的话题;各类石墨烯“黑科技”层出不穷,真假难辨。前段时间,某品牌电动汽车宣称其石墨烯基电池,充电8分钟,续航2000里。次日,中科院院士欧阳明高就在电动车论坛上公开表示:“如果有人告诉你,这车能跑1000公里,几分钟充满电,还安全,成本又低。以目前的技术来讲,他一定是骗子”。该品牌随即发表声明,声称充电快的是石墨烯基超级快充电池,长续航的是硅负极电池。除此之外,市面上还有石墨烯面膜、石墨烯袜子等日消品,可谓“万物皆可石墨烯”。而现实情况是,石墨烯低成本规模化制备技术存在技术瓶颈,其制备成本高,价格远超黄金。广告上石墨烯的噱头,更多只是为了迎合消费者的猎奇心理,收割一波“智商税”。如何规范这一不良现象?业界普遍认为,石墨烯行业亟需统一的国家标准,通过检测认证正本清源。为促进石墨烯产业健康发展,本文特汇总石墨烯的常用检测方法与已发布的国家标准,供相关检测人员参考。石墨烯常用检测方法石墨烯的检测仪器主要分为图像类和图谱类,图像类以光学显微镜、扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)为主,而图谱类则以拉曼光谱(Raman)、红外光谱(IR)、X射线衍射仪(XRD)、X射线光电子能谱(XPS)、紫外光谱(UV)为代表。其中,光学显微镜、SEM、TEM、Raman、AFM 一般用来表征石墨烯的层数;SEM、TEM、AFM能够对石墨烯的表面形貌进行观察分析;而Raman、IR、XRD、XPS和UV则可对石墨烯的结构进行表征。此外,热重分析仪、激光导热仪、激光粒度仪、比表面及孔径分析仪等仪器也用来测试石墨烯的热稳定性、粒度、比表面积等物理性质。每种检测方法都有各自的优势和局限性。在实际研究中,为提升检测精准度,几种表征手段往往联合使用,测试结果可互相对比、印证,进而为石墨烯的大规模生产和应用提供科学的保障。同时,随着石墨烯研究的不断推进,其检测方法将越来越丰富。已发布的石墨烯相关国家标准序号标准编号标准名称发布日期实施日期1GB/T 30544.13-2018纳米科技 术语 第13部分:石墨烯及相关二维材料2018-12-282019-11-012GB/Z 38062-2019纳米技术 石墨烯材料比表面积的测试 亚甲基蓝吸附法2019-10-182020-09-013GB/T 38114-2019纳米技术 石墨烯材料表面含氧官能团的定量分析 化学滴定法2019-10-182020-09-014GB/T 40071-2021纳米技术 石墨烯相关二维材料的层数测量 光学对比度法2021-05-212021-12-015GB/T 40069-2021纳米技术 石墨烯相关二维材料的层数测量 拉曼光谱法2021-05-212021-12-01GB/T 30544.13-2018是我国首个石墨烯国家标准,该标准界定了石墨烯及相关二维材料的术语和定义,包括制备方法、特性及其表征。此标准的制定和实施,为产业界和学术界交流提供了统一的技术语言,是开展石墨烯各种技术标准研究及制定工作的重要基础及前提。石墨烯材料比表面积大,拥有强大的吸附性能,在储能、催化、传感及水处理等能源、化工和环保领域有着广泛的应用。不同方法制备的石墨烯材料比表面积存在较大差异,因此,准确测定石墨烯材料的比表面积对其应用至关重要。GB/Z 38062-2019规定了亚甲基蓝吸附法测定石墨烯材料比表面积,即利用石墨烯材料在液相中吸附亚甲基蓝,通过吸附前后亚甲基蓝溶液的吸光度变化来计算出石墨烯材料的比表面积。石墨烯粉体材料在制备或应用改性过程中,可能引入一些含氧官能团,如羧基、内脂基、酚羟基和羰基等。这些含氧官能团对石墨烯粉体材料的电子特性、润湿性、导电性、导热性及化学反应活性等性能有着重要影响。因此,测量含氧官能团的种类和含量,对石墨烯粉体材料质量控制和应用具有十分重要的指导意义。GB/T 38114-2019规定了一种低成本、重复性好、操作简便的Boehm滴定法,Boehm滴定法根据碱性试剂的消耗量,可计算出石墨烯粉体材料表面的羧基、内酯基、酚羟基和羰基的含量。石墨烯的层数是影响其性能的关键参数,准确测量石墨烯的层数对于材料的研究、开发和应用意义重大。光学对比度法与拉曼光谱法因其快速、无损和高灵敏度等优势,被广泛应用于测量石墨烯的层数。GB/T 40071-2021规定了光学对比度法(包括反射光谱法和光学图片法)测量石墨烯相关二维材料的层数的步骤、仪器参数要求、数据分析、层数判定准则。GB/T 40069-2021规定了拉曼光谱法测量石墨烯相关二维材料层数时的样品制备、仪器参数要求、表征步骤、图谱分析及结果表示等内容,并列出基于本标准规定的方法测量某几个石墨烯薄片样品的实例。每一个新兴产业的发展,都不可能一蹴而就。当前我国石墨烯产业的发展正处于关键节点,只有建立和遵循完善的标准化体系,才能保证产品的质量,促进石墨烯产业安全、有序和健康地发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制