光学成像设备

仪器信息网光学成像设备专题为您提供2024年最新光学成像设备价格报价、厂家品牌的相关信息, 包括光学成像设备参数、型号等,不管是国产,还是进口品牌的光学成像设备您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光学成像设备相关的耗材配件、试剂标物,还有光学成像设备相关的最新资讯、资料,以及光学成像设备相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光学成像设备相关的厂商

  • 深圳市众寻光学仪器有限公司是专业从事显微镜及显微数码成像产品研发、生产与销售的高科技公司,拥有自己的品牌“众寻”,并具有完善的售后服务体系,可提供及时快捷的显微数码成像产品的技术支持与维修服务。众寻光学的销售体系已遍布全国各地,众寻人踏实淳朴,诚实信用的做事风格,已使得众寻光学成为中国市场上极具实力的显微镜供应商。正如众寻人的口号所说的,“众里寻他,无微不至”,众寻人一直在努力着,成为你在茫茫显微镜商海中寻找到最合适的那个“他”。我们坚信客户的满意,才是我们成功的动力,成为中国最专业的显微镜供应商也是我们不断追求的目标。众寻人期待着与大家一起努力,振兴民族光学。
    留言咨询
  • 400-860-5168转6102
    广州研锦仪器设备科技有限公司是一家致力于更智能、更高效实验室解决方案的高新技术企业。主要经营: 提供从基础到专业实验室设备;智能样品前处理设备、实验室自动智能平台设备;光学成像解决方案等。 公司集研发、生产、销售和售后维护服务为一体,并建立了严格的品质控制和全方位的客户服务体系。 我们将努力发展新的实验室技术,增强用户体验,以满足广大实验室客户的需求。为全国的用户提供更智能更高效的实验室产品和至满意、便捷的服务!
    留言咨询
  • 400-869-1959
    海洋光学——微型光纤光谱仪的发明者及领导品牌海洋光学隶属于蔚海光学仪器(上海)有限公司,以下简称海洋光学。完整的产品质量控制体系:由于微型光纤光谱仪产生过程中的技术特点有别于一般工业品,产品生产流程以及出产检测拥有严格的把控,在保证优秀性能的同时,客户在使用过程中稳定性和一致性也能得到充分保障。海洋光学拥有来自包括ISO、CE以及ROHS体系的多重认证。拥有光谱仪核心竞争力:海洋光学光纤光谱仪的众多元件在生产过程中都会进行特殊的镀膜加工处理,该技术对产品的性能以及品质起到重要作用,使我们的产品在二十多年的产品竞争中始终保持行业领先地位。完整的产品线:拥有同行业最全的产品线供自由组合搭配使用,解决客户各类采样需求;稳定、精准的光源产品拥有极大的市场份额;产品的配套软件满足客户各项功能需求。定制化光谱解决方案(OEM业务):拥有专业的本地化研发团队。帮助客户快速、低风险地将想法转化为产品,并在产品开发以及上市过程中提供紧密的支持。 海洋光学作为世界领先的光学解决方案提供商,专注于生物、医药研究,环境监测,生命科学,教育,娱乐,照明及显示,工业控制等领域。我们的产线包括光谱仪,化学传感器,光纤等。作为光纤光谱仪的发明者,至今我们全球已售出超过40万套的光纤光谱仪。背景海洋光学成立可追溯到1989年,当时南佛罗里达大学的研究者发明了一种光纤PH传感器,来研究海洋对全球变暖的影响,并很快成立了海洋光学公司。他们初创性的工作赢得了美国能源部一笔小企业创新研究基金(SBIR)支持。研究者们想找到一款小型光谱仪,足够小来配合他们的PH检测器,一起集成到海洋上的浮标上,确发现没有这么小的光谱仪。1992年,他们发明了自己的微型光纤光谱仪,填补了这一空白:体积只有传统大型光谱仪的千分之一 ,价格只有十分之一。1992年4月份,也即SBIR基金第二阶段完成后的30天,海洋光学推出了S1000。随着体积的巨大缩减,及成本价格的大幅降低,传统上一些检测项目也变得更实际可行。20多年已经过去了,我们世界范围内已售出超过40万套系统,上千种不同应用---从癌症检测,颜色测量,等离子体监控,粒度分析直到海底,火山检测,火星车火星矿物检测。市场细分 主要市场包括消费电子,过程控制,环境检测,生命科学,医疗诊断。我们的仪器系统应用无处不在,从动植物活体,到海洋底,到火星车,空间站到佛罗里达橙园,到南美热带雨林。光谱技术领域包括 UV-VIS-NIR紫外可见近红外光谱 在线光谱系统 颜色光谱 拉曼光谱 荧光光谱 光纤光化学传感 光谱建模 光谱成像主要产品及服务 紫外可见近红外光纤光谱仪,包括:微型,模块化,过程分析系统 低成本拉曼光谱仪用作在线控制等 光纤光化学传感用于氧含量及PH检测 ,滤光片等用于显示及通讯等 光纤、配件及光纤探头等。更多详情,请访问公司的主页:https://www.oceaninsight.cn/
    留言咨询

光学成像设备相关的仪器

  • 首创、独有的纳米红外功能和性能Bruker公司推出的Dimension IconIR是一款集合了纳米级红外光谱(nanoIR)技术和扫描探针显微镜(SPM)技术的系统。它整合了数十年的技术创新和研究成果,可以在单一平台上提供无与伦比的纳米级红外光谱、物理和化学性能表征。该系统具有超高的单分子层灵敏度和化学成像分辨率,在保留DimensionIcon最佳的AFM测量能力的同时,还提供了极大的样品尺寸灵活性。Dimension IconIR利用Bruker独有的PeakForce Tapping纳米级物性表征技术和专利的纳米红外光谱技术,使得它能够在纳米尺度下对样品进行纳米化学、纳米电学和纳米力学的关联性表征。只有Dimension IconIR具备:与FTIR完全吻合的红外光谱,优于10 nm的空间分辨率和单分子层灵敏度的高性能纳米红外光谱化学成像可与Peakforce Tapping纳米力学和纳米电学属性表征相关联高性能的AFM成像功能和极大的样品尺寸灵活性广泛适用的应用配件和AFM功能模式专利技术保证真实的红外吸收光谱AFM-IR通过采集样品的热膨胀信号(PTIR)还原样品的红外吸收光谱。由于检测区域的热膨胀只与样品在该波长下的吸收强度有关,而常规的傅里叶红外光谱(FTIR)检测的也是样品在该波长下的吸收强度,因此AFM-IR获得的红外吸收光谱与传统的红外吸收光谱高度吻合。红外吸收成像除采集指定区域的红外吸收光谱外,Dimension IconIR同时提供了固定红外脉冲波长,检测样品表面某一区域在该波长下吸收强度的功能。在该工作模式下,Dimension IconIR会将红外脉冲激光固定在研究者所选的波长,用AFM探针扫描需要检测的表面,记录探针针尖在每个位置检测到的红外吸收强度,并同时给出AFM形貌和该波长下的红外吸收成像。专利保护的接触共振技术专利保护的共振增强技术将测量灵敏度提高到单分子层级别,达到最高的光谱检测灵敏度。因为基于原子力系统的红外技术是以探针来检测样品表面在红外激光作用下的机械振动,随着厚度的减小,这种位移量变得极其微小,超出了原子力显微镜的噪音极限。我们利用专利保护的可调频激光优化脉冲信号频率,使之与探针和样品的接触共振频率吻合,那么这种单谐振子共振模式就能把微弱信号放大两个数量级。。智能光路优化调整,保证实验效率红外激光和AFM联用系统的最大挑战在于光路的优化,为了得到最佳的信号,在实验过程中光斑中心应该始终跟随探针针尖位置并保持良好的聚焦。但是在调频过程中,激光光束的发射角度会随着波长的变化而改变,进而改变光斑位置,聚焦状态也会变化。布鲁克采用全自动软件控制automatic beam steering和自动聚焦系统来修正光斑位置的偏移和聚焦,大大改善了传统联用系统需要手动调节的不便和低效率。同时全自动动态激光能量调整保证信号的稳定性,避免红外信号受激光不均匀功率的影响。
    留言咨询
  • 小动物活体光学成像系统PE小动物活体光学成像系统IVIS Lumina LT是 新推出的第三 代小动物活体光学二维成像平台,该系统具有高灵敏度生 物发光和荧光成像性能。该系统配备高灵敏 CCD 相机、 不透光成像室和全自动化的分析功能。作为小 动物活体成像平台,IVIS 系统包括一整套实验室认可 的实用配件。PE小动物活体光学成像系统IVIS Lumina LT主要性能:1、 高灵敏度生物发光二维成像2、覆盖至近红外光谱波段范围的荧光成像3、基于切伦科夫辐射原理的放射性同位素 成像4、为您量身定制的可扩展工作流程5、市场上全面和的小动物活 体光学成像系统,包括出色的成像技 术、试剂和特点一:定量、灵活、可扩展通过 5 - 12.5 (cm) 可调节视野以及扩展镜头,可将视野范围扩展至 2.5 - 24 (cm)。 利用此功能可以对五只小鼠或两只中等体型大鼠进行同时成像。Lumina LT 也可 进行培养皿或微孔板等体外成像应用。该系统还带有高级的动物操作功能,包 括可加热型动物载物平台、气体麻醉和 ECG 监测系统。特点二:出色的成像结果IVIS Lumina LT 同时具备高质量的荧光和生物发光成像功能,并且滤光片能用于绿光至近红外范围的所有荧光成像。所有 IVIS 仪 器出厂前均经过复杂且严格的光学校准,保证在同一实验条件下,使用不同仪器所获取的成像数据的*性及可重复性,方便不 同用户间的数据验证及交流。此外,Living Image 软件结合仪器校准、背景扣除和图像算法,使用户获得高质量、可重复性的 定量结果。IVIS Lumina LT — 激发和发射滤光片标准配置特点三:可选的多光谱分离成像升级IVIS Lumina LT 提供升级选项,可升级至 Lumina III 系统,通过该系统并且结合纯光谱分析算法 (CPS) 进行多光谱分离。纯 光谱分析算法可以利用生成光谱库的软件工具准确去除自发荧光并实现多光谱成像。该系统可以同时成像多个荧光报告基因,从 而在同一动物体内获得多个生理结果。此升级选项包含 19 个激发滤光片和 7 个发射滤光片,可以对绿光至近红外光范围的荧光 报告基因进行多光谱成像。视野图 1.IVIS Lumina LT 成像系统提供 5 个成像视野。多重报告基因的成像 图 2.对同一动物的多重报告基因成像。使用酶激活型荧光探针Cat B 680 FAST 监测 4T1-luc2 肿瘤模型中组织蛋白酶 B 的活性。OsteoSense 800 靶向骨架结构。双报告基因的成像——高分辨率的离体成像应用。图 3.双报告基因成像——高分辨率应用。患有肺炎球菌性脑膜炎小鼠的细菌荧光素酶 (500 nm) 和 GFAP (620 nm) 脑部成像。Kadurugamuwa et al.,Infection and Immunity,2005 。特点四:专业的活体光学成像分析软件 - Living Image结合的校准和仪器设置,研究者可以长时间监测信号,从而进行纵向观测研究。药物研发实验结果显示(图 4),肿瘤信号在为期 35 天的实验过程中发生了 3 个数量级的变化。利用 Living Image 软件功能,使用者能够进行荧光和生物发光成像。图 4.的校准功能进行长期纵向研究以及将不同实验室的结果进行对比。IVIS Lumina LT 内部配置CCD 相机高灵敏度 CCD,芯片尺寸为 13 x 13 (mm2),像素数量 为 1024 x 1024背照射、背部薄化科学 1 级 CCD 可在整个可见至近红 外光谱上提供高量子效率16 位数字转换器提供广泛的动态范围CCD 以热电方式 (Peltier) 冷却至 -90℃,确保了低暗电 流和低噪音成像暗箱高品质避光成像暗箱高聚光透镜,光圈范围:f/0.95 – f/16成像视野范围:5 x 5 (cm2) - 12.5 x 12.5 (cm2) 可选配扩展至 2.5 x 2.5 (cm2) - 24 x 24 (cm2)8 位发射滤光片转轮可完整升级至 Lumina III 系统用于明场成像的 LED 灯加热型动物承载平台所有部件均为电动控制ECG 监测系统用于平面多光谱成像的选配发射滤光片转轮集成的气体麻醉接口位于成像暗箱内的气体麻醉口可同时对 5 只小鼠进行 持续成像小动物活体光学成像系统" width="300" height="343" style="margin:0px padding:0px font-size:inherit line-height:inherit font-weight:inherit vertical-align:middle background-image:initial background-position:initial background-repeat:initial background-attachment:initial border:0px max-width:100% height:auto max-height:100% "
    留言咨询
  • 皮肤快速光学成像系统AEVA-HE AEVA-HE是一种非接触式方法拍摄局部、全脸和身体皮肤表面形态的系统,该系统提供了一个评估局部、全脸和身体皮肤表面形态的整体解决方案,采用了条纹光投影和立体测量学的3D数字技术。与Visio 4D支架组合起来形成皮肤拍摄系统,实现了受试者的可重复性测试,结果可以给出使用化妆品前后不同时间局部、全脸和身体皮肤形态参数的客观量化指标。欢迎致电:010-62186640
    留言咨询

光学成像设备相关的资讯

  • 2018年光学成像技术市场将达19亿美元
    近日,marketsandmarkets发布了一份新的市场报告,题为“2013-2018年光学成像技术市场报告--光学相干断层扫描、光声层析成像、超光谱图像和近红外光谱技术在临床诊断、临床研究和生命科学领域的技术发展趋势和市场前景分析”。该报告预测到,2012年光学成像技术的市场大约是9.16亿美元,到2018年预计可达到19亿美元,并且从2013年到2018年期间的市场年均复合增长率可达11.38%。同时,该报告还指出美国是主要的光学成像设备市场,其次是欧洲。未来,像亚太和中东这些新兴经济体将是这个市场的驱动力。  虽然光学成像技术仍然处于发展的初期,但是它有许多重要的优势超过现有的放射成像技术。例如,光学成像技术是非扩散性的,无电离辐射,与传统的放射技术相比可以节约可观的成本,而且光学成像技术可以提高诊断的分辨率,它可以得到眼睛、表面组织、粘膜、胃肠道和血管系统等清晰的深层结构图像,能更好地促进诊断在临床医学中的应用。  该报告中的光学成像技术包括光学相干断层扫描技术(OCT)、光声层析成像技术(PAT)、超光谱图像技术(HSI)和近红外光谱技术(NIRS),这些技术在未来五年将推动整个光学成像技术的市场。  当前,OCT占领光学成像技术市场的70%,从2013年到2018年,OCT的市场将按照4%的年均复合增长率增长。OCT被广泛地应用在眼睛、牙齿、心脏和皮肤等的临床诊断,并且现在还将其的应用领域扩展到癌症检测。卡尔蔡司和圣犹达医疗是这项技术的先驱,且几乎所有的设备都与OCT技术有关。  此外,HSI、NIRS和PAT在光学成像技术市场属于新兴的技术。其中,HSI和NIRS目前在皮肤和神经领域被用于生物医学研究和药物开发,而PAT被用于癌症检测。(编译:邓雅静)
  • 2020年全球光学成像市场将达17.5亿美元
    日前,Reportlinker的一份研究报告显示,2015—2020年期间全球光学成像市场将以强劲的复合年增长率增长(12.1%),估计2020年该市场将达到17.5亿美元。制药和生物技术行业科研投入的增加,健康意识的增强而导致的对非侵入性和更安全治疗和诊断方式需求的增加,以及光学成像技术在医学诊断和治疗领域的成功应用等是这个市场的主要驱动力。然而,高成本和大量数据对新技术的要求、医疗设备的严格监管、报销的压力、数据验证的缺乏,以及熟练的操作员的缺乏等阻碍了这个市场的发展。  按照技术原理划分,光学成像市场主要包括光学相干断层扫描(OCT)、高光谱成像(HIS)、近红外光谱(NIRS)和光声层析成像技术(PAT)。光学成像产品市场覆盖成像系统、摄像机、软件、透镜、照明系统和其他光学成像产品。成像系统市场还可以进一步分为光学成像系统和光谱成像系统。  在预测期内,OCT技术将继续主导光学成像市场。OCT的增长主要是由于其成功的临床应用,尤其是在眼科的应用。此外, 药品和生物制药行业药品配方和其他应用中对光学成像技术日益增长的需求也将推动预测期间光学成像市场的增长。  到2020年,北美将占全球光学成像市场最大的份额,其次是欧洲,亚太。相比亚太市场,北美和欧洲等发达地区很可能以较低的复合年增长率增长。预计预测期间,亚太地区市场增长速度最快。  光学成像市场的主要厂商包括Carl Zeiss Meditec (德国), Topcon Medical Systems (美国), Bioptigen(美国), St. Jude Medical (美国), Philips N.V. (荷兰), Canon (日本), Perkinelmer (美国) 等。
  • ACAIC 2023 | 生物光学成像技术创新论坛圆满落幕
    第八届中国分析仪器学术大会(ACAIC 2023)于2023年11月28日-30日在浙江杭州召开,本届大会主题为“分析仪器创新进展、挑战及对策”,为促进行业的沟通与交流,会议邀请了院士、知名学者、青年科技工作者和科技管理人员参会并作学术报告。11月30日下午,生物光学成像技术创新论坛(分论坛九)顺利举行。会议现场邀请到了中国科学院生物物理研究所研究员纪伟、中国科学院苏州生物医学工程技术研究所研究员史国华、上海市高端科学仪器技术创新中心隶创科技主任/教授康怀志、潘安 中国科学院西安光学制密机械研究所副研究员/中心主任潘安、华东师范大学教授陈建刚、复旦大学附属浦东医院科主任/主任医师游庆华六位专家学者为现场观众作精彩报告。为现场观众带来超分辨成像、介观显微镜、人工智能生物光学成像仪、高通量数字成像、超声AI、国产医疗设备创新等精彩报告。报告题目:单分子定位超分辨成像技术进展报告人:纪伟 中国科学院生物物理研究所 研究员报告伊始,纪伟研究员首先向介绍了干涉定位的成像原理,并向大家介绍了ROSE显微镜提升侧向(XY)分辨率、ROSE-Z显微镜提升轴向(Z)分辨率;基于笼式结构的超稳冷冻定位显微镜介绍了冷冻荧光成像的优势,同时介绍了冷冻电子断层成像技术、细胞纳米结构三维成像、结构生物学应用等多项创新技术。纪伟研究员介绍道,基于干涉定位技术研制ROSE显微镜,可实现5纳米XY分辨率量;研制ROSE-Z显微镜,可实现5纳米Z分辨率;ROSE&ROSE-Z显微镜可用于细胞纳米结构解析。基于冷冻定位技术研制冷冻定位显微镜,可实现光电融合成像;冷冻显微镜可用于引导冷冻电镜数据收集;冷冻显微镜可用于引导冷冻电镜样品减薄制备。报告题目:介观显微物镜研究进展报告人:史国华 中国科学院苏州生物医学工程技术研究所 研究员光学在生物医学上具有多种强大的成像模态,这些模态目前都取得了重大进展,对疾病的理解和临床治疗具有重大的影响。随着科研的发展和生物成像需求,人们对光学成像的要求逐渐向更深程度发展,2016年英国的University of Strathclyde提出一种特殊设计的物镜,可实现6mm成像视场下,分辨率达到0.6um,被评为当年度全球物理十大突破,介观显微物镜逐渐进入人们的视野。介观显微介于宏观与微观之间,需要复杂的光学系统设计,专用性强,可以理解为低放大倍率,高数值孔径的物镜,可以对宏观的对象实现微观分辨率。随后史国华研究院介绍了这项技术在以英国、美国、日本等国家为代表的国际领域取得的进展,以及相应的应用领域。目前,医工所也在相关领域取得了一定的进展,并产出了相应的物镜,相比同类型产品检测难度有所降低,更易使用。介观显微镜目前重要的应用领域为智能化数字病理诊断,能够解决临床重大问题,如恶性肿瘤的检测。随后史国华研究员介绍了智能数字式半自动显微镜(Leica DM 4000M)、VENTANA 数字病理切片扫描仪(Roche)等设备,指出介观显微镜主要服务于基础生物技术研究、数字医疗教学、临床病理诊断等领域。最后,史国华研究员也表达了对物镜发展的期待,未来将和课题组成员继续努力,为医疗诊断行业贡献力量。报告题目:人工智能生物光学成像仪器研发与应用报告人:康怀志 上海市高端科学仪器技术创新中心隶创科技主任/教授康怀志主任从图像显示、光学系统、变倍放大、运动控制、实时图像分类、实时图像拼合融合、自动聚焦算法等几个部分介绍了智能生物成像仪器及关键技术。同时指出了高清光学成像系统对设备的光源、透镜、滤光器、探测器等方面的要求。自动变倍放大技术对透镜组的数量和布局、透镜的属性、自动调焦机构等几个方面做出了相应的要求。目前优质的生物光学成像仪器结构具有实时自动扫描、信息网络化、智能一体、服务临床场景等四个方面的功能特点,在主机上方面可以做到结构简单、性能稳定、体积小、操作简单,进而做到独立模块化运作、可拓展、可调配、操作简单。扫描成像及图像拼接可以通过图像匹配技术计算用于匹配参考图像和待匹配图像的特征点,基于特征点进行特征点匹配,最后通过匹配的特征点进行图像融合。仪器主要应用于基础生物技术研究、数字医疗教学、临床病理诊断等方面,是一项重要的诊断工具。报告题目:傅里叶叠层显微成像技术:从高通量数字成像到大规模高内涵药物筛选报告人:潘安 中国科学院西安光学制密机械研究所 副研究员/中心主任高通量数字显微镜在科学研究、医疗健康、药物筛选领域是刚需仪器,数字医疗+人工智能无疑是医疗行业的重要发展趋势。如何在诊疗过程实现高质量读片无疑是一项重要的课题。相比于检验,影像科室,病理科的人员素质要求高,培养周期长,人工读片效率低。而AI病理分析则为这一困境提供了破局之策,相比于人工读片,AI病理分析可以节省70%的时间,成功率平均达到50-60%,但是目前市场上缺乏病理科高质量读片仪器。光学成像的诞生与发展是时代的必然产物。千百年来,人们对长驻影像的渴望和对影像记录和信息传播分享的需求,推动了光学成像技术的变革。可以说,其从无到有、从黑白到彩色、从静态到动画,依托的便是光学成像技术的变革。傅里叶叠层显微成像术证明了并非只有干涉才能记录相位,分辨率可以突破系统行射限制,一个算法完成相位恢复、合成孔径、上采样。傅里叶叠层显微成像术依托光场调控和非干涉相位恢复算法,能够应用于病理学和光学遥感。报告题目:超声AI在临床多科室的应用研究报告人:陈建刚 华东师范大学 教授陈建刚从背景与原理、数字病理学、药物筛选应用、下一步计划等四个方面基于高质量病理重构结果的AI分类与识别。针对术中病理制片时间长,提出基于相位的虚拟染色方法推动科研最后一公里,研发高通量显微镜,服务科学仪器与医疗市场。超声人工智能肺炎辅助诊断技术可以应用于超声人工智能肺炎辅助诊断技术、超声气胸自动诊断技术、下腔静脉自动测验技术、B线自动检测、视神经鞘直径测量、基于流体动力学模型的无创颅内压监测等急救急症,同时,该技术还可适用于麻醉、骨科、中医、肿瘤、消化、产科等领域,具有丰富的适用场景。报告题目:从临床医疗实践角度浅述国产医疗设备的创新方向及系统性评估报告人:游庆华 复且大学附属浦东医院 科主任/主任医师随着人口老龄化和健康意识的提高,预防和早诊早治逐渐成为医疗领域的主旋律,分级分层治疗已是必然,医院端诊疗地位逐渐下降,而医院前端和医院后端医疗市场成为医疗持续增长的最大引擎,但国产化医疗设备却不能满足市场需求,处于尴尬的境地。目前的科学仪器主要用于基础科学研究、实验和分析,极少直接用于临床诊疗。游庆华主任坦言国产医疗设备存在设计工艺差、性能不稳定、准确率不高、缺乏定期疫准和检测等问题。接着,他从技术瓶颈难以克服、资金投入的缺乏、政策支持力度不足等三个方面分析了国产医疗设备面临的困境。同时他指出,国产医疗设备仪器厂商在设计时应面对市场需求,对应用场景和系统性要素评估,不能“闭门造车”,切实满足市场需求。他期待未来医疗检测的筛查数据和结果能够及时上传形成医疗大数据库,为政府和主管部门制定相关政策提供有效的科学支撑。

光学成像设备相关的方案

光学成像设备相关的资料

光学成像设备相关的试剂

光学成像设备相关的论坛

  • 2018年光学成像技术市场将达19亿美元

    近日,marketsandmarkets发布了一份新的市场报告,题为“2013-2018年光学成像技术市场报告--光学相干断层扫描、光声层析成像、超光谱图像和近红外光谱技术在临床诊断、临床研究和生命科学领域的技术发展趋势和市场前景分析”。该报告预测到,2012年光学成像技术的市场大约是9.16亿美元,到2018年预计可达到19亿美元,并且从2013年到2018年期间的市场年均复合增长率可达11.38%。同时,该报告还指出美国是主要的光学成像设备市场,其次是欧洲。未来,像亚太和中东这些新兴经济体将是这个市场的驱动力。http://www.instrument.com.cn/news/20130305/092849.shtml

  • 计算自适应光学技术可实现高清医学成像

    科技日报 2012年04月25日 星期三 本报讯 实时3D微观组织成像技术的出现不啻为癌症诊断、微创手术和眼科等医疗领域的一场革命。据物理学家组织网4月23日报道,美国伊利诺伊大学的研究人员开发出用计算自适应光学系统校正光学层析成像的畸变技术,给未来医疗的“高清”成像带来前景。相关技术成果刊登在最新一期美国《国家科学院学报》在线版上。 美国贝克曼研究所高级科学和技术博士后研究员史蒂芬说:“该技术能够超越现在的光学系统,最终获得最佳品质的图像和三维数据。这将是非常有用的实时成像技术。” 畸变如散光或扭曲困扰着高分辨率成像。其会使对象细点的地方看上去如斑点或条纹。分辨率越高,问题会变得更糟糕。这是在组织成像中特别棘手的问题,而精度对于正确诊断至关重要。 自适应光学可以校正成像的畸变,被广泛应用于天文学来校正当星光过滤器通过大气层的变形。医学科学家已经开始将这种自适应光学系统的硬件应用于显微镜,希望能改善细胞和组织成像。 但伊利诺伊大学生物工程内科医学的电子和计算机工程教授斯蒂芬指出,这同样富有挑战,将其应用于组织、细胞成像,而不是通过大气对星星成像,存在很多光学上的问题。基于硬件的自适应光学系统复杂而昂贵,调整繁琐,故不太适用于医疗扫描。 由此,该团队采用计算机软件来发现并纠正图像畸变,替代硬件的自适应光学,称为计算自适应光学技术。研究人员用此技术演示了大鼠肺组织含有微观粒子凝胶的幻影。用光学成像设备干涉显微镜的两束光扫描组织样本,计算机收集所有数据后,纠正所有的深度图像,使模糊的条纹变成尖锐的点而特征显现,用户可用鼠标点击改变参数。研究人员说:“我们能够纠正整个研究体积的畸变,在其任何地方呈现高清晰度图像。由此,现在可以看到以前不是很清楚的所有组织结构。” 该技术可以应用于许多医院和诊所的台式电脑,可对任何类型进行干涉成像,如光学相干断层扫描。(华凌)

  • 几何光学成像问题请教!!!

    几何光学成像问题请教!!!

    听闻这里藏龙卧虎,特来请教各位一个光学成像的物理问题:如下图所示:(1)A,B为不同入射方向的平行光,照射到一个样品上后,透射出来后经过物镜(凸透镜)作用后,在物镜的右边分别是如何成像的?(2)而如果两束入射光如图二情况,这时在物镜的右边 又是如何成像的?望各位大侠多多指教!!http://ng1.17img.cn/bbsfiles/images/2011/07/201107202212_306129_2342870_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/07/201107202214_306130_2342870_3.jpg

光学成像设备相关的耗材

  • 光学成套元件
    光学成套元件1)用于新品开发,样品试制2)与机械零件配合使用本套产品为精密光学元件,有一系列不同焦距的镜片,可作为光学系统设计评估。可装在C接口元件 成套设备中,也可作为独立的元件使用,每个元件都能在我们的在线目录中找到。Technical InformationList of ComponentsQuantityStock No.Cylindrical Lens - 12.5mm Diameter x 12.5mm FL1#46-193Cylindrical Lens - 12.5mm Diameter x 25mm FL1#46-194Cylindrical Lens - 12.5mm Diameter x 50mm FL1#46-195Cylindrical Lens - 25 x 50mm, 25mm FL1#46-020Cylindrical Lens - 25 x 50mm, 50mm FL1#46-021Aspheric Condenser - 12.7mm Diameter x 15mm FL1#43-370Ball Lens - 3mm Diameter1#43-711Ball Lens - 5mm Diameter1#43-712Rod Lens - 3mm Diameter x 6mm L1#54-088Rod Lens - 5mm Diameter x 10mm L1#54-090Drum Lens - 2.4mm x 3.0mm1#45-549Drum Lens- 4.0mm x 5.0mm1#45-551Right Angle Prism - 10mm1#32-330Right Angle Prism - 20mm1#32-334Silvered Corner Cube - 25.4mm Diameter1#45-187Wedge Prism - 25mm Diameter1#45-557Equilateral Prism - 15mm1#43-493Dove Prism- 15mm x 64mm1#32-553Cube Beamsplitter - 10mm Sq., 50R/50T1#32-601Cube Beamsplitter - 20mm Sq., 50R/50T1#32-504Plate Beamsplitter - 35mm Sq., 30R/70T1#45-324Plate Beamsplitter - 35mm Sq., 70R/30T1#45-326Opal Diffuser - 12.5mm Diameter1#46-105Ground Glass Diffuser - 15mm Diameter1#45-652First Surface Mirror - Protected Aluminum, 35mm Sq.1#45-519First Surface Mirror - Protected Gold, 35mm Sq.1#45-520Plastic Tweezers1#55-238订购信息标题产品号Optical Component Kit#55-486
  • TPX3Cam用于纳秒光子时间戳的单光子快速光学相机 (1.6ns时间分辨高速成像光学相机)
    总览荷兰ASI出品的TPX3Cam是一款用于光学光子时间戳的快速光学相机。它基于一种新型硅像素传感器,并结合了Timepix3 ASIC和读出芯片技术,适用于电子、离子或单光子等需要时间分辨成像的各种应用。TPX3Cam可以很容易地集成在桌上型研究装置中,也可以集成在同步加速器或自由电子激光环境中。使用TPX3Cam,可在速度映射成像设备中测量电子和离子。纳秒级的时间分辨率和数据采集速率使我们能够以前所未有的方式进行测量。TPX3Cam能够在400至1000 nm波长范围内以高量子效率同时对超过1000个光子的闪烁光进行成像和时间戳记。它可以在VMI(速度映射成像)装置中高效地记录撞击在MCP(微通道板)上的离子。 MCP耦合到一个快速P47磷光体屏,该屏产生响应离子撞击MCP的闪烁光。TPX3Cam放置在真空之外,能检测来自磷光体屏的闪光。在TPX3Cam中,所有单个像素都可独立工作,且能对伴随发生的' 事件' 进行时间戳记。 这就将成像传感器变成了快速数字转换器阵列,具有并行作用的空间和时间分辨率,因此可以同时记录多个离子种类,允许进行符合测量和协方差分析。工作波长400-1000nm技术参数优点光敏硅传感器波长范围:400 - 1000nm每像素的同时检测时间(ToA)和强度(ToT)时间分辨率1.6ns,有效帧率 500 MHz无噪声、数据驱动读数,高达80 Mhits/s (10Gb/s)灵活光学设计下图:TPX3CAM能够同时对超过1000个光子进行成像和时间标记,在400到1000 nm波长范围内具有高量子效率。它可以在VMI(速度图成像)配置中有效地记录撞击在微通道板上的离子。MCP与快速P47荧光粉耦合,当离子撞击MCP时,该荧光粉会产生闪光。TPX3CAM,放置在真空之外,可以检测荧光粉的闪光。“在TPX3CAM中,所有单个像素都独立工作,能够对‘事件’进行时间标记。这将成像传感器转变成一个快速数化器阵列,具有空间和时间分辨率,同时发挥作用,因此可以同时记录多个离子种类,从而进行重合和协方差分析。"应用离子和电子成像TPX3CAM的应用包括飞行时间质谱中离子的空间和速度图成像;离子和电子的符合成像,以及其他时间分辨成像光谱类型。TPX3CAM能够以1.6 ns的时间分辨率检测离子撞击并对其进行时标记,从而可以同时记录所有碎片离子的离子动量图像。这种单检测器设计简单、灵活,能够进行高度差分测量。右边的图像显示了CH2IBr的离子TOF质谱,该质谱是在德国汉堡同步加速器的闪光光源下,用TimepixCam(TPX3CAM的之前型号)记录的,在强激光脉冲强场电离后,以及每个探测器的图像在TOF光谱中的峰值。单光子成像强化版TPX3CAM可以是单光子敏感的。在这种配置中,检测器与现成的图像增强器结合使用。应用包括宽场时间相关单光子计数成像(TCSPC),磷光寿命成像和任何需要时间分辨单光子成像的应用。图像(a): 通过TimepixCam获得,TimepixCam是TPX3CAM的前一个模型。图像(b):对于(a)中所示的A1-A4区域,强度是时间的函数(磷光衰减),磷光衰减和拟合的残差具有单指数拟合。 规格传感器材料光敏性增强的硅波长范围400 - 1000 nm探测范围~1000光子/每像素光学传感器活动区域14.1 x 14.1 mm2类型C型接口成像专用集成电路类型Timepix3像素间隔55 µm像素数量256 x 256阈值数量1吞吐量10 Gb/s 的情况下,高达80 Mhits/s1 Gb/s的情况下,高达15 Mhits/s停滞时间读数停滞时间为0时间分辨率1.6 ns有效帧速率 500 MHz像素击中停滞时间~1 µs读出模式数据驱动,通过每像素ToA和ToT检测同步时间和强度其他参数计算机接口1 Gb/10 Gb外部快门控制有外部信号时间戳260 ps重量2.2 kg尺寸(长x宽x高)28.8 x 8 x 9 cm冷却空气采集软件Windows/ Linux/Mac的图形用户界面
  • 选通成像器GOI
    选通成像器GOI是一种微通道板增强和选通控制单幅相机组成的选通成像探测器和门控成像系统,打开18mm直径的阴极孔径最小选通开启时间小于100ps FWHM 打开。选通成像器GOI可以轻松连接到CCD读出系统。可以将多个图像打包在一起,组成多帧图像。选通成像器GOI特点采用全固态电子脉冲发生器,获得超快开关速度。此技术产生的振动小于20ps RMS,并且触发延迟小,一般只有18ns。电子器件的模块化形式提供了方便的选通时间修改服务。有三种操作模式:DC on,慢门(~10μs — 1ms)和快门(100 PS 5ns)。可以被当作一种快速相机或图像增强器。DC模式容易聚焦和设置。快速选通持续时间的设置既可以由提供几个宽度的交换网络完成,或是作为一个特殊选项由一个系统设置,该系统提供与可能的选通长度范围一样的小步骤。接近聚焦晶片管的设计给阴极提供了大像素数。分辨率每毫米优于10线对。晶片管的输入窗口可以是光纤,或者为了扩展的蓝光响应,使用石英。阴极应对850nm光,使用激光二极管(不包括在商品内)轻松地表征特性。该摄像头为50mm见方,总65mm。相机有四种框架版本可用,其中四个探测器头紧密相邻地安装在52mm的方形上(相邻光轴之间的52mm)。选通成像器GOI典型规格?18mm的强化微通道板晶片管。?选通控制阴极进行微通道板电压转换。?阴极S20或S1需要特殊订购?输出窗口光纤?尺寸 50 mm x 50mm x 60mm?分辨率~ 10 lpmm-1?最短选通?选通模式 100ps - 5ns, 10 μ s -1ms 和 DC?单触发激活整个系统,只要18ns。10V, 50 ? 上升时间 选通成像器GOI选项1、胶片输出。2、紫外光。使用紫外光,透镜或镜则必然在石英窗口的背面,内侧的阴极面成像。使用正常的光纤输入窗口,成像必然是在检测器的前面、外面,和监测器上。这样就可以使用光纤束连接检测器头传送图像。3、通光孔径。该系统的普通版本使用门网格输入;Kentech公司还特别提供无网格系统,用于高度相干光源的成像。4、重复率。正常的重复频率为200Hz。Kentech目前提供的重复率可高达10kHz。如果用户可以接受更长的控制时间(亚纳秒),可以考虑选择HRI设备代。5、更大的光圈。使用更大的光圈可以减少响应时间,25mm的减少到150ps ,40mm减少到200ps。6、红外响应。标准系统是S20阴极。Kentech还特别生产S1阴极系统。响应能够符合典型的响应曲线。7、多帧系统。提供多帧系统。标准多帧系统是一个四框架。框架可以有单独的或组合的电子设备或机械。触发序列发生器可设置帧间时间。通常由客户安排光学成像,因为没有标准的应用。8、选通宽度灵活调整。标准型号通常有六个选通宽度,从100ps 到 2ns。Kentech公司提供连续选通宽度调整选项,调整增量小,增幅一样。以后提供的选项会有类似的选通宽度调整,但是调整范围更广,开关速度快,还有计算机接口对获取,调试,选通宽度以及延迟进行控制。9、更短的选通宽度。使用12mm直径的管,可以制成约50ps的选通宽度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制