载体两性电解质

仪器信息网载体两性电解质专题为您提供2024年最新载体两性电解质价格报价、厂家品牌的相关信息, 包括载体两性电解质参数、型号等,不管是国产,还是进口品牌的载体两性电解质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合载体两性电解质相关的耗材配件、试剂标物,还有载体两性电解质相关的最新资讯、资料,以及载体两性电解质相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

载体两性电解质相关的资料

载体两性电解质相关的论坛

  • 【求助】(求助)两性电解质品牌,试剂公司

    各位达人们,小妹刚开始课题,想用两性电解质做些等电聚焦,可是进口两性电解质好像在国内很难找到,联系到好多试剂公司都不是太如意~~~请大家推荐一下两性电解质品牌和可以买到现货的试剂公司吧?谢谢啦!

  • 聚丙烯酰胺凝胶平板等电聚焦电泳测定蛋白质等电点(图)

    一、目的: 学习聚丙烯酰胺凝胶平板等电聚焦电泳测定蛋白质等电点的原理及方法。 二、原理: 等电点聚焦(isoelectric focusing,IEF)或简称电聚(electrofocusing),也曾称等电点分离聚焦电泳等。它是60年代中期出现的技术,克服了一般电泳易扩散的缺点。近年来,等电点聚焦电泳又有了新的进展,可以分辨等电点只差0.001pH单位的生物分子。由于它的分辨力高、重复性好、样品容量大、操作简便、迅速,在生物化学、分类学、分子生物学及临床医学研究等诸方面,都得到广泛应用。 等电点聚焦电泳产生pH梯度的方法有两种:一是用两种不同的pH缓冲液相互扩散,在混合区形成pH梯度,此为人工pH梯度。这种pH梯度不稳定,常用于制备电泳;另一种是利用载体两性电解质在电场作用下形成自然pH梯度。本实验就是利用载体两性电解质形成的自然pH梯度进行蛋白质样品等电焦聚电泳的。 理想的载体两性电解质应该在其本身的等电点处有足够的缓冲能力和良好的导电性,且分子量要小,组成与被分析样品有所区别,对分析样品无变性作用或发生化学反应。常用的载体两性电解质是一系列脂肪族多氨基和多羧基类的混合物,即是一系列的异构物和同系物,分子量在300~1000之间,各组分的等电点(pI)既有差异又相接近,pI的范围在2.5~11之间。合成载体两性电解质的原料是丙烯酸和多乙烯多胺,合成反应如下:http://www.biomart.cn/upload/asset/2008/08/20/1219135758.jpgR1和R2为氢或带有氨基的脂肪基。这一反应的特点是生成众多的异构物和同系物的混合物,而不是均一的化合物。混合物中各成分的含量、等电点的分布,取决于原材料的性质、比例和合成条件。目前常用的载体两性电解质的商品有:Ampholine(LKB公司)、Pharmlyte(Pharmacia公司)、Serralyty(Serva公司),近来已有国产商品了。不同厂家合成的方法不同,电泳的条件也略有不同。目前,载体两性电解质商品在使用时还存在一些问题,如样品中的盐浓度对pH梯度有影响等,但毕竟优点很多,仍然得到广泛应用。 分析载体两性电解质的结构可知,它既有酸性基团(-NH3+ ),也有碱性基团(-COO-),既可接受分子,也可释放质子:http://www.biomart.cn/upload/asset/2008/08/20/1219135757.jpg它们在酸性条件下带正电荷,在碱性条件下带负电荷。当它们所带的正负电荷相等时,其净电荷为零,呈电中性,此时溶液的pH值为该两性电解质的等电点,以pI表示。所以两性电解质的等电点在数值上等于它呈电中性时溶液的pH值。等电点是反映两性电解质在溶液中得失质子的能力,是它的物化性质。两性电解质在溶液中的行为可以从两方面看,一方面溶液的pH决定它带电荷的性质。如溶液是pH7,对pI=9的两性电解质来说,是处于酸性环境,故带正电荷;但对pI=3的两性电解质来说,却是处于碱性环境,故而带负电荷。所以,不同pI的两性电解质,在同一环境中带有不同性质和数量的电荷;另一方面,溶液中的两性电解质又破坏了水的解离平衡:http://www.biomart.cn/upload/asset/2008/08/20/1219135759.jpg使溶液pH有所改变。当某一两性电解质pI较低,即释放质子(H+)能力较强,使溶液pH值下降,这类两性电解质称为酸性两性电解质;反之,pI高的可使溶液pH值上升,称为碱性两性电解质。所以,在溶液中的两性电解质一方面受溶液pH值的影响,决定其带电的性质;另一方面,它又影响周围环境(水溶液),使其pH值有所改变。

  • 凝胶电解质技术进展

    电解液是锂离子电池关键材料之一,采用有机溶剂的电解液在极端情况下会出现漏液问题,并易燃。用聚合物电解质替代电解液被认为是解决上述问题的有效方案。聚合物电解质主要包括凝胶聚合物电解质(GPE)和全固态聚合物电解质(SPE)。全固态聚合物电解质由于常温离子电导率较低的问题一直没有解决,并且成本过高,尚未有商品上市。目前取得商业化应用的主要是凝胶聚合物电解质。凝胶聚合物电解质既有全固态聚合物电解质良好的安全性,又与有机溶剂电解液有相近的离子电导率,并且具有与电极材料间的反应活性低、质量轻、易成薄膜、黏弹性好的特点。因此采用凝胶聚合物电解质的电池可制成各种形状,并具有耐压、耐冲击、生产成本低和易于加工使用等优势。应用于高端数码产品的软包锂电池对轻薄和电池形状的灵活性有较高的要求,是凝胶聚合物电解质最适合的应用方向之一。传统制备凝胶聚合物电解质的原理是利用分子链间存在相互作用力而形成物理交联,再吸入电解液后制成凝胶聚合物电解质。需经过聚合物成膜、造孔剂萃出和电解液浸渍等复杂工序,制出凝胶聚合物电解质膜后再与正、负极按一定顺序组装成电池。随着制备工艺的发展,出现了凝胶聚合物电解质的现场聚合工艺。现场聚合工艺的原理是将聚合物单体和引发剂按一定比例加入电解液中混合均匀,在一定的外界条件下引发自由基聚合反应,单体聚合后即产生网状的立体骨架结构,将电解液均匀固化在网状结构的空隙当中,得到凝胶聚合物电解质。现场聚合工艺优点是电解液含量高,凝胶热稳定性好,电池成品质量稳定。但其未反应的残余单体对电池性能的影响不容忽视,并且聚合反应精确控制的难度较大。现场聚合工艺具体可分为热引发现场聚合工艺与非热引发现场聚合工艺,而前者更为常见。其中中国科学院物理研究所、比亚迪股份有限公司、三洋株式会社及三星SDI 株式会社等均有相关专利。相比传统制备工艺的繁琐,现场聚合工艺将电解质的制备与电池组装一步完成,有效降低了生产成本,提高了生产效率。

载体两性电解质相关的方案

载体两性电解质相关的资讯

  • Nature Nanotechnology:冷冻电镜对固体-聚合物电解质界面表征
    固态锂金属电池在电动汽车应用中越来越受欢迎,因为它们用更安全的固态电解质代替易燃液体电解质,这种电解质还提供更高的能量密度和更好的抗锂枝晶形成的能力。固体聚合物电解质 (SPE) 因其可调节的机械性能和易于制造而成为极具前景的候选材料;然而,它们对锂金属的电化学不稳定性、中等的电导率和对Li/SPE中间相知之甚少阻碍了在实际电池中的广泛应用。特别是,与SPE相关的低库仑效率(CE)的起源仍然难以捉摸,因为关于它是否源于不利的界面反应或锂枝晶生长和死锂形成的争论仍在继续。在这项工作中,我们使用最先进的冷冻电镜成像和光谱技术来表征界面的结构和化学性质,和基于聚丙烯酸酯的SPE。与传统知识相反,我们发现由于沉积的锂枝晶与聚丙烯酸骨架和丁二腈增塑剂之间的持续反应,没有形成保护性界面。由于反应引起的体积变化,在锂枝晶内部形成了大量具有应力-腐蚀-开裂行为的裂纹。在此观察的基础上,我们利用液体电解质的知识引入添加剂工程,并证明使用氟代碳酸亚乙酯可以有效地保护Li表面免受腐蚀,从而产生致密堆积的Li0具有保形和稳定的固体电解质界面膜的圆顶。由于 1.01 mS cm-1的高室温离子电导率、0.57 的高迁移数和稳定的锂-电解质界面,这种改进的 SPE 提供了99%的优异锂电镀/剥离 CE 和 1,800 小时的稳定循环在 Li||Li 对称电池中(0.2 mA cm -2 , 1 mAh cm-2)。这种改进的阴极稳定性以及高阳极稳定性使得 Li||LiFePO4的循环寿命达到创纪录的 2,000 次循环,Li||LiCoO2全电池的循环寿命达到 400 次。使用基线 SN-SPE 电镀的含锂枝晶的 3D 形态和化学性质a、b、低温 HAADF-STEM 图像 ( a ) 和基于 HAADF-STEM 图像的低温断层扫描获得的代表性细丝的3D 重建 ( b )。c , a中细丝的 3D 横截面分析。d,来自不同区域的几种细丝的 EDS 图。结果表明,O、C、N、S 和 F 分布在整个灯丝的所有位置。e,灯丝的 EELS。在光谱中识别出 C、N 和 O 物种。a , b , 低温 HAADF-STEM 图像和 EDS 图:比例尺,指定区域的 3 μm ( a ) 和 4 μm ( b )。O、C、N、S和F在圆顶表面的富集表明形成了致密且均匀的SEI。c,镶嵌SEI的低温原子分辨率TEM图像,该镶嵌SEI由具有不同晶体取向的密集排列的纳米级域组成。(红色圆圈表示晶畴,红线表示晶格平面的取向。)d,SEI 内的 Li2O 纳米晶体的原子结构。晶面的晶格间距。纳米晶体由线和箭头表示。插图显示了盒装区域的快速傅里叶变换。FEC-SPE 衍生的 SEI 的化学成分和电化学性能溅射时间为 0 分钟和 10 分钟的 FEC-SPE 衍生 SEI 的a – c、 F 1 s ( a )、O 1 s ( b ) 和 C 1 s ( c ) XPS 光谱。LiF、Li 2 O和Li 2 CO 3被确定为SEI组分。d、e、XPS 定量分析源自 FEC-SPE ( d ) 和 SN-SPE ( e ) 的 SEI。FEC-SPE 衍生的 SEI 表现出更高的 F 含量和更高的 S 含量。F, 在 50 °C 下用原始锂金属测试的 FEC-SPE 的临界电流密度。Li||SPE||Li对称电池在升压电流密度下循环,在3.2 mA cm -2之前没有发生短路。充放电时间固定为0.5小时。g,在 PNNL 协议下测试的锂剥离/电镀 CE。h ,在0.1 mA cm -2、0.1 mAh cm -2和室温下循环Li||FEC-SPE||Li电池时的EIS演变。在循环 18 小时后实现了低且恒定的电荷转移电阻。制备的 SPE 在大面积容量条件下的 Li 沉积形态和电化学行为采用不同正极材料、面积容量和 N/P 比的 FEC-SPE 基全电池的室温性能a,Li||FEC-SPE||LFP 电池在 0.5C 下的循环稳定性。LFP 的面积质量负载为2 mg cm -2。b,Li||FEC-SPE||LFP 电池在 0.5C 循环下第 1、500、1000、1500 和 2000 次循环的充放电曲线。c – e,长期循环稳定性 ( c )、充放电曲线 ( d ) 和Li||FEC-SPE||LiCoO 2电池在 22 °C 下的倍率性能 ( e )。LiCoO 2面积负载为~5 mg cm -2。f,具有有限Li阳极(2 mAh cm -2)和LiCoO 2的低N/P比电池性能阴极(~5 mg cm -2)。电池在 22°C 和 0.5C 下循环。g ,具有商业高负载LiFePO4和NMC811阴极的FEC-SPE基固态电池在低N/P比条件下的循环性能。电池在 0.2C 和 22°C 下以 5 mAh cm -2的 Li作为阳极进行循环结论在这项工作中,我们发现了 Li 负极的降解机制。我们发现,由于缺乏稳定的 SEI,Li 负极会由于副反应和体积变化引起的应力腐蚀而降解。通过使用冷冻电镜成像和光谱技术,我们彻底研究了固体聚合物电解质和Li 负极之间的固体-电解质界面的结构和化学性质。以此表征为指导,我们通过增材工程成功开发了一种新型 SPE 来控制 SEI 的形成,并最终证明了新型 FEC-SPE 在全电池中的应用,实现了长循环寿命( 2,000 次循环)、高电流密度和高面积容量。我们发现,固体聚合物电解质中的 FEC 添加剂可产生主要包含无定形 F 相关物质的富 F SEI,这最终可以在提高 Li 0负极的可逆性方面发挥重要作用。这项工作还为固体聚合物电解质提供了一种设计策略,即通过添加剂工程控制 SEI。论文信息论文题目:Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries通讯作者:Ruoqian Lin,Xiao-Qing Yang ,Kang Xu & Huolin L. Xin通讯单位:美国纽约州厄普顿布鲁克海文国家实验室化学部,美国陆军研究实验室,美国加州大学尔湾分校
  • 【前沿快讯】刀片式研磨机用于全固态电解质前驱体的制备
    全固态锂离子电池因为采用固体电解质,不含易燃、易挥发组分,彻底消除因漏液引发的电池冒烟、起火等安全隐患,被称为最安全的电池体系。固体电解质是全固态锂离子电池的核心部件,硫化物固体电解质因为高离子电导率、合适的电化学窗口以及较好的力学性能而受到广泛关注。目前,制备含硫固体电解质的方法一般采用振动球磨法长时间球磨混合前驱体原料后,再高温煅烧而获得。深圳大学田冰冰教授团队首次报道了一种创新的制备含硫固体电解质的方法:采用刀片式研磨机高速混合前驱体原料,仅需不到5分钟,即可进入煅烧步骤制得含硫固体电解质。通过此法制得的硫化物固体电解质离子电导率高达20 mS cm-1,组装成固态电池后测得在0.1C电流密度下,比容量达到165 mA h g-1,同时,具有良好的倍率性能和循环寿命。如下为文献[1]中提到的刀片式研磨机高速混合与传统球磨方法的优势对比:制备方法传统球磨高速研磨混合设备行星式球磨机高速刀片式研磨机混合方式球磨刀片研磨最大处理量50g500g转速180/360rpm10000-25000rpm耗时重复次数1-2h10-20次25s6次煅烧条件取10-20g置于密封石英管中460-555℃×16h取100-300g置于氧化铝坩埚中460-555℃×16h显然,采用高速刀片式研磨机混合前驱体,处理量增大了近十倍,且缩短了研磨时间,大大提高了制备效率。IKA Multidrive control研磨机是一款采用了德国先进制造工艺的高速刀片式研磨机,可满足各种需要高速研磨或高速混合的应用场景。 关于IKAIKA 集团是实验室前处理、分析技术、 工业混合分散技术的市场领导者。电化学合成仪、磁力搅拌器、顶置式搅拌器、分散均质机、混匀器、恒温摇床、恒温培养箱/烘箱、移液器、研磨机、旋转蒸发仪、加热板、恒温循环器、粘度计、量热仪、生物反应器、化学合成釜、实验室反应釜等相关产品构成了IKA 实验室前处理与分析技术的产品线;而工业技术主要包括用于规模生产的混合设备、分散乳化设备、捏合设备、以及从中试到扩大生产的整套解决方案。IKA 还与全球知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。我们致力于为客户提供更好的技术, 帮助客户获得成功。IKA 成立于1910年,集团总部位于德国南部的Staufen,在美国、中国、印度、马来西亚、日本、巴西、韩国、英国、波兰等国家都设有分公司。 艾卡(广州)仪器设备有限公司是IKA 集团于2000年设立的全资子公司,主要负责为中国和蒙古国提供产品、技术和服务支持。
  • 可令锂电池更安全的新型聚合物电解质
    p style="text-align: center "/pp style="text-align: center "strongimg src="http://img1.17img.cn/17img/images/201806/insimg/a9849a7c-1457-4d49-ab26-81b4bbc2cb08.jpg" title="A solid polymer electrolyte film that’s being utilized in lithium batteries.jpg" width="300" height="161" border="0" hspace="0" vspace="0" style="width: 300px height: 161px "//strong/pp style="text-align: center "span style="color: rgb(0, 0, 0) "strong由Zhu博士领导的研究中锂电池上正在使用的固体聚合物电解质薄膜。/strong/span/pp style="text-align: center "span style="color: rgb(0, 0, 0) "strong图片来源:阿克伦大学。/strong/span/pp  span style="color: rgb(255, 0, 0) "strong嵌入式医疗设备、无人驾驶飞行器、电动汽车/strong/spanstrong和span style="color: rgb(255, 0, 0) "其他类似产品/span的电源,对它们的性能至关重要。/strong/pp  那么,如果像锂电池这种能量储存装置没有如预期工作,会发生什么呢?一辆电动或混合动力汽车将无法使用,急需的生物医学器具会耽误病人的健康。/pp  这些都是聚合物科学教授Yu Zhu博士和其他科学家共同努力避免的后果。/pp  Zhu的研究小组的论文题目为strongi“一种超离子导体导电的,电化学稳定的双盐聚合物电解质”/i/strong,可以在《焦耳》,细胞出版社的前瞻性期刊上浏览,该刊物涵盖各个领域的能源研究。/pp  Zhu和他的研究团队发明了一种固体聚合物电解质,可用于锂离子电池,以替代现有的液体电解质,可提高锂电池的安全性和性能。/pp  Zhu谈到,strong由于电极的高界面电阻和低离子导电性,固体电解质并未在锂电池领域进行市场推广/strong。然而,Zhu和他的团队发现,span style="color: rgb(255, 0, 0) "室温条件下,一种双盐基聚合物固体电解质在锂电池电极材料和超离子导体导电性方面表现出优异的电化学稳定性/span。/pp  span style="color: rgb(31, 73, 125) "i“长期以来,人们一直考虑将固体电解质用于锂离子电池,因为它的阻燃性,高机械强度,可能会减轻电池故障造成的灾难。电池的安全性和能量密度是锂电池新兴应用领域的主要问题,比如在电动汽车中的使用。/i/span/ppspan style="color: rgb(31, 73, 125) "i  如果固态聚合物电解质得到成功开发,电池的能量密度将会翻倍,锂电池的安全问题也会被消除。这项研究为开发具有前景的锂电池用固体电解质奠定了强有力的基础。”/i/span/pp style="text-align: right "span style="color: rgb(31, 73, 125) "本文主要作者,Yu Zhu博士/span/pp  该研究团队已建立了一家名为span style="color: rgb(255, 0, 0) "Akron PolyEnergy/span的公司,该公司将进一步开发这种方法,并为未来的商业化目标制备一个大型原型样品。/pp  Zhu的研究生,span style="color: rgb(255, 0, 0) "Si Li/span和span style="color: rgb(255, 0, 0) "Yu-Ming Chen/span,是这项研究的主要作者。其他科学家还有研究生span style="color: rgb(255, 0, 0) "Wenfeng Liang,Yunfan Shaospan style="color: rgb(0, 0, 0) "和/spanKewei Liu/span,以及位于校内的国家高分子创新中心仪器科学家span style="color: rgb(255, 0, 0) "Zhorro Nikolov/span博士。/p

载体两性电解质相关的仪器

  • OPTI LIONpH、Na+、K+、Cl-、Ca++OPTI LION 为干式多参数电解质化析仪,采用先进的光学传感技术,仅使用一次性测试卡,即可完成全参数的测量,再无更换电极和试剂的烦恼。★ 实验室质控2分钟内完成,准备状态无消耗,极大的满足了PCOT和标本量不固定科室的需求,★测量pH、Na+、K+、Cl-、Ca++为评估病人电解质状况提供完整的数据★彩色触摸屏式设计,中文界面、图形提示★使用时无需升温或温度平衡的漫长过程,为病人赢得了宝贵的时间★提供标准钙离子(nCa/pH=7.4)的浓度★强大的质控储存功能,并随时为用户提供统计学计算★内置条形码阅读器,相关数据均可由其快速、准确的读入★终身免费软件升级
    留言咨询
  • OPTIR台式干式血气、电解质分析仪OPTI RPO2、PCO2、pH、BaroNa+、K+、Ca++SO2、tHb OPTI R是一台可测量血气、电解质、血氧和血红蛋白台式多参数血气分析仪。它主要应用在实验室、ICU、CCU、手术室、急诊科等。OPTI R诠释了血气和电解质分析仪的全新概念。以其快速、准确、简便及低成本告诉我们--测量血气和电解质原来如此简单:★仪器采用了光学传感技术,无需电极的保养及更换,节省了大量的运行费用;实现真正的免保养;★针对样本量较大的用户,OPTI R采用单片多次测量的技术,每个测试片可执行50个测试,降低了测量成本;★彩色触摸屏式设计,中文界面、图形提示,无需培训即刻成为操作高手,使操作轻而易举;★测量速度快,60秒内得到全部结果;★内置条形码阅读器,相关数据均可由其快速、准确的读入;★试剂包内含有3个级别的自动质控液,用户可根据需要编排质控计划,全自动质控系统会按照您的计划自动执行; ★实用的存储测量结果达300份,完善的质控监测功能,可存储3个级别60天的质控报告并进行统计学计算;★强大的数据管理软件,全面支持LIS/HIS系统。
    留言咨询
  • 电解质分析仪器是用来从样本中检测钾离子,钠离子,氯离子,离子钙和锂离子的仪器。样本可以是全血,血清,血浆,尿液, 透析液,和水化液。电解质分析仪厂家?电解质分析仪多少钱?找陈经理K-Lite8G电解质分析仪技术参数1、技术特点:★1-1、7英寸真彩色高清触摸屏,人机交互式菜单,操作和维护导航功能,在线故障自动报警及排除1-2、功能部件自动检测,传感部件自动判断、自动适应和自动校正1-3、先进的泉涌清洗和分段式气液混合冲洗,配合清洗配方,杜绝了堵塞和交叉污染现象1-4、一键式全方位维护操作,免除操作者繁杂工作及确保仪器zui优工作状态1-5、 检测和计算项目: K+、Na+、Cl—、Ca2+、pH、nCa、TCa等多种参数组合1-6、 较低的样品耗量:80μl~150μl,电解质项目从吸样到显示结果≤25秒1-7、 断电后仍可储存质控和样品数据,实现数据储存再现,超大存储量5000,并支持无限扩展★1-8、 国际标准HL7协议,标配网络接口支持LIS联网,支持外接打印机、鼠标和键盘,支持U盘数据导出,支持软件在线升级。★1-9、自动一点及两点定标,附加人工定标功能,自动斜率和均差参数调整,支持原厂质控参数条码扫描输入1-10、一体化试剂包,降低生物污染风险,符合环保要求1-11、独特的背光式电极观察窗,让检测一目了然★1-12、试剂余量报警,条码耗材控制技术,确保用户用得放心★1-13、可选项自动进样盘,进样盘配原始管加样、无需分装样品直接测量,液面检测及采样针防碰撞功能;进样盘内置条码扫描功能。3600旋转试管条码自动扫描。进样盘包含多达40个样本位、急诊位、质控位。
    留言咨询

载体两性电解质相关的耗材

  • 宽带电解质反射镜
    宽带电解质反射镜:高宽带、高反射率,应用于低功率到高功率激光和固定或可变的 入射角。宽带电解质反射镜有两款不同类型的产品:MPQ 和TLM2。其中,MPQ覆盖主流的紫外和可见光波段的激光器波长,具有极高的反射率。TLM2:可调谐。能分别在450~2100nm波段实现连续激光和在780~1030nm实现短脉冲激光的高反射率。美国CVI laser optics 设计和生产紫外到近红外波段的高性能光学器件,主要应用在激光的光束调节和传输方面,在业内有很高的知名度。 美国CVI laser optics主要生产包括反射镜、球面镜,平面镜,偏振片,棱镜和波片。 还提供一系列用于超快激光应用的低色散和色散补偿光学元件。
  • 康辉 酸性氧化电位水生成器专用电解质
    康辉牌电解质的特点: 1、康辉牌电解质经过特殊加工而成,主要成分为NaCl,纯度≥99.5%,水不溶物≤0.02%符合GB28234-2011中5.2.2电解用氯化钠应符合GB/T 1266中化学纯级的要求,且不含任何添加剂。2、康辉牌电解质为白色粉末状,无坚硬物、赃物及沉淀物、无任何气味,使用后无任何残留物。3、专用电解质性能优于其它NaCL,溶解充分、速度快,能使电解效率提高,残留氯减少,腐蚀性降低,电解槽寿命延长,高效能保护设备,使您的水质更加干净、清澈,长期保持给水管道通畅、无异物堵塞。
  • 耶拿 盐溶液组成100ml 电解质 | 402-889.110
    盐溶液组成100ml 电解质货号描述402-889.110 Salt solution to make up 100 ml electrolyte

载体两性电解质相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制