甲基纳迪克酸酐

仪器信息网甲基纳迪克酸酐专题为您提供2024年最新甲基纳迪克酸酐价格报价、厂家品牌的相关信息, 包括甲基纳迪克酸酐参数、型号等,不管是国产,还是进口品牌的甲基纳迪克酸酐您都可以在这里找到。 除此之外,仪器信息网还免费为您整合甲基纳迪克酸酐相关的耗材配件、试剂标物,还有甲基纳迪克酸酐相关的最新资讯、资料,以及甲基纳迪克酸酐相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

甲基纳迪克酸酐相关的资料

甲基纳迪克酸酐相关的论坛

  • 请教: 甲基磺酸酐的纯度分析方法?

    请教: 甲基磺酸酐的纯度分析方法? 请多多指点!甲基磺酸酐Methanesulfonic anhydrideDensity:1.583 g/cm3Melting Point:64-67 °C(lit.)Boiling Point:289.3 °C at 760 mmHgFlash Point:128.7 °CAppearance:white to light brown to grey powder, crystals

  • 甲基六氢邻苯二甲酸酐同分异构体的问题

    SVHC第八批物质种有一组甲基六氢邻苯二甲酸酐,是由4个同分异构体组成,CAS号分别为:25550-51-0 19438-60-9 48122-14-1 57110-29-9但是就其分子式来看应该只有三种同分异构体,为什么会有4个CAS号呢,或者是船式和椅式的构象不同造成的4种同分异构体?

甲基纳迪克酸酐相关的方案

甲基纳迪克酸酐相关的资讯

  • 淀粉中顺丁烯二酸和顺丁烯二酸酐高效液相检测方法
    近日台湾被曝&rdquo 毒淀粉&rdquo 事件,即食品中发现含顺丁烯二酸的有毒淀粉。珍珠奶茶、甜不辣、粉圆、板条、鸡排等这些台湾经典美食均中枪。顺丁烯二酸又名马来酸酐,是工业原料,加入淀粉后可增加食物的弹性、黏性及外观光亮度,在食品中属非法添加物,会对人体肾脏造成极大损伤。 天津博纳艾杰尔科技有限公司采用Venusil MP C18液相色谱柱开发了淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的高效液相色谱检测方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的定量检测。样品制备 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL乙醇-水(5:95,v:v)混合溶液,涡旋2min,超声提取20 min后用乙醇-水混合溶液定容至50 mL,摇匀,8000 r/min离心5 min,取上清液过0.45&mu m尼龙滤膜,待测。色谱条件色谱柱:Venusil MP C18 5&mu m 100Å 4.6× 250mm流动相:水(磷酸调pH至3.0):乙腈=90:10波 长:215nm流 速:1mL/min柱 温:30℃进样量:20ul 色谱图图1 0.1ug/ml标准溶液色谱图图2 淀粉空白样品色谱图图3 10mg/kg淀粉添加样色谱图订货信息名称规格订货号Venusil MP C185µ m;100Å ;4.6*250 mmVA952505-01.5mL样品瓶短螺纹透明带书写处,100/PK1109-05191.5mL样品瓶盖100/PK0915-1819微孔滤膜(Nylon)13mm,0.45&mu m,200个/包AS021345一次性注射器2ml无针头,100支/包LZSQ-2ML乙腈4L/瓶,色谱纯AH015-4
  • naica®微滴芯片数字PCR系统精准量化胰岛素编码基因DNA甲基化水平
    导读在过去的几十年中,糖尿病的发病率在全球范围内显著增长。除了不健康的生活方式外,环境污染物被认为是糖尿病发生的危险因素。多环芳烃 (PAH)是一类含有2-7个芳环的有机化合物,由自然和人类活动产生并广泛存在的污染物。流行病学研究表明,PAHs水平与成人和儿童的肥胖和二型糖尿病相关。厦门大学生命科学学院细胞应激生物学国家重点实验室的研究人员在Ecotoxicology and Environmental Safety上发表了题为《Prenatal exposure to a mixture of PAHs causes the dysfunction of islet cells in adult male mice: Association with type 1 diabetes mellitus》的文章。文中应用naica微滴芯片数字PCR系统对胰岛素编码基因DNA甲基化水平进行量化,揭示了产前暴露于多环芳烃混合物对成年雄性小鼠胰岛细胞功能的不良影响。应用亮点:▶ 使用naica微滴芯片数字PCR系统对胰岛素编码基因启动子甲基化水平进行量化。▶ 在产前暴露于500µg/kg PAHs的小鼠中,胰岛素编码基因启动子的甲基化水平显著升高。▶ 产前暴露于PAHs可能促进I型糖尿病的发病。作者使用8种PAHs的混合物进行了实验,以研究产前PAHs对成年期胰岛细胞功能和质量的影响,同时试图阐明 I型糖尿病发病的环境原因。他们分离了成年雄性小鼠的胰岛,对胰岛素编码基因的启动子DNA甲基化水平进行分析。研究成果:▲图1. 产前暴露于多环芳烃对成年雄性小鼠胰岛素编码基因甲基化水平的影响。(A) 数字PCR结果代表性一维图。(B)胰岛素编码基因启动子甲基化水平。(每个处理三只母鼠, 每只母鼠取一个雄性后代) 。在本研究中,子宫内暴露于500µg/kg PAHs的小鼠胰岛中胰岛素编码基因启动子中的DNA甲基化水平显著增加,同时胰岛素编码基因转录显著下调。▲图2. 不同PAHs浓度对胰岛素编码基因转录水平的影响原文链接如下:https://www.sciencedirect.com/science/article/pii/S0147651322005358期刊介绍:Ecotoxicology and Environmental Safety 1977创刊,隶属于爱思唯尔出版集团。是一份多学科交叉期刊,主要研究环境污染对包括人类健康在内的生物体的暴露和影响。最新影响因子为7.129。naica六通道数字PCR系统法国Stilla Technologies公司naica六通道数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U / mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.

甲基纳迪克酸酐相关的仪器

  • AR-P617 电子束光刻胶 400-860-5168转4527
    产品详情 德国Allresist 正电子束光刻胶 AR-P 610系列用于纳米光刻的 AR - P617电子束电阻共聚物抗蚀剂系列用于生产集成电路和掩模 描述-电子束,深紫外光(248nm)-高分辨率,高对比度-对玻璃、硅和金属有很强的附着力-比PMMA敏感3-4倍-敏感性可以通过软烤调整-用于平面化和多层工艺-温度稳定,可达240℃-以甲基丙烯酸甲酯为基础的共聚物甲基丙烯酸,安全溶剂1-甲氧基-2-丙醇 属性 I 属性 II工艺条件该图显示了AR-P 610系列电阻的典型工艺步骤。所有规范都是指导原则必须适应自身具体情况的价值观。For 进一步 信息 processing, ? “Detailed 电子束电阻的处理说明"。For 建议 废水 处理 和 general 安全 instructions, ? ”General 产品 信息 Allresist 电子束 resists”. Processing instructions 抗蚀剂的敏感性随软烤温度的升高而增加,这是因为抗蚀剂的形成更加强烈下的甲基丙烯酸酐的分离 水 ( 图剂量 与 softbake temperature).AR-P 617,因此,在200℃回火比在180℃回火大约敏感20%。剂量可以是对两层AR-P 617系统进行相应的调整,对于两层系统具有重要意义。在这种情况下,首先,底层在200℃下干燥,然后在180℃与上层膜一起回火。由于差异化的过程,较低的层次被开发人员更快地攻击,并明显削弱结构形成(起飞)。这些起飞结构也可以由双层系统PMMA/共聚物。首先在190℃下对ar - p617进行涂层回火处理,然后对其进行PMMA抗AR-P 679.03纺丝涂膜,150℃烘干。曝光后,两层都是一步显影,如AR 600-56处理瓶塞AR 600-60并冲洗。 剥离结构为ar - p617两层侧切结构, 采用PMMA/共聚物经过AR 600-50的开发 开发后的PMMA/共聚物双层体系底部:AR-P 617.06, 400纳米厚,200℃回火 底部:AR-P 617.06, 400纳米厚,在190℃回火 顶部:AR-P 617.06, 500纳米厚,180℃回火 顶部:AR-P 679.06, 180纳米厚,150℃回火 由甲基丙烯酸甲酯和甲基丙烯酸组成的共聚物与纯PMMA产品相比,在热载荷作用下能形成6环。在这种情况下,两个甲基丙烯酸基团必须相邻排列在聚合物链上(见大的结构式左),这在统计学上发生足够高混合比例为2:1时的频率(见右上方分子式)。在这个温度下反应是可能的,因为在反应过程中产生的水是非常好的离开组织。 The 6-ring形成分裂比脂肪链更容易在与电子辐照 remainder 导致 copolymer. 的灵敏度越高一旦调整,灵敏度将保持不变。逆开环反应是不可能的。 由于其优异的涂层性能,使其成为可能存在的水平出拓扑 wafer 发展之前在这个例子中,200纳米高氧化层结构采用AR-P 617.08涂层的薄膜厚度为780纳米。曝光后(20kv)和开发(AR 600- 50,2分钟),晶圆片结构被完全平面的抗蚀剂线覆盖。
    留言咨询
  • Linas-M脂质纳米颗粒制造平台 简单介绍Linas-M脂质纳米颗粒制造平台,是用于开发和制造尺寸可控的,功能性脂质纳米粒的原创微流体装置。其他公司的传统混合器设备专注于快速混合,因此,即使在低流速条件下,它们也能产生小颗粒。但是响应于流速变化的颗粒尺寸变化的范围窄。另一方面,ILIP芯片不会在低流速下诱导快速混合,并且作为流速函数的颗粒尺寸变化是渐进的。随着流速的增加,出现局部涡流并加速稀释,即使在混合和稀释性能通常饱和的流速范围内。结果,响应于流速变化的颗粒尺寸变化范围非常宽。制造的纳米颗粒直径可控制在20纳米至150纳米。产品优势l 内置储液罐和高精度注射泵。使用少量试剂,可以获得具有高流量精度和高制造再现性的颗粒原型。l 可以使用具有各种流路形状的微流控芯片(定制是收费的)。入口/出口最多可使用4个端口。l 内置控制计算机无需外部PC。任何人都可以通过触摸屏界面轻松操作。l 微流控芯片可以通过简单地将其放置在舞台上并抬起来设置。这有助于提高再现性,而无需麻烦的管道操作。应用领域(一)大尺寸脂质颗粒的制备虽然其他公司的技术不能,但ILIP可以容易地产生大颗粒(对于典型的脂质组合物大于80nm),这是因为成分的不同混合策略。ILIP采用了一种策略,即在典型的流动条件下,成分不会完全混合,也不会快速混合。因此,脂质进行自组装的液-液界面保持了很长时间,并且可以获得大颗粒(对于典型的脂质组合物200 nm,如果脂质组合物也经过修饰,则500 nm)。(二)小尺寸脂质颗粒的制备在高流量条件下,ILIP中采用的通道结构在流道中产生局部涡流(局部混合)。因此,只有在高流速条件下,才能加速局部稀释,并获得小颗粒。效率如此之高,以至于在流速为其他技术的约1/10的情况下,可以获得比其他技术产生的颗粒更小的颗粒。 产品规格参数脂质纳米颗粒制造平台LiNAS-M的规格参数型号:LM-001电源:AC220V(50/60Hz)尺寸:250(宽)×300(深)×408(高)毫米 (不包括突起)重量:约10公斤配置:① 主机② 透明盖标准配件:说明书、微流控芯片塑料框架注射泵数量:2台注射泵分辨率:0.5μm/ 每次标准注射器/控制范围:注射器A:5.0ml体积:0~5000μl流速:25~10000μl/min注射器B:5.0ml体积:0~5000μl流速:25~10000μl/min(用户可交换/可定制不同容量)兼容注射器:ITO微型注射器MS-UNF500等。管子:外径为1/16“的管子(φ1.6mm) φ0.5内径,内置/可更换储液器:JMS注射器25ml 2个(用户可更换/可定制不同容量)操作:通过内置触摸面板控制(可使用USB键盘和USB鼠标)适用微流控芯片:LiNAS-M专用微流控芯片LM-iLiNP001等(与专用塑料框架一起使用) 微流控芯片LM-iLiNP001的规格参数型号:LM-ILIP001尺寸:70(宽)x 30(深)x 3(高)毫米(不包括端口)材料:PDMS(聚二甲基硅氧烷)入口/出口:2个入口/ 1个出口。通道结构:ILIP型形状(挡板混合器型结构)备注:建议开启后仅使用一次,以避免灰尘污染导致性能恶化。
    留言咨询
  • HI84530意大利哈纳HANNA微电脑可滴定酸度总酸/pH/mV测定仪测量范围(以CaCO3计):15.0 to 400.0 mg / L(ppm)、0.3 to 8.0 meq / L【低量程】300 to 4000 mg / L(ppm)、6.0 to 80.0 meq / L【高量程】酸度范围:-2.0 to 16.0 pH、-2.00 to 16.00 pH;氧化还原范围:- 2000.0 mV to +2000 mV温度范围:-20.0 to 120.0°C、-4.0 to 248.0°F、253.2 to 393.2 K.是一款易于使用,快速且经济实惠的滴定仪,专为检测水中可滴定的酸度而设计,用于检测水质(表面,饮用水,废水)等。基于酸碱滴定法,该滴定仪使用优化的预编程分析方法,使用强大的算法,通过玻璃体pH电极电位测定滴定反应的完成。HI84530意大利哈纳HANNA微电脑可滴定酸度总酸/pH/mV测定仪技术参数:酒石酸技术指标测量范围【以CaCO3计】15.0 to 400.0 mg / L(ppm)、0.3 to 8.0 meq / L【低量程】300 to 4000 mg / L(ppm)、6.0 to 80.0 meq / L【高量程】解析度0.1 mg / L(ppm)、0.1 meq / L【低量程】1 mg / L(ppm)、0.1 meq / L.【高量程】精度@25oC/77oF读数的3%或者±0.5 mg / L(ppm),以较大者为准【低量程】读数的3%或者±15 mg / L(ppm),以较大者为准【高量程】滴定方法酸碱滴定,总酸度/强酸性自动滴定终点固定终点滴定:8.30 pH 或3.7 pH(甲基橙)泵技术指标搅拌速度:600rpm;泵转速:10mL/分钟酸度pH技术指标测量范围-2.0 to 16.0 pH、-2.00 to 16.00 pH解析度/精度0.1 pH、0.01 pH 25oC/77oF±0.01pH校准模式多达三点自动识别校准,内置4个酸度标准点【4.01、6.00、8.30、10.01 pH】温度补偿手动或自动氧化还原ORP技术指标测量范围-2000.0 to 2000.0 mV解析度/精度0.1 mV 25oC/77oF±1.0mV温度技术指标测量范围-20.0 to 120.0°C、-4.0 to 248.0°F、253.2 to 393.2 K.解析度/精度0.1℃ 0.1°F 0.1K 25oC/77oF±0.4℃ ±0.8°F ±0.4 K.其他技术指标配置电极HI1131B定制专用可填充玻璃复合酸度pH电极HI7662-T定制专用不锈钢温度探头数据管理多达400个数据存储【200个滴定数据存储,200个 pH / mV数据存储】电源模式AC230V/12VDC电源适配器【HI710006】适用环境0 to 50°C(32 to 122°F) max RH95%【无冷凝】尺寸重量主机尺寸: 235 x 200 x 150 mm (9.2 x 7.9 x 5.9”);主机重量:1.9 kg (67.0 oz.)
    留言咨询

甲基纳迪克酸酐相关的耗材

  • 全氟酸酐
    产品信息:全氟酸酐(TFAA、PFAA 和 HFAA)高度纯化,是制备氟乙酰衍生物的最佳之选* 用于为 GC/MS 制备氟乙酰衍生物*可为 FID 和 ECD 技术生成稳定的挥发性衍生物 订货信息:全氟酸酐描述规格部件号数量TFAA(三氟乙酸酐)100g XTS-673631 /包PFAA(五氟丙酸酐)10 × 1mL 安瓿TS-651931 /包PFAA25g XTS-651921 /包PFAA100g XTS-651911 /包HFAA(七氟丁酸酐)10 × 1mL 安瓿TS-631641 /包HFAA25g XTS-631631 /包HFAA100g XTS-631621 /包此订购表中的 X 代表购买此产品需交纳有害物质运输费用。
  • 酯、内酯和酸酐拉曼光谱库 6.6071.607
    酯、内酯和酸酐拉曼光谱库订货号: 6.6071.607酯、内酯和酸酐拉曼光谱库( 2930 种光谱)。
  • 酯、内酯和酸酐拉曼光谱库 6.06073.607
    酯、内酯和酸酐拉曼光谱库订货号: 6.06073.607酯、内酯和酸酐的拉曼光谱( 2930 种光谱)。

甲基纳迪克酸酐相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制