氟化石墨

仪器信息网氟化石墨专题为您提供2024年最新氟化石墨价格报价、厂家品牌的相关信息, 包括氟化石墨参数、型号等,不管是国产,还是进口品牌的氟化石墨您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氟化石墨相关的耗材配件、试剂标物,还有氟化石墨相关的最新资讯、资料,以及氟化石墨相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

氟化石墨相关的资料

氟化石墨相关的论坛

  • 氧化石墨和石墨烯的红外光谱

    氧化石墨和石墨烯的红外光谱

    [color=#333333]初学红外光谱,看不懂,大神能帮我分析下氧化石墨和石墨烯的红外光谱吗?做的这两个产品怎么样?[/color][color=#333333][img]https://imgsa.baidu.com/forum/w%3D580/sign=97f22be825a446237ecaa56aa8237246/365d6c2762d0f7036b5fc44e0dfa513d2797c506.jpg[/img][/color][color=#333333]氧化石墨烯的红外光谱[/color][color=#333333][img]https://imgsa.baidu.com/forum/w%3D580/sign=7bd1b4a2bfa1cd1105b672288913c8b0/fd7a980a304e251f16c7b46aa286c9177f3e533a.jpg[/img][/color][color=#333333]石墨烯的红外光谱希望有大神帮我分析下,并且能两个做一下比较最好了,谢谢![/color]

  • 氧化石墨烯还原程度,拉曼判断

    氧化石墨烯还原程度,拉曼判断

    [color=#444444]图为氧化石墨烯还原前后的拉曼光谱图。[/color][color=#444444]氧化石墨烯ID/IG=1.6[/color][color=#444444]还原后的石墨烯ID/IG=2[/color][color=#444444]如何说明石墨烯的还原程度呢?[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/06/201906171646051957_1125_1843534_3.jpg!w690x517.jpg[/img][/color]

氟化石墨相关的方案

氟化石墨相关的资讯

  • 胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析
    p style="text-align: justify text-indent: 2em "span style="text-indent: 2em "2004年,Andre Geim和Konstantin Novoselov分离出当前知名度最高的二维材料——石墨烯,并获得2010年诺贝尔奖。作为石墨烯的重要衍生物,氧化石墨烯可以通过预先对石墨进行氧化,然后再剥离石墨层而获得。随着剥离程度的不同,氧化石墨烯一般具有单层、双层、三层以及少层(一般为2-5层)和多层(6-10层)结构。由于氧化石墨烯具有的独特二维结构以及优异的电学性能、光学性能以及化学活性等特性,使得其在超级电容器、透光薄膜、催化触媒以及抗菌净化等诸多领域具有广泛的应用前景。同时,由于氧化石墨烯生产成本低廉,原料易得,同时拥有大量的羧基、羟基和环氧基等诸多含氧基团(图1),因此比其他碳材料更具竞争优势。目前,全球拥有成千上万的研究人员从事氧化石墨烯材料研发工作,很多中国高校和研究所都有这样的研究团队或研究人员。世界上有数千家公司在研发氧化石墨烯产品,包括众多的中国公司。/span/pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201912/uepic/77331f4f-7c4e-493b-adce-d0c4c84bb86d.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析1.png" style="text-align: center text-indent: 0em max-width: 100% max-height: 100% "//pp style="text-align: center text-indent: 0em "strong图1 氧化石墨烯结构示意图(a)和HRTEM图(b)/strong/pp style="text-align: justify text-indent: 2em "由于材料的尺寸、形状与材料的性能有着密切的关系,粒径是纳米材料最重要的表征参数之一。因此,获得尺寸及形状规则均一的氧化石墨烯纳米材料对于拓宽其应用领域,非常重要。然而,目前的制备技术一般获得的氧化石墨烯材料其尺寸以及形状均具有多分散性的特点。因而需要对产物进行处理,以获得尺寸及形状规则均一的氧化石墨烯纳米材料。/pp style="text-align: center text-indent: 0em "span style="font-size: 20px "strongspan style="color: rgb(0, 176, 240) "氧化石墨烯粒径调控技术/span/strong/span/pp style="text-align: justify text-indent: 2em "目前,针对于尺寸及形状多分散性的氧化石墨烯材料,其粒径调控技术主要有以下几种,现分别作简单介绍如下:/pp style="text-align: justify text-indent: 2em "strong1)氧化切割法/strong/pp style="text-align: justify text-indent: 2em "在石墨的氧化过程中,就石墨的内部碳原子而言,在氧化的开始阶段,石墨的sp2杂化结构将转变为sp3杂化结构,形成呈线状分布的环氧基,而后续的氧原子为了维持体系的稳定,将在环氧基线状分布的基础上,原位形成环氧基对。由于羰基比环氧基对的能量低,从而使得羰基在结构中具有更好的稳定性。因此,在氧化过程中,形成的环氧基对将原位转变为羰基,从而导致碳碳键断裂。如此循环,从而实现对石墨片的切割细化。而对于石墨边缘的碳原子而言,氧原子将首先与其结合并使石墨本身的碳碳键断裂,形成羰基。随着氧化反应的继续进行,从体系稳定性角度(能量最低),后续的氧原子将与内层(而非相邻)的碳原子结合形成碳氧键,同时再使内部碳碳键断裂。如此反复,进而实现对石墨片的切割作用。而该切割作用即可实现对氧化石墨烯产物粒径的调控优化。/pp style="text-align: justify text-indent: 2em "strong2)离心筛选法/strong/pp style="text-align: justify text-indent: 2em "离心筛选技术是在离心力的作用下,利用被离心样品物质的沉降系数、浮力、密度的差别,进行分离、浓缩、提取制备样品。作为一种高效便捷的分离技术,离心筛选已被广泛应用于固/液混合物的分离提纯等领域。/pp style="text-align: justify text-indent: 2em "在离心力场中,悬浮分散在水中不同粒径尺寸的氧化石墨烯会受到离心力的作用,而发生不同程度的沉降运动。通常,粒子的沉降速度与其粒径的平方成正比关系。也就是说,大粒子的沉降速度将大大快于小粒子。因此,通过高速离心,可以明显改善氧化石墨烯的粒径尺寸分布优化。/pp style="text-align: justify text-indent: 2em "strong3)超声细碎法/strong/pp style="text-align: justify text-indent: 2em "采用超声细碎技术,可明显加速多层氧化石墨烯的剥离,从而提高单层或少层氧化石墨烯的产率,同时对于细碎氧化石墨烯粒径尺寸以及优化其尺寸分布具有重要的作用。/pp style="text-align: justify text-indent: 2em "在适当的超声处理阶段,来源于超声波的震荡力会破坏氧化石墨烯之间的团聚(亦有利于层间剥离),同时粉碎细化氧化石墨烯,从而导致随着超声处理时间的延长,出现氧化石墨烯粒径尺寸的减小以及尺寸分布的窄化。当继续延长超声处理时间,由于此时的超声震荡力不足以再粉碎细化已经形成的较小尺寸的氧化石墨烯。因此,增加超声处理时间将不会再对氧化石墨烯的粒径尺寸起到粉碎细化作用。因此,在超声处理细化及优化氧化石墨烯粒径尺寸及其分布的过程中,存在临界处理时间。为了获得粒径尺寸及其分布满足需求的氧化石墨烯,必需选择适当的超声处理时间。/pp style="text-align: center text-indent: 2em "span style="color: rgb(0, 176, 240) font-size: 20px "strong氧化石墨烯粒径测试方法/strong/span/pp style="text-align: justify text-indent: 2em "现阶段,针对于氧化石墨烯材料粒径的表征方法众多,现简要介绍几种常用的测试方法如下:/pp style="text-align: justify text-indent: 2em "strong1)扫描电子显微镜 (Scanning Electron Microscopy, SEM) /strong/pp style="text-align: justify text-indent: 2em "SEM利用电子和物质的相互作用,以获取被测样品的各种物理、化学性质的信息,如形貌、组成、晶体结构等。SEM是对纳米材料尺寸和形貌研究最常用的方法。因此,该方法也常常用来测试表征氧化石墨烯的粒径尺寸状态(图2)。该方法是一种颗粒度观测的绝对方法,具有可靠性和直观性。但是,该方法的测量结果缺乏整体统计性,同时对一些不耐强电子束轰击的样品较难得到准确的结果。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/2a229252-f9c9-4537-9cb1-70fd8162027b.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析2.jpg"//pp style="text-align: center text-indent: 0em "strong图2 氧化石墨烯粒径SEM图span style="text-indent: 2em " /span/strong/pp style="text-align: justify text-indent: 2em "strong2)透射电子显微镜 (Transmission Electron Microscope, TEM)/strong/pp style="text-align: justify text-indent: 2em "TEM是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子发生碰撞而产生散射,从而形成明暗不同的影像。TEM分辨率为0.1~0.2 nm,放大倍数为几万~百万倍,可用于观察超微结构。TEM是对纳米材料形貌、粒径和尺寸进行表征的常规仪器。该方法可直接观察氧化石墨烯材料的形貌和测定粒径大小(图3),具有一定的直观性与可信性。但是TEM测试的是材料局部区域观察的结果,具有一定的偶然性及统计误差,需要利用一定数量粒子粒径测量,统计分析而得到纳米粒子的平均粒径。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/b29af068-e379-4d3f-a146-92cc98809d46.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析3.jpg"//pp style="text-align: center text-indent: 0em "strong图3 氧化石墨烯粒径TEM图/strong/pp style="text-align: justify text-indent: 2em "strong3)原子力显微镜 (Atomic Force Microscope, AFM)/strong/pp style="text-align: justify text-indent: 2em "AFM是利用测量探针与样品表面相互作用所产生的信号, 在纳米级或原子级水平研究物质表面的原子和分子的几何结构及相关性质的分析技术。AFM能直接观测纳米材料表面的形貌和结构。AFM测量粒子直径范围约为0.1nm~数十纳米,在得到其粒径数据的同时,即可观察到纳米粒子三维形貌。因此,该方法也常常用来测试表征氧化石墨烯的粒径形貌特征(图4)。同时,AFM可在真空、大气、常温等不同外界环境下工作,也不需要特别的制样技术,探测过程对样品无损伤,可进行接触式和非接触式探测等。但是,AFM测试观察范围有限,得到的数据不具有统计性,较适合测量单个粒子的表面形貌等细节特征。/pp style="text-align: justify text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/4ed4956d-b4ef-44ed-b765-1c76561c107e.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析4.jpg"//pp style="text-align: center text-indent: 0em "strong图4 氧化石墨烯粒径AFM图/strong/pp style="text-align: justify text-indent: 2em "strong4)动态光散射 (Dynamic Light Scattering, DLS)/strong/pp style="text-align: justify text-indent: 2em "光通过胶体时,粒子会将光散射,在一定角度下可以借助于科学仪器检测光信号。DLS即通过测量样品散射光强度的起伏变化,而得出样品的平均粒径及粒径分布信息。DLS适用于氧化石墨烯工业化产品粒径的检测,测量粒径范围为1 nm~5 μm。该方法能够快速获得精确的粒径分布,重复性好,测试取样量较大,测试结果具有代表性。但是,其测试结果受样品的粒度以及分布影响较大,只适用于测量粒度分布较窄的颗粒样品,且测试中易受粒子团聚和沉降的影响。/pp style="text-align: justify text-indent: 2em "strong5)拉曼光谱法 (Raman) /strong/pp style="text-align: justify text-indent: 2em "拉曼光谱法基于拉曼效应的非弹性光散射分析技术,拉曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的拉曼频移。利用拉曼光谱可以对纳米材料进行分子结构、键态特征分析、晶粒平均粒径的测量等。因此,该方法也常常用来测试表征氧化石墨烯的晶粒平均粒径(图6)。拉曼光谱法灵敏度高,不破坏样品,方便快速。但是也存在测试结果易受光学系统参数等因素的影响,而且傅里叶变换光谱分析常出现曲线的非线性问题等不足。/pp style="text-align:center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201912/uepic/43519652-3c6c-44a6-8ea6-9b86f2893737.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析6.jpg"//pp style="text-align: center text-indent: 0em "strong图6 氧化石墨烯粒径Raman图/strong/pp style="text-align: center text-indent: 2em "span style="color: rgb(0, 176, 240) font-size: 20px "strong总结/strong/spanbr//pp style="text-align: justify text-indent: 2em "目前,针对于尺寸及形状多分散性的氧化石墨烯纳米材料,其粒径调控技术主要有氧化切割法、离心筛选法、超声细碎法等。同时,纳米材料粒度的测试方法众多,不同的粒度分析方法均有其一定的适用范围以及对应的样品处理方法。因此,在实际检测时,应综合考虑材料的特性、测量目的、经济成本等多方面因素,确定最终选用适当的氧化石墨烯粒径测试方法。/pp style="text-align: justify text-indent: 2em "br//pp style="text-align: justify text-indent: 2em "参考文献:/pp style="text-align: justify text-indent: 2em "[1] Su C, Loh K P. Carbocatalysts: graphene oxide and its derivatives [J]. Accounts of Chemical Research, 2013, 46 (10): 2275-2285./pp style="text-align: justify text-indent: 2em "[2] Erickson K, et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced Materials, 2010, 22(40): 4467-4472./pp style="text-align: justify text-indent: 2em "[3] Bianco A, et al. All in the graphene family-A recommended nomenclature for two-dimensional carbon materials [J]. Carbon, 2013, 65: 1-6./pp style="text-align: justify text-indent: 2em "[4] He Y, et al. Preparation and electrochemiluminescent and photoluminescent properties of a graphene oxide colloid [J]. Carbon, 2013, 56: 201-207./pp style="text-align: justify text-indent: 2em "[5] Li Z, et al. How graphene is cut upon oxidation? [J]. Journal of the American Chemical Society, 2009, 131(18): 6320-6321./pp style="text-align: justify text-indent: 2em "[6] Fan T, et al. Controllable size-selective method to prepare graphene quantum dots from graphene oxide[J]. Nanoscale research letters, 2015, 10(1): 55./pp style="text-align: justify text-indent: 2em "[7] Khan U, et al. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation[J]. Carbon, 2012, 50(2): 470-475./pp style="text-align: justify text-indent: 2em "[8] Zhao J, et al. Efficient preparation of large-area graphene oxide sheets for transparent conductive films[J]. ACS nano, 2010, 4(9): 5245-5252./pp style="text-align: justify text-indent: 2em "[9] Krishnamoorthy K, et al. The chemical and structural analysis of graphene oxide with different degrees of oxidation[J]. Carbon, 2013, 53: 38-49./pp style="text-align: justify text-indent: 2em "[10] Hu X, et al. Effect of graphite precursor on oxidation degree, hydrophilicity and microstructure of graphene oxide [J]. Nano, 2014, 9(3): 14500371-8./pp style="text-align: justify text-indent: 2em " /pp style="text-align: justify text-indent: 2em "作者简介:/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 150px height: 196px float: left " src="https://img1.17img.cn/17img/images/201912/uepic/cba3ceb4-db0b-42e1-a0b4-d802034691c1.jpg" title="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" alt="胡学兵:氧化石墨烯粒径尺寸的调控技术与测试方法浅析7.jpg" width="150" height="196" border="0" vspace="0"/胡学兵,博士,硕士研究生导师。2014年博士毕业于中国科学院上海硅酸盐研究所,现就任景德镇陶瓷大学教授。2008年和2017年分别在法国欧洲膜研究所和英国诺丁汉大学从事学术研修工作。主要从事面向环境、能源等应用的功能化石墨烯新材料及分离膜材料的研究开发工作。先后主持国家自然科学基金、江西省青年科学基金重大项目和江西省科技计划项目等各类项目10余项。2016年荣获中国科学技术协会全国科技工作者创新创业大赛金奖(江西省唯一),2017年荣获中国科学院开放基金项目一等奖,2018年“儒乐杯”江西省青年科技创新项目大赛全省前8强。先后在《Journal of Membrane Science》、《RSC Advances》、《Applied Surface Science》、《Journal of Porous Materials》、《Materials Letters》等期刊上发表学术论文67篇(SCI/EI收录39篇)。申请国家发明专利15项,已授权13项。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "12月18日,胡学兵教授将亲临由仪器信息网组织的strongspan style="text-indent: 2em color: rgb(0, 176, 240) "“a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_self" style="color: rgb(0, 176, 240) text-decoration: underline "span style="text-indent: 2em color: rgb(0, 176, 240) "第二届‘纳米表征与检测技术’公益网络研讨会/span/a”/span/strong,更深入地讲解氧化石墨烯粒径尺寸测试表征技术,机会难得,业内同仁和莘莘学子可以点击下方图片或链接报名参会,与胡教授互动交流。/span/pp style="text-align: justify text-indent: 2em "span style="color: rgb(0, 176, 240) "strongspan style="text-indent: 2em "免费报名地址:/span/strong/spana href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_self" style="text-decoration: underline "strongspan style="text-indent: 2em "https://www.instrument.com.cn/webinar/meetings/nano2//span/strongstrongspan style="text-indent: 2em "/span/strong/a/pp style="text-align: center "span style="text-indent: 2em "a href="https://www.instrument.com.cn/webinar/meetings/nano2/" target="_self"img style="max-width: 100% max-height: 100% width: 664px height: 246px " src="https://img1.17img.cn/17img/images/201912/uepic/2206666c-651c-4189-ae79-e6c91973e92d.jpg" title="540_200.jpg" alt="540_200.jpg" width="664" height="246" border="0" vspace="0"//a/span/p
  • 大连化物所开发出高性能光热转化石墨烯基复合相变材料
    近日,中国科学院大连化学物理研究所热化学研究组研究员史全团队通过合成策略开发出一种具有高光热转换效率的石墨烯基复合相变材料。该复合相变材料具有优异的相变性能和光热转换能力,为大规模制备石墨烯基光热转化复合相变材料提供了新思路。  石墨烯基复合相变材料能够解决相变材料相变过程中的泄漏问题,并具有优异的光吸收能力,在太阳能热转换和存储领域具有潜力。然而,目前石墨烯基复合相变材料的制备方法涉及多步过程,通常较为复杂、耗时耗能,阻碍了其进一步的应用。基于此,科研人员通过简单直接的一步法策略,将聚乙二醇相变材料原位填充到氧化石墨烯网络结构水凝胶中,构建出石墨烯基定型复合相变材料。该复合相变材料具有高的相变材料负载量(95wt%),经历1000个冷热循环后仍可保持稳定的相变焓值(162.8J/g),表现出优异的相变储热性能。此外,该材料还具有出色的光热转化能力,可快速将太阳能转化为热能储存于相变材料中,转化效率最高可达93.7%。  相关研究成果以One-step Synthesis of Graphene-based Composite Phase Change Materials with High Solar-thermal Conversion Efficiency为题,发表在《化学工程杂志》(Chemical Engineering Journal)上。研究工作得到中科院洁净能源创新研究院-榆林学院联合基金、大连化物所创新基金等的支持。  论文链接
  • 研究人员开发出生产3D打印氧化石墨烯的新方法
    p style="margin-top: 10px line-height: 1.5em text-indent: 2em "span style="font-family: " microsoft="" color:="" line-height:=""西班牙艾克斯-马赛大学陶瓷与玻璃研究所(ICV)和微电子与纳米科学研究所的研究人员已使用3D打印的氧化石墨烯支架作为轻质混合结构的基础,该结构保留了许多石墨烯的理想特性,包括导电性和水吸附能力。/span/pp style="margin-top: 10px line-height: 1.5em text-indent: 2em "span style="text-indent: 0em "研究人员用醇盐前体溶液渗透了氧化石墨烯支架,以生产杂化结构,这些杂化结构显示出潜在的适用性/spanspan style="text-indent: 0em ",例如污染物去除,水过滤,催化,药物输送以及能量产生和存储。/span/pp style="text-indent: 2em text-align: center "span style="font-family:arial, helvetica, sans-serif"br style="color: rgb(51, 51, 51) white-space: normal "//spanimg src="https://www.3ddayin.net/uploads/allimg/201214/1-2012140R159223.jpg" alt="" width="620" style="border: 0px color: rgb(51, 51, 51) font-family: " microsoft="" lucida="" sans="" font-size:="" white-space:=""/br style="color: rgb(51, 51, 51) font-family: " microsoft="" lucida="" sans="" font-size:="" white-space:=""/strongspan style="line-height: 2 font-family: arial, helvetica, sans-serif font-size: 14px color: rgb(127, 127, 127) "用于通过渗透3D rGO支架(a,b),用碱性蒸气胶凝(c)和乙醇洗涤(d)来制造二氧化硅(或SiAl)/ rGO杂化物的合成过程示意图。图片来自《欧洲陶瓷学会杂志》。/span/strong/pp style="margin-top: 10px text-indent: 2em "strongspan style="font-family: " microsoft="" color:="" line-height:=""3D打印石墨烯的局限/span/strongbr style="color: rgb(51, 51, 51) font-family: " microsoft="" lucida="" sans="" font-size:="" white-space:=""/span style="font-family: " microsoft="" color:="" line-height:=""/span/pp style="text-indent: 2em line-height: 1.5em margin-top: 10px "span style="font-family: " microsoft="" color:="" line-height:=""石墨烯是一种碳的同素异形体,已成为与能源生产和微电子学相关的研究以及生物医学和传感等新技术的开发中的常见元素。对该材料的轻质性能,高电导率和导热率以及机械强度非常期望。尽管许多石墨烯的潜力来自于以单层形式部署该材料,但利用石墨烯进行3D打印仍然面临巨大挑战。/span/pp style="text-indent: 2em line-height: 1.5em margin-top: 10px "span style="font-family: " microsoft="" color:="" line-height:=""但是,弗吉尼亚理工大学和劳伦斯· 利弗莫尔国家实验室(LLNL)的研究人员在开发出一种高分辨率3D打印方法(涉及将石墨烯分散在凝胶中以制成3D可印刷树脂)之后,采取了进一步措施来利用石墨烯的潜力。 LLNL还与加利福尼亚大学圣克鲁斯分校的团队合作,研究了用于储能设备中基于石墨烯的气凝胶电极的3D打印技术。/span/pp style="text-indent: 2em line-height: 1.5em margin-top: 10px "span style="font-family: " microsoft="" color:="" line-height:=""石墨烯还被用于创建3D打印的自感应装甲和交通网络的现代化。在其他地方,新研究揭示了与石墨烯表面接触时水的结构如何变化。最近,诺丁汉大学增材制造中心的研究人员在使用石墨烯的电子设备进行3D打印方面取得了突破,开发了基于喷墨的3D打印技术,该技术可以为取代单层石墨烯作为接触材料铺平道路。 2D金属半导体。/span/pp style="text-indent: 2em margin-top: 10px text-align: center "img src="https://www.3ddayin.net/uploads/allimg/201214/1-2012140R3421U.jpg" title="研究中制造的格子“桁架”和回旋3D打印石墨烯" alt="研究中制造的格子“桁架”和回旋3D打印石墨烯" width="620" height="508" style="border: 0px color: rgb(51, 51, 51) font-family: " microsoft="" lucida="" sans="" font-size:="" white-space:=""/br style="color: rgb(51, 51, 51) font-family: " microsoft="" lucida="" sans="" font-size:="" white-space:=""/strongspan style="line-height: 2 font-family: arial, helvetica, sans-serif font-size: 14px color: rgb(127, 127, 127) "Virginia Tech / LLNL研究中制造的格子“桁架”和回旋3D打印石墨烯。图片来自Material Horizons/span/strong/pp style="text-indent: 2em margin-top: 10px "span style="font-family: " microsoft="" color:="" line-height:=""strong创建氧化石墨烯-二氧化硅结构/strong/span/pp style="text-indent: 2em margin-top: 10px line-height: 1.5em "span style="font-family: " microsoft="" color:="" line-height:=""氧化石墨烯被认为是生产具有高孔隙率,导电性,柔性和大表面积的3D连接的轻量结构的可行构建基块。科学家旨在通过将其他材料锚固到3D石墨烯结构上以形成混合材料或复合材料,来解决氧化石墨烯的一些缺点,例如其机械性弱点和易受火焰伤害的缺点。/span/pp style="text-indent: 2em margin-top: 10px line-height: 1.5em "span style="font-family: " microsoft="" color:="" line-height:=""首先,研究人员使用由氧化石墨烯纳米片制备的水性油墨,3-D Inks LLC的三轴机器人自动铸造系统和RoboCAD软件对3D打印的氧化石墨烯支架进行了3D打印。通过直径为410μm的针将支架打印到由16层均匀分布的杆组成的长方体中,这些杆相对于相邻层成直角放置。然后将结构放入液氮中冷冻10秒钟,然后将其冷冻干燥(冷冻干燥)并在石墨炉中以1200摄氏度进行处理以增强氧化石墨烯的还原作用,从而将其冷冻。/span/pp style="text-indent: 2em line-height: 1.5em margin-top: 10px "span style="font-family: " microsoft="" color:="" line-height:=""此时,3D打印的氧化石墨烯结构的尺寸为12x12x5mm。下一步涉及通过研究人员所说的溶胶-凝胶途径渗透氧化石墨烯支架,其中涉及低温凝胶与氨蒸气的交联。制备了包含原硅酸四乙酯,乙醇,去离子水和盐酸的两种溶液,分别称为SiO2溶胶(二氧化硅)和SiAl溶胶(二氧化硅-氧化铝)。将氧化石墨烯支架在不透气的容器中半浸入每种溶胶中五分钟,然后将其放置在刚好位于液面上方的静止平台上。将样品在室温下放置24小时,以通过氨催化引起浸渍结构的延长缩合和刚度。然后,用乙醇洗涤支架以除去任何蒸气残余物。/span/pp style="text-indent: 2em line-height: 1.5em margin-top: 10px "img src="https://www.3ddayin.net/uploads/allimg/201214/1-2012140R50a63.jpg" title="比较不同材料的扫描电子显微镜(SEM)图像" alt="比较不同材料的扫描电子显微镜(SEM)图像" width="620" height="289" style="text-align: center text-indent: 2em color: rgb(51, 51, 51) border: 0px "//pp style="padding: 0px 0px 10px margin-top: 0px margin-bottom: 0px color: rgb(51, 51, 51) text-align: center " microsoft="" lucida="" sans="" font-size:="" white-space:="" text-align:=""span style="font-size: 14px color: rgb(127, 127, 127) "strongspan style="font-size: 14px font-family: arial, helvetica, sans-serif line-height: 2 " microsoft=""比较不同材料的扫描电子显微镜(SEM)图像。 (a)原始的氧化石墨烯支架,(b-e)氧化石墨烯-二氧化硅结构。图片来自《欧洲陶瓷学会杂志》。/span/strong/span/pp style="padding: 0px 0px 10px margin-bottom: 0px color: rgb(51, 51, 51) white-space: normal text-indent: 2em line-height: 1.5em margin-top: 10px "span style="font-family: " microsoft="" font-size:="" line-height:=""strong结果和潜在应用/strong/spanbr/span style="font-family:arial, helvetica, sans-serif"span style="font-size: 14px " /span/spanspan style="font-family: " microsoft="" font-size:="" line-height:=""研究人员发现,与未经处理的氧化石墨烯支架相比,3D打印的氧化石墨烯-二氧化硅结构保持高度多孔性,而其抗压强度提高了250-800%。混合结构也保持“显着的电导率”,但是主要的增强体现在结构的亲水性上。观察到脚手架的超细二氧化硅基覆盖物对结构的润湿特性有重要影响。与未经处理的氧化石墨烯支架相比,该结构变得完全亲水,而其吸水能力提高了十倍。氧化石墨烯-二氧化硅结构的增强性能表明它们可以适合用作吸收剂,污染物去除,气体感应,蓄热或在光催化水分解应用中使用。/span/p

氟化石墨相关的仪器

  • 产品名称:微波管式氧化石墨烯还原设备型号:MKG-M5TB产品列表: 科研定制服务所属应用学科: 多路气氛操作,连续投料,连续出料,高温瞬间膨化以及高温热解,碳化灰化等操作工艺。特别适合于石墨烯制备工艺中对纳米石墨,氧化石墨,膨胀石墨的膨化处理主要特点1、供电电压:单相220V/50Hz2、微波加热功率:4000W3、炉腔:全不锈钢隔热腔体,既导通微波又具有良好的保温性4、管路规格:两侧为Φ230mm玻璃管接口,顶侧投料口为Φ100mm玻璃管接口5、处理腔体:石英玻璃管路,其中加热区长度440mm6、进气口两路混合气氛输入,出气口设置压力监控系统7、顶部设置投料漏斗,内置程控送料翻板,气密设置8、采用PLC编程控制,触摸屏操作,动态显示微波功率、温度、时间等参数9、外形尺寸:约1500×550×800mm(宽×深×高)10、三通管道各端口采用截止圆波导密封结构,微波泄漏防护符合国家标准产品名称 微波管式气氛膨化炉型 号 MKG-M5TB外形尺寸(MM)1500×550×800mm(宽×深×高)内腔尺寸Φ230mm*440mm设备功率(W)4000微波频率(MHz)2450±50工作电压(V)AC220V/50Hz控制方式采用PLC编程控制,触摸屏操作炉腔材质全不锈钢隔热腔体,既导通微波又具有良好的保温性标 配 选 配 质 保 厂务环境1、室内使用;2、海拔不超过1000米;3、环境温度在±5-45℃范围;4、周围环境的相对温度不超过85%;5、炉体周围无导电尘埃、爆炸性气体及能严重破坏金属和绝缘腐蚀性气体。安全保护1、经常保持清洁,定期检查电炉接线是否接触良好。2、电炉使用时,炉温不得超过额定温度,以免损坏加热元件。禁止向炉内灌注各种可燃性液体及熔解的金属。售后服务1、客户的技术疑问,我们承诺在5个小时内处理完毕。2、返厂维修的设备我们承诺在3个工作日内出具检测结果,10个工作日内完成维修,特殊材料需订制,酌情处理。3、设备返给客户后1周之内对用户进行回访,并提供相关技术的免费咨询。友情提示1、为了设备正常使用寿命,请不要长期运行于极限温度。2、在收货时仔细清点核对货物及配件数量,以免少发漏发给您带来不便。
    留言咨询
  • 产品名称:AVANZARE氧化石墨烯av-GOX-70 产品型号:av-GOX-70 产品介绍:我们的石墨烯添加剂以其高导电性、高导热性和良好的基体整合性等特性而闻名。出于研究目的,我们提供各种等级并根据要求量身定制。在avanzare,我们专注于先进功能材料的开发、生产和商业化,用于传统材料的新兴应用和替代应用。涉及不同行业:汽车、航空、安全防护设备、鞋类、油漆涂料、建筑、电线和电缆行业、织物面料、包装和纸张等。 我们在抗静电、导电、导热、散热、阻燃/耐火、抗菌、疏水等功能范围内拥有丰富的经验。 性能特点:◆低使用剂量◆对流动性能的影响较小◆易于集成 参数:◆型号:av-GOX-70◆类别:氧化石墨烯◆横向尺寸(LD50):70μm◆平均厚度:1-2nm◆含氧量(XPS):30%◆BET:约400 m2/g◆平均层数:1-2◆特性:高导电性、高导热性、基体整合性◆产地:西班牙◆封装:根据要求量身定制
    留言咨询
  • 产品应用该款产品是氧化石墨/氧化石墨烯制备石墨烯的自动化微波装置,适用于石墨烯还原法的工业化制备,其饱和产能可达年产10T以上。产品特点1、 采用PLC程序控制,触摸屏操作,可实现自动化控制,操作简单可靠;2、 设置多路进气可进行多路气氛条件操作;3、 专业的自动进出料设计可满足连续化生产需求;4、 多点温度监测可保障产品品质要求;5、 功率可调,用户可根据实际情况选用合适的微波功率;6、 抽真空系统可满足氧化石墨/氧化石墨烯的无氧还原;7、 设置多处观察窗口,可对还原过程进行局部观测;8、 与物料接触部位采用防腐涂层,避免物料及还原烟气对设备的腐蚀;9、 微波防泄漏专业化设计,泄漏指标小于国标。技术参数工业化连续式微波石墨烯还原成套设备本机型为工业化连续式微波石墨烯还原处理设备,可实现氧化石墨烯的连续化还原,整合投料、布料、微波还原、收料等步骤,真正实现了一键化操作,亦可配合远程操作。产品类型微波法还原氧化石墨烯成套设备型号MCG-M60HBR技术原理利用微波法还原氧化石墨烯为主体,整合投料,布料,收料,实现规模化生产进料形式封闭式储料阀,重量计量投放出料形式两级回收,不同密度分别储放产成品还原氧化石墨烯(750-1000g)控制方式PLC控制系统,彩色触摸屏操作,多参数显示设备外尺寸约10m(长)x3(深)×3.6m(高)工艺辅件真空系统,气氛系统,投料系统,收集系统,储料系统,成套总控系统
    留言咨询

氟化石墨相关的耗材

  • 氟化石墨烯
    简介:二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料,巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合美国2D Semiconductors为全球客户提供高质量的二维晶体材料、粉体、溶液、薄膜等材料,并提供定制服务,以满足客户的不同需求。氟化石墨烯Graphene Fluoride
  • 氟化石墨 Graphite Fluoride (Carbon Monofluoride)
    氟化石墨 Graphite Fluoride (Carbon Monofluoride)CAS号:51311-17-2wt% F:56-61颜色:灰色/白色密度(g/cm3):2.5尺寸(微米):1 - 10电阻率(ΩM):~ 1011摩擦因数:表面能(兆焦耳/平方米):7.01f比:0.8~1.1D90(UM):8
  • 氧化石墨烯支持膜
    PELCO® 氧化石墨烯支持膜PELCO氧化石墨烯支持膜是来源于单层和2层PELCO石墨烯支持膜,与石墨烯支持膜不同的是石墨烯做了氧化处理。氧化处理后的膜具有亲水性,更适合生命科学的应用和研究。氧化石墨烯利用率为70%左右。通过EELS测试,单层氧化石墨烯的膜厚在0.8-1.2nm之间,2层氧化石墨烯的膜厚在1-1.5nm之间。2层氧化石墨烯微栅支持膜2层石墨烯支持膜的EELS谱图PELCO® Graphene Oxide TEM Supports氧化石墨烯支持膜的基本结构和石墨烯支持膜相同:300目的铜网上附有微栅碳膜,碳膜上面附有氧化石墨烯。货号产品描述包装21810-5PELCO® 单层氧化石墨烯微栅支持膜,300目铜网pkg/521810-10PELCO® 单层氧化石墨烯微栅支持膜,300目铜网pkg/1021810-25PELCO® 单层氧化石墨烯微栅支持膜,300目铜网pkg/25货号产品描述包装21820-5PELCO® 2层氧化石墨烯微栅支持膜,300目铜网pkg/521820-10PELCO® 2层氧化石墨烯微栅支持膜,300目铜网pkg/1021820-25PELCO® 2层氧化石墨烯微栅支持膜,300目铜网pkg/25

氟化石墨相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制