当前位置: 仪器信息网 > 行业主题 > >

氟化石墨

仪器信息网氟化石墨专题为您提供2024年最新氟化石墨价格报价、厂家品牌的相关信息, 包括氟化石墨参数、型号等,不管是国产,还是进口品牌的氟化石墨您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氟化石墨相关的耗材配件、试剂标物,还有氟化石墨相关的最新资讯、资料,以及氟化石墨相关的解决方案。

氟化石墨相关的论坛

  • 氧化石墨和石墨烯的红外光谱

    氧化石墨和石墨烯的红外光谱

    [color=#333333]初学红外光谱,看不懂,大神能帮我分析下氧化石墨和石墨烯的红外光谱吗?做的这两个产品怎么样?[/color][color=#333333][img]https://imgsa.baidu.com/forum/w%3D580/sign=97f22be825a446237ecaa56aa8237246/365d6c2762d0f7036b5fc44e0dfa513d2797c506.jpg[/img][/color][color=#333333]氧化石墨烯的红外光谱[/color][color=#333333][img]https://imgsa.baidu.com/forum/w%3D580/sign=7bd1b4a2bfa1cd1105b672288913c8b0/fd7a980a304e251f16c7b46aa286c9177f3e533a.jpg[/img][/color][color=#333333]石墨烯的红外光谱希望有大神帮我分析下,并且能两个做一下比较最好了,谢谢![/color]

  • 氧化石墨烯还原程度,拉曼判断

    氧化石墨烯还原程度,拉曼判断

    [color=#444444]图为氧化石墨烯还原前后的拉曼光谱图。[/color][color=#444444]氧化石墨烯ID/IG=1.6[/color][color=#444444]还原后的石墨烯ID/IG=2[/color][color=#444444]如何说明石墨烯的还原程度呢?[/color][color=#444444][img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/06/201906171646051957_1125_1843534_3.jpg!w690x517.jpg[/img][/color]

  • 求助氧化石墨烯的拉曼测定方面

    各位老师我想问一下大家对于氧化石墨烯的拉曼怎么测定的呢,我原始的氧化石墨烯不管是溶液还是固体状态我用752nm的拉曼波长去扫都测不出D、G峰,但是我改性之后的溶液去测就可以很好的测出D、G峰我想问一下这是什么原因呢?有没有什么办法在不改变波长的条件下测出原始氧化石墨烯的拉曼波长吗?我们这边只有752波长的拉曼

  • 氧化石墨烯还原求助

    氧化石墨烯还原求助

    [color=#444444]我做了石墨烯和氧化石墨烯的混合物用水合肼还原,红外光谱图E为原样 BCD为不同量的水合肼还原,还原只后怎么会有新的峰出现呢 而且之前的含氧峰都没什么变化?[/color][color=#444444][img=,690,472]https://ng1.17img.cn/bbsfiles/images/2019/06/201906211525341567_3666_1752329_3.png!w690x472.jpg[/img][/color]

  • 【原创大赛】氧化石墨烯层间距的增加与表征

    【原创大赛】氧化石墨烯层间距的增加与表征

    石墨烯本身由于性质结构非常稳定,所以很难直接参与反应,因此,制备石墨烯系列复合材料,须先对石墨烯进行改性。目前,实验室流行的石墨烯相关的实验都是先增大石墨层间距,弱化石墨层间作用力,使其反应活性增加。通常是强氧化后再通过还原的方法,除去含氧官能团,制备石墨烯系列产物。以下仅验证强酸扩大石墨层间距的方法进行论证。实验原料:浓硫酸、浓磷酸、鳞片石墨、高锰酸钾、浓盐酸、过氧化氢、乙醇实验步骤:通过强酸对石墨进行氧化,再通过超声、离心等方式对其进行剥离,进而制备氧化石墨烯。具体步骤如下:1、取3g鳞片石墨、360ml浓硫酸、40ml浓磷酸于1L三口烧瓶中,常温下搅拌10h。2、在冰浴条件下,分批加入18g高锰酸钾,并持续搅拌4h。3、水浴升温至50℃,持续搅拌12h。4、将反应物倒入盛有500ml冰块的1L烧杯中,搅拌下加入10ml、浓度为10%的过氧化氢溶液,至反应液体变为亮黄色。5、通过离心机高速离心,弃去上层清液,配置1L质量分数5%的盐酸溶液,持续离心洗涤。6、再通过去离子水离心洗涤至分层絮状物出现,烘干,得氧化石墨烯。表征与讨论:http://ng1.17img.cn/bbsfiles/images/2015/09/201509221609_567141_3028526_3.jpg从图中可以看出,a曲线代表鳞片石墨的XRD曲线,石墨的特征衍射峰在26°;b曲线代表氧化石墨烯的XRD曲线,11°左右的强峰是氧化石墨烯的XRD特征衍射峰,而26°附近的石墨XRD峰没有出现,说明石墨结构已经被破坏。结论:通过强酸氧化的方法,成功扩大了石墨的层间距。PS:本结论仅针对石墨层间距进行验证,具体还可以通过红外、高倍透射电镜等对制备的产品进行表征分析。

  • 氨基化石墨烯的红外光谱分析

    氨基化石墨烯的红外光谱分析

    [table=100%][tr][td]做了氨基化石墨烯以及氨基化石墨烯聚苯胺复合材料的红外光谱,怎样从光谱中区分,两者都有苯环和N-H。如图是RGO和PANI/RGO[/td][/tr][/table][img=,690,474]https://ng1.17img.cn/bbsfiles/images/2019/09/201909110952276163_4334_1847709_3.jpg!w690x474.jpg[/img]

  • 功能化石墨烯复合材料与蛋白质分离纯化

    [color=#333333]石墨烯是一种新型二维碳纳米材料,其具有独特而优异的物理化学性质,故引起了科学界及工程界的广泛关注。石墨烯巨大的比表面积使其成为一种潜在的固相吸附材料。为了实现复杂基体样品中蛋白质的高选择性分离纯化,本文制备了一系列功能化石墨烯复合材料,研究了其在蛋白质选择性分离纯化中的应用,建立了满足不同类型的复杂基体样品(全血,鸡蛋清和细胞裂解液)中目标蛋白质的高选择性分离纯化方法。第一章简要综述了石墨烯的研究历史,结构性质及其合成方法。概述了石墨烯的表面功能化,石墨烯复合材料的制备,以及石墨烯及其复合材料在样品预处理等领域中的应用进展。第二章制备了一种新型功能化石墨烯复合材料。通过共价功能化的方式,氧化石墨烯(GO)表面依次经过环氧氯丙烷(ECH),亚氨基二乙酸(IDA)和1-苯硼酸(1-PBA)修饰后,再进一步螫合镍金属离子得到复合材料。复合材料由FT-IR, XRD, SEM, TGA和[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]等手段进行表征。[/color]

  • 氧化石墨烯拉曼光谱求助

    氧化石墨烯拉曼光谱求助

    [color=#444444]为何我做的拉曼光谱基线不平啊,还有请大家看看我的两个峰怎么样,怎么计算氧化石墨烯的纯度啊[/color][color=#444444][img=,380,281]https://ng1.17img.cn/bbsfiles/images/2019/09/201909271503122916_1184_1676638_3.png!w380x281.jpg[/img][/color]

  • 粒度大小对石墨材料性能的影响

    粒度大小对石墨材料性能的影响石墨的物性和应用石墨是一种非金属矿物,但是却有金属材料的导电、导热性能,还具有一定的可塑性和特殊的热性能、化学稳定性,润滑和能涂敷在固体表面等一些良好的工艺性能。因此,石墨在冶金、机械、化工等部门得到了广泛的应用。比如石墨用作导电材料、作耐磨润滑材料,石墨具有良好的化学稳定性。经过特殊加工的石墨可广泛应用于石油化工、湿法冶金、酸碱生产、合成纤维、造纸等工业部门,可节省大量的金属材料。石墨行业注重新品开发,提升产品技术水平和国际竞争力,真正把精力从不计成本开矿、不讲效益扩张、不论后果竞争,转移到合理开采,科学加工,有序竞争,提高资源利用水平和生产加工效益,推进科技进步,提高经济运行质量,推动我国石墨工业的健康发展。随着科学技术的不断发展,人们对石墨也开发了许多新用途。比如应用于电池的电极材料。碳-石墨材料特点:具有耐化学腐蚀、无油润滑、耐温、热稳定性好、抗冲击性强等特点。广泛应用于:现代工作的各种机械设备中,作为离心泵、搅拌机、汽轮机、反应釜中的密封环;制氧机、压缩机、鼓风机的活塞环;转子发动机、真空泵、汽油泵用旋片等。碳-石墨材料可以加工成各种规格和形状。石墨材料与粒度的关系石墨材料作为锂离子电池负极材料具有良好的导电性、优良的充放电电压平台、较高的比容量以及低廉的价格等优点,所以一直是负极材料的研究热点。粉碎是将构成石墨产品的原始材料进行预定要求的粉碎处理,其决定了最终石墨材料的颗粒度大小,而石墨材料的颗粒度大小则对工艺的光洁度至关重要,颗粒度(粒径)越小,则我们可加工零件的光洁度越细,现今全球的石墨材料颗粒度最高制造水平为3um以内。然而对石墨板指标要求定位于:密度好、颗粒度小、耐腐蚀等,其中这个颗粒要求度其实是个很大的误区。颗粒度小了之后,密度或许会变的更瓷实,但是相对的抗折强度就会大大下降,比如说大规格的石墨电极一般不会采用小颗粒,第一生产时电极内部会产生裂纹,第二在高温使用下会产生折断现象,影响石墨使用寿命。大颗粒的石墨板润滑度也比小颗粒的要好,所以在选用石墨板、石墨阳极板上应该采用大颗粒的石墨板,这样抗折强度和润滑度上都有一定的优势。如今石墨材料粒度大小逐渐趋向细微方向。例如氟化石墨在混合炸药中起钝化作用,其在混合炸药中的颗粒大小和分布均匀性影响着炸药的钝感效果。目前由于制备氟化石墨工艺的改进,使其粒度逐渐变小。所以颗粒的团聚问题及再分散问题也日益严重,因此如何准确分析出氟化石墨粉体的粒度分布是生产厂家和用户关心的问题。

  • 氧化石墨烯毛细管电色谱分离硝基苯酚位置异构体

    最近看了一篇文献Graphene oxide and reduced graphene oxide as novel stationary phases via electrostatic assembly for open-tubular capillary electrochromatography(Electrophoresis2013,34,1869–18760)文中以氧化石墨烯为电色谱固定相来分离邻、间、对硝基苯酚,其pKa分别为8.39, 7.15, 和7.22 文中选择pH7.0的磷酸缓冲液为流动相,说是可以得到基线分离。但是,pH7.0下间硝基苯酚(7.15)和对硝基苯酚(7.22)都是以负离子和中性分子两种形式存在,邻硝基苯酚以分子形式存在,最后得到的邻硝基苯酚的峰中会不会掺杂有间硝基苯酚和对硝基苯酚的分子形式??? 这和氧化石墨烯有关吗? 氧化石墨烯在试验中的作用?对硝基苯酚的三种位置异构体的作用大小不一样吗? 谢谢各位

  • 氧化石墨烯和植物纤维的红外光谱分析

    [color=#444444]a是植物纤维;[/color][color=#444444]b是氧化石墨烯处理过的植物纤维;[/color][color=#444444]请大佬帮我分析一下这个红外光谱图上能否看出氧化石墨烯和植物纤维之间产生化学键的作用(比如生成醚键)?如果能该如何分析?最好提供一些文献,谢谢[/color][img=,absmiddle]http://muchongimg.xmcimg.com/data/emuch_bbs_images/smilies/arm.gif[/img][img=,absmiddle]http://muchongimg.xmcimg.com/data/emuch_bbs_images/smilies/arm.gif[/img][img=,absmiddle]http://muchongimg.xmcimg.com/data/emuch_bbs_images/smilies/arm.gif[/img][img]http://muchongimg.xmcimg.com/oss2/img/2018/1102/bw142h9215802_1541164992_194.jpg[/img]

  • 石墨炉法测滑石粉中的铝

    石墨炉法测滑石粉中的铝

    最近在测滑石粉中的铝元素,用的是石墨炉法,标准时四部药典,仪器pe900t,新的平台石墨管,未加基改(药典没说加不加,所以没加),稀释剂是(盐酸10ml,和2.5%氯化铯溶液10ml,加水至100ml的混合液),浓度点是0、10、20、30、40、50ng/ml,进样量20ul,程序升温如下,空白吸光度为0.0100,结果出现了高浓度点吸光度比低浓度点高,根本做不出曲线,而且峰型也不好,如下图,查了各种资料,都说石墨炉做铝不好做,但是没办法,工作需要,还请做过铝的老师指点指点,现在难受死了[img]https://ng1.17img.cn/bbsfiles/images/2018/12/201812141452013131_4398_3480890_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2018/12/201812141452502618_4356_3480890_3.jpg[/img][img]https://ng1.17img.cn/bbsfiles/images/2018/12/201812141455377667_1611_3480890_3.jpg[/img]

  • 【原创大赛】氧化石墨烯改性双极膜中间层的制备与表征

    【原创大赛】氧化石墨烯改性双极膜中间层的制备与表征

    氧化石墨烯改性双极膜中间层的制备与表征摘要 环境污染也成为了人类目前最大的问题,在许多化工企业中,所排放的废水中会含有较多的盐,传统工艺过程对这些废水的处理(萃取、中和、吸附和生化等)存在缺陷,工艺过程费用高,但是这种处理方法的成本费用很高,但是引用双极膜电渗析技术,这种处理废水的工艺技术不但能够节省费用且工艺过程也更简单。双极膜电渗析技术可以从极稀醋酸废水中提取出醋酸,与传统的电渗析技术相比,回收的浓缩液可以达到36%以上,而传统的浓缩到20%,超过20%以后,醋酸的浓度降低到0.1%时候,电压就会急剧上升。1. 引言 双极膜技术起源于50年代,但是那时候双极膜技术不成熟,发展缓慢,膜性能非常差,经过60多年的发展研究,双极膜技术得到了快速发展,随着对双极膜水解机理认识逐渐加深,双极膜的制备也从简单的层压型、单片型转变到界面层复杂结构,双极膜的跨膜电压得到很大的降低,80年代中期,通过美国科研人员的努力,双极膜的中间层得到非常有效的改进,随后国内外双极膜研究工作者继续对双极膜中间层进行改进,提出了多种中间层催化水解物质(PEG、PVA等),使得双极膜的性能得到优化,电阻也大幅度降低,膜性能、机械强度、能耗方面有了较大的改进,技术应用也从化工污染治理、资源回收、食品工程、能源、环境、生命科学扩展到多个领域,为许多领域的技术难题带来了新的工具。目前,国外对双极膜的研究较为深入,双极膜技术在美国、日本应用已经非常广泛,且开始商品化,国内目前还处于研究时期,许多问题需要解决和突破。http://ng1.17img.cn/bbsfiles/images/2015/09/201509211532_566971_2984502_3.jpg2. 膜材料、实验试剂与仪器2.1 膜材料 本实验采用的阴离子交换膜在江千秋环保水处理有限公司购置,其材料参数见表1.http://ng1.17img.cn/bbsfiles/images/2015/09/201509211534_566972_2984502_3.jpg2.2 实验试剂 本实验所用试剂见表2。http://ng1.17img.cn/bbsfiles/images/2015/09/201509211536_566973_2984502_3.jpg2.3 实验仪器 本实验所用仪器见表3。http://ng1.17img.cn/bbsfiles/images/2015/09/201509211537_566974_2984502_3.jpg3.实验过程3.1 双极膜的制备 PAAS/GO/AM-1双极膜是以商业化的阴离子交换膜AM-1作为双极膜的基膜层,并在其表面喷涂氧化石墨烯,形成中间层,然后再喷涂戊二醛和聚丙烯酸钠交替喷涂形成阳离子交换层。制备双极膜的流程如图2-2所示,实验步骤如下所示:(1)将买来的阴离子交换膜AM-1膜剪成10×10cm2的方块,放在1mol·L-1NaCL溶液中24小时;(2)取出浸泡的阴离子交换膜,然后将其移到1mol·L-1 NaOH的溶液中放置6 h,过后再用用蒸馏水洗净,然后再将上述膜放到1mol·L-1 HCl浸泡6 h,使用去离子水清洗膜表面,而后将清洗后的膜放置到40℃的恒温烘箱中烘干;(3)将阴离子交换膜(AM-1)固定放置到载膜器上,开始调节载膜器的电机到恒定转速;(4)调节压力至 0.40MPa 下,将配置好的氧化石墨烯溶液喷涂到阴离子交换膜上,喷涂一定的次数形成界面层,再交替喷涂戊二醛(GA)和聚丙烯酸钠(PAAS),通过喷涂戊二醛和聚丙烯酸钠一定的次数形成阳离子交换膜; 喷涂结束以后,将双极膜取下,放置到干净的恒温烘箱内,干燥一段时间后即可得到PAAS/GO/AM-1双极膜。http://ng1.17img.cn/bbsfiles/images/2015/09/201509211539_566976_2984502_3.jpg3.2 双极膜的性能表征 双极膜I-V主要用来表征膜电流-电压的基本特性,可以通过I-V曲线反映出双极膜的能耗大小、水解离速率、水解离电压和极限电流密度等。本论文中I-V测试装置如图2-3所示,通过使用Nafion膜使阴、阳极室与双极膜分开,这样有效的阻挡了电极产物与PAAS/GO/AM-1双极膜之间的接触。双极膜放置在测量池中,通过调节水泵,控制盐溶液在在测量池中恒速循环,测量体系所用的溶液均为0.5mol·L-1Na2SO4溶液。双极膜的电压通过使用两Ag/AgCl电极和万能表测量得出。http://ng1.17img.cn/bbsfiles/images/2015/09/201509211542_566981_2984502_3.jpg

  • 有没有人用过滑石磨粉机?

    最近我厂生产一批滑石粉,桂林鸿程买了一台HC1000磨粉机,听说是专门磨滑石粉的,有没有用用过滑石磨粉机,希望能跟我交流一下使用过程要注意点什么。拜托了给位亲。

  • 石墨烯制备方法

    [b]机械剥离法[/b]机械剥离法是利用物体与石墨烯之间的摩擦和相对运动,得到石墨烯薄层材料的方法。这种方法操作简单,得到的石墨烯通常保持着完整的晶体结构。2004年,英国两位科学使用透明胶带对天然石墨进行层层剥离取得石墨烯的方法,也归为机械剥离法,这种方法一度被认为生产效率低,无法工业化量产。 虽然这种方法可以制备微米大小的石墨烯,但是其可控性较低,难以实现大规模合成。[b]氧化还原法[/b]氧化还原法是通过使用硫酸、硝酸等化学试剂及高锰酸钾、双氧水等氧化剂将天然石墨氧化,增大石墨层之间的间距,在石墨层与层之间插入氧化物,制得氧化石墨(Graphite Oxide)。然后将反应物进行水洗,并对洗净后的固体进行低温干燥,制得氧化石墨粉体。通过物理剥离、高温膨胀等方法对氧化石墨粉体进行剥离,制得氧化石墨烯。最后通过化学法将氧化石墨烯还原,得到石墨烯(RGO)。这种方法操作简单,产量高,但是产品质量较低。氧化还原法使用硫酸、硝酸等强酸,存在较大的危险性,又须使用大量的水进行清洗,带大较大的环境污染。使用氧化还原法制备的石墨烯,含有较丰富的含氧官能团,易于改性。但由于在对氧化石墨烯进行还原时,较难控制还原后石墨烯的氧含量,同时氧化石墨烯在阳光照射、运输时车厢内高温等外界每件影响下会不断的还原,因此氧化还原法生产的石墨烯逐批产品的品质往往不一致,难以控制品质。[b]取向附生法[/b]取向附生法是利用生长基质原子结构"种"出石墨烯,首先让碳原子在1150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,最终镜片形状的单层的碳原子会长成完整的一层石墨烯。第一层覆盖后,第二层开始生长。底层的石墨烯会与钌产生强烈的相互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。[b]碳化硅外延法[/b]SiC外延法是通过在超高真空的高温环境下,使硅原子升华脱离材料,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。这种方法可以获得高质量的石墨烯,但是这种方法对设备要求较高。[b]赫默法[/b]通过Hummer法制备氧化石墨 将氧化石墨放入水中超声分散,形成均匀分散、质量浓度为0.25g/L~1g/L的氧化石墨烯溶液,再向所述的氧化石墨烯溶液中滴加质量浓度为28%的氨水 将还原剂溶于水中,形成质量浓度为0.25g/L~2g/L的水溶液 将配制的氧化石墨烯溶液和还原剂水溶液混合均匀,将所得混合溶液置于油浴条件下搅拌,反应完毕后,将混合物过滤洗涤、烘干后得到石墨烯。[b]化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法[/b]化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法即(CVD)是使用含碳有机气体为原料进行[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积制得石墨烯薄膜的方法。这是目前生产石墨烯薄膜最有效的方法。这种方法制备的石墨烯具有面积大和质量高的特点,但现阶段成本较高,工艺条件还需进一步完善。由于石墨烯薄膜的厚度很薄,因此大面积的石墨烯薄膜无法单独使用,必须附着在宏观器件中才有使用价值,例如触摸屏、加热器件等。[b]低压[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法[/b]是部分学者使用的,其将单层石墨烯在Ir表面上生成,通过进一步研究可知,这种石墨烯结构可以跨越金属台阶,连续性的和微米尺度的单层碳结构逐渐在Ir表面上形成。 毫米量级的单晶石墨烯是利用表面偏析的方法得到的。厘米量级的石墨烯和在多晶Ni薄膜上外延生长石墨烯是由部分学者发现的,在1000℃下加热300纳米厚的Ni 膜表面,同时在CH4气氛中进行暴露,经过一段时间的反应后,大面积的少数层石墨烯薄膜会在金属表面形成。

  • 求助测试石墨烯类样品的方法

    石墨烯或氧化石墨烯样品密度太小,在测试热重的时候容易飘出(特别是氧化石墨烯200度附近),请教该怎么进行测试?我们所用仪器为TA Q50。采用DSC铝坩埚加盖试验过,但200度的时候样品还是从盖子打的孔里飘出来了。。。。

  • 石墨烯制备交流

    这两天一直在制备石墨烯,想请教大家一些问题:很多文献上都说氧化石墨制备完成后要用HCl洗涤和二次水反复洗涤至中性,可是我洗了好多次发现一直是酸性呀?后来一想这氧化石墨本来就是酸性的,怎么能洗到中性呢?大家说的中性是不是离心后的上清液是中性的呀?还有用水洗涤后为什么都要干燥后再超声剥离呀,洗涤完成后直接超声剥离可以吗?可以剥离后再经过低速离心除去为氧化充分的石墨,高速离心得到氧化石墨烯的固体吗?问题比较多,希望高手指点呀?

  • 【求助】该怎样优化石墨炉测定条件?

    最近在做石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],想看一些优化实验条件的资料,了解一下出了双峰、拖尾峰或峰型很差等异常情况,该怎样优化灰化、原子化温度时间条件。瓦里安软件有一个自动优化条件选项,但也不是每次都能找到合适的最优条件。而且,怎么软件会自动在灰化和原子化之间加一个步骤,降温到200度?

  • 【讨论】使用新买石墨管应怎么样老化?

    有次我使用新的石墨管的时候,我采用空烧来老化石墨管,一下子就给我烧爆了,我有换了一个新的,我这时就运行升温程序来老化,不用空烧了,这次成了,不知大家怎么样老化石墨管?

  • 【求助】石墨炉开机自检时石墨管over heated是怎么回事?

    我用的是PE600,今天换了个新的石墨管,结果我去格式化石墨管时刚走完第一步(共9步)就不往下走了,出现一个对话框大意是:石墨管over heanted,还说可能是以循环水不行了,但是检查了循环水也没问题啊,还会是什么原因呢?怎么解决?请教各位!

  • 石墨烯的性质

    [font=&]石墨烯的化学性质与石墨类似,石墨烯可以吸附并脱附各种原子和分子。当这些原子或分子作为给体或受体时可以改变石墨烯载流子的浓度,而石墨烯本身却可以保持很好的导电性。但当吸附其他物质时,如H和OH时,会产生一些衍生物,使石墨烯的导电性变差,但并没有产生新的化合物。因此,可以利用石墨来推测石墨烯的性质。例如石墨烷的生成就是在二维石墨烯的基础上,每个碳原子多加上一个氢原子,从而使石墨烯中sp碳原子变成sp杂化。 可以在实验室中通过化学改性的石墨制备的石墨烯的可溶性片段。[/font][font=&]化合物[/font][font=&]氧化石墨烯(grapheneoxide,GO):一种通过氧化石墨得到的层状材料。体相石墨经发烟浓酸溶液处理后,石墨烯层被氧化成亲水的石墨烯氧化物,石墨层间距由氧化前的3.35?增加到7~10?,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。XPS、红外光谱(IR)、固体核磁共振谱(NMR)等表征结果显示石墨烯氧化物含有大量的含氧官能团,包括羟基、环氧官能团、羰基、羧基等。羟基和环氧官能团主要位于石墨的基面上,而羰基和羧基则处在石墨烯的边缘处。[/font][font=&]石墨烷(graphane):可通过石墨烯与氢气反应得到,是一种饱和的碳氢化合物,具有分子式(CH)n,其中所有的碳是sp杂化并形成六角网络结构,氢原子以交替形式从石墨烯平面的两端与碳成键,石墨烷表现出半导体性质,具有直接带隙。[/font][font=&]氮掺杂石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子后变成氮掺杂的石墨烯,生成的氮掺杂石墨烯表现出较纯石墨烯更多优异的性能,呈无序、透明、褶皱的薄纱状,部分薄片层叠在一起,形成多层结构,显示出较高的比电容和良好的循环寿命。[/font][font=&]生物相容性:羧基离子的植入可使石墨烯材料表面具有活性功能团,从而大幅度提高材料的细胞和生物反应活性。石墨烯呈薄纱状与碳纳米管的管状相比,更适合于生物材料方面的研究。并且石墨烯的边缘与碳纳米管相比,更长,更易于被掺杂以及化学改性,更易于接受功能团。[/font][font=&]氧化性:可与活泼金属反应。[/font][font=&]还原性:可在空气中或是被氧化性酸氧化,通过该方法可以将石墨烯裁成小碎片。 石墨烯氧化物是通过石墨氧化得到的层状材料,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。[/font][font=&]加成反应:利用石墨烯上的双键,可以通过加成反应,加入需要的基团。[/font][font=&]稳定性:石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 同时,石墨烯有芳香性,具有芳烃的性质[/font]

  • 石墨炉升温过程灰化停气吗?

    石墨炉升温过程中,灰化时需要停气吗?本人刚接触石墨炉不久,之前做石墨炉的时候工程师只说原子化阶段要停气,后来用另一家的石墨炉,又说灰化时也要停气。到底升温过程哪些阶段停气好一些?

  • 石墨烯化学性质

    石墨烯的化学性质与石墨类似,石墨烯可以吸附并脱附各种原子和分子。当这些原子或分子作为给体或受体时可以改变石墨烯载流子的浓度,而石墨烯本身却可以保持很好的导电性。但当吸附其他物质时,如H和OH时,会产生一些衍生物,使石墨烯的导电性变差,但并没有产生新的化合物。因此,可以利用石墨来推测石墨烯的性质。例如石墨烷的生成就是在二维石墨烯的基础上,每个碳原子多加上一个氢原子,从而使石墨烯中sp碳原子变成sp杂化。 可以在实验室中通过化学改性的石墨制备的石墨烯的可溶性片段。化合物氧化石墨烯(grapheneoxide,GO):一种通过氧化石墨得到的层状材料。体相石墨经发烟浓酸溶液处理后,石墨烯层被氧化成亲水的石墨烯氧化物,石墨层间距由氧化前的3.35Å 增加到7~10Å ,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。XPS、红外光谱(IR)、固体核磁共振谱(NMR)等表征结果显示石墨烯氧化物含有大量的含氧官能团,包括羟基、环氧官能团、羰基、羧基等。羟基和环氧官能团主要位于石墨的基面上,而羰基和羧基则处在石墨烯的边缘处。石墨烷(graphane):可通过石墨烯与氢气反应得到,是一种饱和的碳氢化合物,具有分子式(CH)n,其中所有的碳是sp杂化并形成六角网络结构,氢原子以交替形式从石墨烯平面的两端与碳成键,石墨烷表现出半导体性质,具有直接带隙。氮掺杂石墨烯或氮化碳(carbonnitride):在石墨烯晶格中引入氮原子后变成氮掺杂的石墨烯,生成的氮掺杂石墨烯表现出较纯石墨烯更多优异的性能,呈无序、透明、褶皱的薄纱状,部分薄片层叠在一起,形成多层结构,显示出较高的比电容和良好的循环寿命。生物相容性:羧基离子的植入可使石墨烯材料表面具有活性功能团,从而大幅度提高材料的细胞和生物反应活性。石墨烯呈薄纱状与碳纳米管的管状相比,更适合于生物材料方面的研究。并且石墨烯的边缘与碳纳米管相比,更长,更易于被掺杂以及化学改性,更易于接受功能团。氧化性:可与活泼金属反应。还原性:可在空气中或是被氧化性酸氧化,通过该方法可以将石墨烯裁成小碎片。 石墨烯氧化物是通过石墨氧化得到的层状材料,经加热或在水中超声剥离过程很容易形成分离的石墨烯氧化物片层结构。加成反应:利用石墨烯上的双键,可以通过加成反应,加入需要的基团。稳定性:石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。 同时,石墨烯有芳香性,具有芳烃的性质

  • 石墨管内部起皮

    最近做Sn,用10%Vc+0.1%磷酸二氢铵做基改原子化时石墨炉炉膛冒大量的烟,视频显示石墨管管壁凹凸不平,不像平时那么光滑拿出石墨管后发现内部起皮石墨管要怎么做才能恢复新生?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制