萘甲硫醇

仪器信息网萘甲硫醇专题为您提供2024年最新萘甲硫醇价格报价、厂家品牌的相关信息, 包括萘甲硫醇参数、型号等,不管是国产,还是进口品牌的萘甲硫醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合萘甲硫醇相关的耗材配件、试剂标物,还有萘甲硫醇相关的最新资讯、资料,以及萘甲硫醇相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

萘甲硫醇相关的资料

萘甲硫醇相关的论坛

萘甲硫醇相关的方案

萘甲硫醇相关的资讯

  • 电位滴定在油品中硫醇硫含量检测中的应用
    一、油品中硫醇硫是什么?硫醇是含巯基官能团(-SH)的一类非芳香化合物。结构上相当于醇类中的氧被硫替换形成,例如乙醇(俗称酒精)CH3CH2OH,乙硫醇CH3CH2SH。石油产品中有少量硫醇化合物,硫醇的存在不仅会使油品具有令人讨厌的气味,同时在燃烧时转变为有毒、腐蚀性的二氧化硫和三氧化硫,对燃料系统的弹性材料有害,并对燃料系统的构件产生腐蚀,影响相关机械寿命,例如汽车发动机。因此控制石油产品中的硫醇含量是相当重要的。油品中的硫醇含有的硫,称为硫醇硫含量。国家标准强制规定了汽油柴油、煤油、馏分燃料、喷气燃料等一系列油品中硫醇硫的含量。那么该如何测定油品中硫醇硫的含量呢?二、硫醇硫的测定方法目前硫醇硫测定有2种常用方法,一种是定性检测的博士试验,另一种是定量检测的电位滴定法。 方法原理优点缺点博士试验(NB/SH/T 0174-2015)振荡加有亚铅酸钠溶液的试样,并观察混合溶液,从外观来推断是否存在硫醇、硫化氢、元素硫或过氧化物。再通过添加硫磺粉,振荡并观察最终混合溶液外观的变化来进一步确定是否存在硫醇操作流程简单只能定性检测硫醇含量是否超过临界值。通常作为硫醇定量测定法的一种替代方法。二硫化碳会干扰测定。过氧化物和酚类物质大于痕量的情况不适用。电位滴定(GB/T 1792-2015)将无硫化氢的试样溶解在乙酸钠的异丙醇滴定溶剂中,以玻璃参比电极和银/硫化银指示电极之间的电位作指示,用硝酸银醇标准溶液通过电位计进行滴定。在滴定过程中,硫醇硫沉淀为硫醇银,而滴定终点通过电池电位上的突变显示出来。测量快速,准确。有机硫化物,如硫化物、二硫化物及噻吩不干扰测定。质量分数小于0.0005%的元素硫不干扰测定。需要脱除硫化氢。要求工作人员有较高的专业水平。 三、使用电位滴定仪测定油品中硫醇硫含量(1)仪器:雷磁ZDJ-5B自动电位滴定仪(2)电极:216型银电极和231-01型pH玻璃电极。(3)试剂:超纯水、1-丁硫醇、1-庚硫醇、碘化钾、浓硝酸、异丙醇、乙酸钠、硫化钠、硝酸银等(4)样品:市售汽油;丁硫醇标准溶液(5)测定流程如下: 丁硫醇滴定曲线 汽油滴定曲线 汽油加标滴定曲线 *天然气中的硫醇硫也采用类似方法检测。参考标准《GB/T 11060.6-2011》(6)依据滴定终点计算出样品中硫醇硫的含量 四、仪器及配套电极ZDJ-5B型自动滴定仪l 7寸彩色触摸电容屏,导航式操作;l 支持电位滴定;l 实时显示测试方法、滴定曲线和测量结果;l 可定义计算公式,直接显示计算结果; l 支持滴定剂管理功能;l 支持pH的标定、测量功能;l 支持USB、RS232连接PC,双向通讯;l 可直接连接自动进样器实现批量样品的自动测量。 216银电极l 温度范围:0~50℃l 工作电极材料:银l 外壳尺寸:ABSl 外形尺寸:12×120mml 接插件:U型叉片 相关应用和产品详情,欢迎致电400-827-1953、关注雷磁公众号或浏览雷磁官网http://www.lei-ci.com
  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD 裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • “硫”氓哪里逃!
    硫成分广泛存在于许多用于烃加工的原料中。含硫成分危害很大,有强烈的气味。而且会引起酸雨,导致催化剂(昂贵)中毒,降低聚合物产量。最麻烦的硫气体是硫化氢(H 2S)、羰基硫(COS)和甲基硫醇、乙基硫醇。根据国内的标准要求,这些化合物是要在ppb水平测定。 硫气体的检测困难在于是挥发性的,也非常活泼的。痕量硫分析系统必须是非常惰性的采样设备、GC设置才能实现ppb级可重复的检测结果。 在线监测流程和原理概况: 气体样品定量被采集到在线的低温冷肼吸附填料内,两级冷肼,一级除水,一级将气体样品中的待测组分冷凝到吸附填料上。然后快速升温加热块将装有吸附填料的吸附管迅速升温,待测组分解析后由载气携带进入分析柱内,进行分离,随后进入检测器得出分析结果。 鉴于此,硫化物在线监测体系需要满足如下条件:1 样品的采集、富集、解析、分离和分析,整个过程要自动运行。2 所有样品流经途径接触到的表面都要经过惰性处理,确保美誉任何吸附。3 加热块的迅速升温。4 电子流量控制技术精准控制载气流量。 分离体系是整个体系很重要的一环,由于是在线分析体系,所以选择更加耐用、更加结实的MXT金属柱就是最好的解决方案。1987年RESTEK第一个开发了金属表面进行硅烷化惰性处理的专利技术,对不锈钢的表面进行惰性处理后,其惰性表面甚至比石英毛细柱的表面的惰性还要好,如下比较: 针对硫化物分析,一个是最常使用的MXT专用填充柱MXT- XLSulfur 分析化合物:羰基硫-463-58-1-COS硫化氢-7783-06-4-H2S甲硫醇-74-93-1-CH4S甲硫醚-75-18-3-C2H6S二甲二硫醚-624-92-0-DMDS二硫化碳-75-15-0-CS2乙硫醇-75-08-1-C2H6S二甲基二硫-624-92-0-C2H6S2分析谱图:分析条件: 色谱柱Rt-XLSulfur, 1 m, 0.75 mm ID (cat.# 19806)浓度1 mL,50 ppbv进样六通阀切换程序升温:60 C - 230 C ,15 C/min载气He, 恒流量流速:9 mL/min检测器FID 另外一个比较经典的解决方案是PLOT毛细柱。 PLOT-U BOND是PLOT系列毛细柱内最适合做硫化物分离分析的。它最大的贡献就是能够很好的分离H2S和COS。 分析条件如下: 色谱柱Rt U-BOND 30 m x 0.32 mm df = 10 μm浓度1 ppm,250 μL进样六通阀切换,1:10分流比程序升温:40 °C, 5 min,10 °C/min → 220 °C载气He压力10 psi检测器PFPD, 250 °C 另外最近最新的SILICA气相色谱柱兴起,带来另一个硫化物分析的解决方案. 化合物组分1. 羰基硫2. 硫化氢3. 丁烷4. 二硫化碳5. 甲基硫醇6. 乙硫醇7. 硫醇 色谱柱Rt-Silica BOND, 30 m, 0.32 mm ID (cat.# 19785)样品浓度6 ppm,100% 丁烷进样六通阀进样体积:250 uL进样口温度:250 C柱温箱柱温箱温度:40 C (5 min) - 200 C (10 C/min) - 持续 8 min载气He, 恒流,2 mL/min检测器PFPD @ 250 C仪器Thermo Trace GC 以上三套分析方法列出的分析条件都是可以根据具体的需求进行优化的,可以选择更快的分析时间和更高的分析效率的优化方案。 另一个影响分离度或者检出限的一个重要因素是进样过程。由于硫化物都是以气态方式存在的,传质性能特别的好,另外非常的活泼,很容易导致峰型拖尾,所以在进样过程一定要确保峰带狭窄进入毛细柱。下图就是进样没有优化出来的谱图: 遇到这样的问题,需要从如下方面进行改善: 使用更大内径的毛细柱。0.32mm内径的更换成0.53mm毛细柱。 使用更大膜厚,5 um 膜厚更换成7 um膜厚的毛细柱。 降低初始温度。 降低进样体积或者增大分流比。 加大载气流速。 关于硫化物检测器有如下选择,灵敏度从低到高依次为:FPD, PFPD 和SCD。从数据稳定性和操作的简易性来看,从复杂到简单排序SCD, PFPD and FPD。 Restek可以提供的应对以及优化方案: 1、惰性管路 Restek 是检测分析和过程分析所用的管路的标准制订者。请使用RESTEK提供的预清洗的、惰性化和耐腐蚀处理的管路、阀门优化你的体系。 Sulfinert - 终极表面惰性化处理方案。适用于极性活泼化合物的分析过程,例如气体采样和储存或者ppb级别的有机硫化物的分析。 对于不锈钢材料, Silcosteel 处理层在600℃是稳定的。当有氧存在时,耐受温度最高250℃。为什么使用Sulfinert或者Silcosteel处理涂层,而不是PTFE涂层?【1】Sulfinert和Silcosteel涂层是非聚合的, 所以他们不存在有关透气性的问题。【2】PTFE涂层经常脱落下来, 而Sulfinert或Silcosteel涂层能与底面完全融为一体。【3】PTFE涂层温度限为280℃, 而Silcosteel处理过的不锈钢管路和接头的温度上限为600℃。处理过的管路可以折弯吗?只要管路不拉伸太大,处理过的管路惰性层保持不变。1/16英寸外径的管路弯曲半径大于1英寸,1/8英寸外径的管路弯曲半径大于2英寸,1/4英寸外径的管路弯曲半径大于4英寸。如果必要弯曲,使用一个定制的弯头组件或者把组件寄给Restek公司要求定制处理。为什么用Siltek/Sulfinert处理过的管路传输气体样品?用来传输活性化合物时(比如硫),Siltek/Sulfinert处理过的不锈钢管路有玻璃管和石英管所有的优点,但是它更加耐用灵活。如何清洁经过处理的部件表面?通常,温和的有机溶剂(二氯甲烷、甲醇、正己烷)或者水就可以了。温和的超声处理可以帮助加速清洗效果。不要使用有腐蚀性的或是高pH(pH8)的清洁剂。因为他们会损害或溶解惰性层。有氧气或空气存在的蒸汽清洗也应该避免。 Sulfinert处理 304 不锈钢管路我们最受欢迎的管路产品。 推荐用于: 色谱分析 气体采样分析 低压分析 惰性环境下的分析惰性环境下,最高耐受温度 450 °C 。 货号外径包装量292341/16″ (1.59 mm)6ft(1.8m)/盘292351/16″ (1.59 mm)10ft(3.0m)/盘292361/16″ (1.59 mm)15ft(4.6m)/盘292371/16″ (1.59 mm)20ft(6.1m)/盘292381/16″ (1.59 mm)25ft(7.6m)/盘292391/16″ (1.59 mm)50ft(15m)/盘292401/16″ (1.59 mm)100ft(30m)/盘292421/8″ (3.18 mm)6ft(1.8m)/盘292431/8″ (3.18 mm)10ft(3.0m)/盘292441/8″ (3.18 mm)15ft(4.6m)/盘292451/8″ (3.18 mm)20ft(6.1m)/盘292461/8″ (3.18 mm)25ft(7.6m)/盘292471/8″ (3.18 mm)50ft(15m)/盘292481/8″ (3.18 mm)100ft(30m)/盘292501/4″ (6.35 mm)6ft(1.8m)/盘292511/4″ (6.35 mm)10ft(3.0m)/盘292521/4″ (6.35 mm)15ft(4.6m)/盘292531/4″ (6.35 mm)20ft(6.1m)/盘292541/4″ (6.35 mm)25ft(7.6m)/盘292551/4″ (6.35 mm)50ft(15m)/盘292561/4″ (6.35 mm)100ft(30m)/盘 2、惰性接头 Sulfinert- 和 Silcosteel-CR- 处理接头 全线产品涵盖 1 / 16 英寸、 1 / 8 英寸和 1 / 4 英寸接头 Silcosteel-CR 处理,表面耐腐蚀性增强10倍以上 我们也提供未经过表面处理的 Swagelok接头 惰性处理接头类型 尺寸Siltek/Sulfinert货号包装 等径两通 1/16英寸 22540ea. 1/8英寸 22541ea. 1/4英寸 22542ea. 3/8英寸 22909ea. T型三通 1/16英寸 22543ea. 1/8英寸 22544ea. 1/4英寸 22545ea. 3/8英寸 22910ea. 变径两通 1/8-1/16英寸 22546ea. 1/4-1/16英寸 22547ea. 1/4-1/8英寸 22548ea. 3/8-1/4英寸 22911ea. 直角两通 1/8英寸 22549ea. 1/4英寸 22550ea. 堵头 1/8英寸 22573ea. 1/4英寸 22574ea. 四通 1/8英寸 22551ea. 1/4英寸 22552ea. 3、Rt-XLSulfur填充柱用于ppb级(体积分数)硫化物分析的最佳色谱柱无需使用特氟龙管色谱柱和接头均经Siltek处理,具有极佳的惰性填充材料经过去活化处理,适用于ppb级硫化氢和甲基硫醇分析。此外,这款色谱柱还能很好的分离烃类物质与硫化物传统的硫化物分析中常常使用特氟龙柱管以提高色谱柱的惰性。但是,特氟龙柱管具有气体渗透性和收缩性,并且难以实现高效填充,热稳定性也较差。Rt-XLSulfur色谱柱的内壁和接头经Siltek处理,使得柱管具有与特氟龙一样的惰性。精益求精的生产工艺确保Rt-XLSulfur色谱柱分离硫化物时可获得更准确的结果 80484-8002 mm1 m1/8"100/120通用ea.80484-8102 mm1 m1/8"100/120Agilentea.80484-8402 mm1 m1/8"100/120PE Auto Sysea.80485-8002 mm2 m1/8"100/120通用ea80485-8102 mm2 m1/8"100/120Agilentea.80485-8402 mm2 m1/8"100/120PE Auto Sysea.198041.0 mm1 m1/16"100/120通用ea.198051.0 mm2 m1/16"100/120通用ea.198060.75 mm1 m0.95 mm100/120通用ea.198070.75 mm2 m0.95 mm100/120通用ea.190440.53 mm2 m0.74 mm100/120通用ea. 4、Rt-Silica BOND适合分析饱和不饱和烃、硫化物和CO2.先进和稳定的生产工艺,确保颗粒不会脱落。延长FID检测器喷嘴的使用寿命。硅胶键合填料把样品中的水的负面影响降到最低,代替氧化铝基体毛细柱对含有微量水的样品的分析。最高温度 260 °C. 货号长度内径包装1978415 m0.32 mmea.1978530 m0.32 mmea.1978660 m0.32 mmea. 5、Rt-U BOND二乙烯基苯-乙烯乙二醇-二甲基丙烯酸酯,极性用于极性和非极性化合物分析非常适合H2S和COS的分离分析。最高温度190C。 货号长度内径膜厚包装1977115 m0.25 mm8 umea.1977230 m0.25 mm8 umea.1975115 m0.32 mm10 umea.1975230 m0.32 mm10 umea.1974915 m0.53 mm20 umea.1975030 m0.53 mm20 umea.1978215 m0.25 mm12 umea. 6、气体定量环 1/16英寸接头,适合“W 型”阀门定量环体积范围5μL-5mLSulfinert处理技术消除了阀和样品环上的活性位点,适合含有低浓度硫化物或其他活性化合物的样品 货号体积包装228405 uLea.2284110 uLea.2284220 uLea.2284325 uLea.2284450 uLea.22845100 uLea.22846250 uLea.22847500 uLea.228481 mLea.228492 mLea.228505 mLea. 7、气体进样六通阀和十通阀 1/16" 接头, “W 型” 阀门,非常适合硫化物或者其它极性气体样品进样。 货号描述包装20585Sulfinert 处理六通阀ea.20586Sulfinert 处理十通阀ea.

萘甲硫醇相关的仪器

  • 【磐诺硫化物在线气相色谱仪】该系统环境样品先经过在线除水装置除去其中的水份,再吸附到低温冷阱复合吸附管中,然后吸附管闪蒸快速升温至250℃解吸,进样,载气带着热解析出来的气体样品进入预柱分离,待目标化合物进入分析柱中后,切换阀,载气将高沸点化合物从预柱中反吹出去,目标化合物在分析柱中继续分离通过火焰光度检测器FPD检测得到。【仪器特点】1)在线样品富集、解吸附、样品分析,自动运行;2)全部管路和器件均经过硫钝化处理,对目标硫化物无吸附;3)低温冷阱富集,增强了对低沸点化合物的富集效率;4)快速升温,瞬间解吸附进样,大大的减小了分析误差;5)高灵敏度高选择性FPD检测器,用于硫化物检测的最佳选择;6)仪器具有开机自检功能,断气保护功能,断电自动重启功能和报警功能,保证系统安全和稳定性;7)使用自动电子流量控制技术(EPC)控制载气、空气和氢气,高精度(0.01psi),重复性和再现好;8)核心部件均使用国际知名品牌,可靠性高,使用寿命长。【应用领域】环境空气在线监测或科研焦化、造气、造纸、印染、制革、纤维等工业废气在线监测【技术参数】检测能力羰基硫、硫化氢、甲硫醇、甲硫醚、二甲二硫醚、二硫化碳和噻吩等检测器火焰光度检测器(FPD)检出限≤0.1ppb重复性RSD≤5%分析周期20min功率电源<800W,220V AC/50Hz工作环境温度:(-10~50)℃,湿度:(10%~90%)RH气源要求载气:高纯氮气或零级空气(≥99.999%);燃烧气:高纯氢气(≥99.999%)助燃气:零级空气(烃类<20ppb)输出4-20mA、RS232/RS485、以太网尺寸19"标准机箱,7U
    留言咨询
  • 一、智能甲硫醇气体检测简要介绍:ETA-CH3SH是我公司最新推出的一种智能甲硫醇检测仪,同时可以检测甲硫醇浓度、温度和湿度。仪器带有数据储存256组,通过USB接口,可以连接电脑。具有非常清晰的彩色触摸屏,声光报警提示,带内置泵,智能甲硫醇气体检测仪广泛用于公共场所、卫生监督、环境监测、等气体的检测与监测。 二、智能甲硫醇气体检测仪特点:1、检测空气中的甲硫醇气体,同时可以检测该环境的温度和湿度。2、仪器自带数据存储,储存数据可达256组。带有USB数据接口3、自带吸气泵可将数十米距离外气体吸入仪器进行测定。4、具有超大彩色触摸屏、操作方便快捷。5、仪器显示有ppm和mg/m3两种显示数据,可以自动转换。 6、开机或需要时对显示、电池、传感器、声光报警功能自检。 三、智能甲硫醇气体检测仪技术参数: l检测原理:电化学式l 检测气体:空气中的甲硫醇(CH3SH)l检测方式:泵吸式 ★ 测量范围:(同时显示ppm、mg/m3)甲硫醇:0-10ppm(20/1000ppm) 分辨率:0.1ppm(0.1/1ppm)温度:-20∽60℃。湿度:10-95%RHl基本误差:<±5%(F.S) ★同时显示甲硫醇浓度:ppm、mg/m3,温度、湿度。★彩色触摸显示屏,时间日期记忆功能。★有数据查询功能,数据存储256组,有USB接口。 l传感器寿命:24个月 l报警:声、光报警 l外形尺寸:205x180x98 mm l工作温度:-10∽45℃ 湿度:5-90%RHl内置充电电池,可以220V交流或者直流供电 四、智能甲硫醇气体检测仪配置:(1)仪器主机(含内置电池) 一台 (2)充电器 一只(3)采样杆 一套 (4)采样软管 一根(5)铝合金携带箱 一只 (6)操作手册和合格证 一份
    留言咨询
  • 型号ST-1551ST-1551硫醇硫测定仪符合GB/T1792标准,采用电位滴定法。适用于测定无硫化氢的喷气燃料、汽油、煤油和轻柴油中的硫醇硫,硫醇硫的测定在评价喷气燃料、汽油、煤油和轻柴油的气味、对燃料系统橡胶部件的不良影响及对燃料系统的腐蚀具有重要意义。是实验室、分析室及科研部门的理想的必备仪器,可广泛应用于电力、石油、化工、商检、高校及科研等部门。生产厂家北京旭鑫仪器设备有限公司技术特点l Windows操作平台,人机对话操作简捷方便,并且有工作站功能。l 进口(瑞士万通)滴定单元,仪器测定精度更高,性能更稳定l 实现全自动化,自动定值加液,自动清洗、自动补液l 自动判别终点,自动滤除假终点,同时可以人工选择判断终点l 双高阻输入,电极电位稳定、可靠l 滴定曲线实时显示,滴定曲线及结果与数据存贮和打印l 整机仪器包括:主机、滴定单元、计算机、打印机等l 可实现全中文/全英文界面显示(可选)技术参数适应标准GB/T1792测量范围3~100μg/g 电位测量范围-1999.5mv~1999.5 mV基本误差0.1%±0.5mV滴定管体积10mL滴定管精度±0.1%FS环境温度5℃~45℃相对湿度10%~80%Rh电源电压 220V±10% 50Hz
    留言咨询

萘甲硫醇相关的耗材

萘甲硫醇相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制