增若托平

仪器信息网增若托平专题为您提供2024年最新增若托平价格报价、厂家品牌的相关信息, 包括增若托平参数、型号等,不管是国产,还是进口品牌的增若托平您都可以在这里找到。 除此之外,仪器信息网还免费为您整合增若托平相关的耗材配件、试剂标物,还有增若托平相关的最新资讯、资料,以及增若托平相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

增若托平相关的资料

增若托平相关的论坛

  • 【乳制品检测之家】梅特勒托利多PH计屏幕显示字若隐若现

    【乳制品检测之家】梅特勒托利多PH计屏幕显示字若隐若现

    群友问:梅特勒托利多PH计屏幕显示字若隐若现,电池是新换的,里面线路板也拆开擦过了,还是不好,要怎么弄?http://ng1.17img.cn/bbsfiles/images/2016/10/201610200039_614491_2668708_3.jpg群友尹老师分享:可能液晶屏坏了。非常感谢乳制品检测之家群友尹老师的积极分享,也欢迎大家继续跟帖讨论!

  • 【“仪”起享奥运】燃气锅炉新增脱硝设施是否需要做环评登记

    问题:我司配套燃气锅炉,现为了锅炉废气能够达标排放,拟建设脱硝设施对锅炉烟气进行处理。根据《关于印发《广东省豁免环境影响评价手续办理的建设项目名录(2020年版)》》的通知》(粤环函〔2020〕108号 ),脱硫、脱硝、除尘、VOCs治理等工程中“不增加污染物种类和排放里的污染治理设施改造;企业现有环境治理设施设备的维修、维护、更新;”可豁免环评手续。请问我司新增脱硝的污染治理设施,是否需要办理环评登记手续?回顾:您好!《建设项目环境影响评价分类管理名录(2021年版)》第100项规定,脱硫、脱硝、除尘、VOCs治理等大气污染治理工程应填报环境影响登记表。建议进一步结合项目具体情况,径向当地生态环境部门咨询。

增若托平相关的方案

  • 氟基脱模剂对碳纤维增强塑料(CFRP)粘结性能的影响 - LUMiFrac
    由于相比传统的结构连接方法(如铆接)有很多优势,粘接剂连接越来越多地应用于许多行业,。尤其适在纤维增强复合材料行业,因为铆钉会打断纤维,从而削弱了层合板的力学性能。在航空结构中,粘接可以应用于金属-金属接头、复合材料-复合材料接头和复合材料-金属接头,以及部件的装配和修补。粘接接头的质量取决于胶粘剂、制造工艺、环境和载荷工况,以及被粘接基材的表面。CFRP(碳纤维增强塑料)组件用粘合剂粘合的表面通常是纹理表面,这是由于在生产过程中使用过程中使用脱模布或机械预处理,如砂光或铣削。脱模布用于纤维增强塑料的制造,有两个目的:在运输和储存过程中保护零件表面以及在随后的工作步骤中(如胶粘剂粘接),产生具有所需表面特性的可粘接表面。然而脱模布的使用并不简单。脱模布不仅很难去除,而且由脱模布产生的表面在粗糙度和元素组成方面发生了改变。本文研究了氟基脱模剂对碳纤维增强复合材料粘接性能的影响。在筛选范围内,研究了14种氟基脱模剂——ETFE脱模薄膜、PTFE涂层玻璃织物以及PTFE纤维织物。初步研究表明ETFE薄膜在粘附方面具有优势。研究内容包括:用剥离试验测定脱模剂的撕裂强度 测定了大气压等离子体预处理前后的元素组成(XPS)和表面特征(SEM),通过离心黏附试验表征了拓扑结构变化对和黏附强度的影响。
  • 大麦若叶凝胶软糖最佳制作配方的研究
    以蔗糖、麦芽糖、明胶、大麦若叶粉和柠檬酸为原料,探究大麦若叶凝胶软糖的制备配方。通过单因素和正交实验确定最佳配方:明胶添加量5%,柠檬酸添加量2%,大麦若叶粉添加量0.3%,蔗糖∶麦芽糖1∶1。依此配方制得的软糖酸甜适口,质地均匀,色泽纯正,蕴含淡雅茶香味,对产品进行干燥失重和还原糖指标检验,产品理化指标符合行业标准要求。
  • 颠茄合剂中莨若碱的含量(分光光度法)
    用分光光度法,以原料颠茄酊为对照,在418 nm处测定莨若碱的含量。结果:莨若碱在0.9%~2.1%(mg-L~1)浓度范围内,浓度和吸收度线性关系良好 样品回收率及RSD良好,该方法可以准确测定颠茄合剂中莨若碱的含量。

增若托平相关的资讯

  • 梅特勒-托利多Q2中国市场需求比预期疲弱
    据梅特勒-托利多最新公布的2015年Q2财报显示,按当地货币计算,梅特勒-托利多Q2销售收入为5.821亿美元,同比增长3%;由于货币汇率导致销售增幅降低7%,因此财报显示销售额减少4%(去年同期为6.088亿美元)。  本季度,梅特勒-托利多公司摊薄后每股收益为2.73美元,去年同期每股收益为2.49美元。调整后每股收益为2.80美元,比去年同期增长了9%。Olivier Filliol对此表明:“尽管营业利润遭遇到了货币不利因素,但我们在这个季度的利润扩张非常好,取得了良好的盈利增长。”  按地区而言,按当地货币计算,美国区销售额增长5%,欧洲区增长4%,亚洲及其他地区同比持平。调整后的营业收入共计1.183亿美元,同比增长了5%。本季度经营产生的现金流为1.052亿美元,去年同期为1.081亿美元。梅特勒-托利多公司总裁兼CEO Olivier Filliol  Olivier Filliol表示,梅特勒-托利多在欧美地区的销售增长是坚实的,但中国的市场需求较预期疲弱,同时俄罗斯和巴西地区也继续面临严峻的市场环境;不过梅特勒-托利多其他的新兴市场业务本季度表现不俗。  2015年前6个月梅特勒-托利多每股收益为4.91美元,去年同期为4.41美元。调整后的每股收益为5.05美元,同比增长了11个百分点。  按当地货币计算,2015年前6个月梅特勒-托利多销售额为11.18亿美元,同比增长4%;期内受货币汇率导致销售额降低8%,因此报表显示销售额减少4%(去年同期为11.59亿美元)。  按地区而言,按当地货币计算,美国区销售额同比增长6%,欧洲区增长3%,亚洲及其他地区增长2%。调整后的营业收入共计2.156亿美元,同比增长6%。本季度经营产生的现金流为1.638亿美元,去年同期为1.510亿美元。
  • 傅若农:气-固色谱的魅力
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   第四讲:傅若农:气相色谱固定液的前世今生   一、 气-固色谱早于气-液色谱问世   大多数人知道1952年Martin和Synge由于发明了气相色谱而获得诺贝尔化学奖,但是,真正的第一台气-固色谱仪是Erika Cremer和她的学生在奥地利因斯布鲁克(Innsbruck)大学开发出来的。1944-1945年第二次世界大战正酣期间,Cremer和她的学生设计开发出第一台气-固色谱仪。在此期间有一段迷人的故事。   Erika Cremer(1900-1996)学的是物理化学,具有很好的吸附/解吸方面的研究背景。1940年,她进入奥地利因斯布鲁克大学参与了乙炔的氢化研究工作,她碰到的问题之一是测定混合物中的乙炔和乙烯的含量,她在开始时的试验是用选择性吸附方法进行测定,但是,她发现这两个化合物的吸附热的差别不足以使它们用经典的吸附方法得到分离,与此同时她很熟悉由Hesse写的液相色谱教科书(1943年出版),此书让她知道可以考虑使用吸附色谱的方法,用气体作流动相,利用吸附性差别来分离混合物。   Cremer经过研究和思考,总结了她的新思路并写成一篇短文,投送到Naturwissenschaften 杂志发表,该杂志于1944年11月29日收到她的论文,1945年2月杂志接受了她的论文, Cremer收到出版社的清样后立即校对返回。可是当出版社正准备以特刊付印时,出版社工厂在空袭中被炸毁,所以这篇论文葬身于废墟之中,一直未能发表,直到31年后的1976年才作为历史文件发表。   在第二次世界大战结束以后,奥地利因斯布鲁克大学的实验室大部分被毁了,但是Cremer的一个新来的研究生Fritz Prior,可以在他原来的中学(他原是这个中学的老师)进行试验,作为他的博士论文,Cremer决定进行在空袭中被炸毁论文中设想的气-固色谱仪器和方法,幸运的是她原来自己设计制作的热导池还在,她们组装的气相色谱仪具备了现代气相色谱仪的主要部件,氢气发生气做载气,有载气流量调节器,有一个进样系统,分离用色谱柱和一个热导检测器,这一方案现在还存放在德意志博物馆的波恩分馆中展出。   1947年春Prior的工作结束了,得到了正结果,这一仪器可以定量分离空气、乙炔、乙烯。下图是这篇论文的一张分离图。 图 1 Prior 分离乙炔和乙烯的色谱 色谱柱:u型管,直径1 cm,填充硅胶20 cm 柱温 25 ℃. A= 空气, B= 乙烯, C= 乙炔 图 2 1959年Cremer在东德举行的气相色谱报告会时和当代四位著名色谱学专家的合影 (中间是Cremer) (来源:L. S. Ettre,Chromatographia,2002,55:625)   二、 早期的气-固色谱的固定相   气-固色谱的出现早于气-液色谱,这也是因为在上世纪40-50年代有几位出色的物理化学家研究吸附剂的吸附理论,为气-固色谱奠定了理论和实际基础。   在上世纪后半页用于气-固色谱的吸附剂有硅胶、活性碳、氧化铝、分子筛、石墨化炭黑、碳分子筛、多孔聚合物等,这些吸附剂可以作填充柱的固定相,也可以填充或涂渍到玻璃、金属或弹性石英毛细管中。这些吸附剂的用途如表 1 所示。 表 1 吸附剂的应用领域   1、硅胶吸附剂   气相色谱发展早期,硅胶可以用作气-固色谱的固定相,也可以用作气-液色谱的载体,由于硅胶制作工艺、原料表面积及孔径的不同,其分离性能有很大的差别,为此厂家进行了标准化的分级,有不同品牌和规格的色谱用硅胶,下表是Rhone- Progil 公司生产的球型多孔硅胶,而Waters公司又把其中的 Porasil 进一步筛分成不同粒度的产品。 表 2 商品硅胶的型号和规格   我国当时的天津第二试剂厂也生产了DG-1,DG-2,DG-3和DG-4,其性能类似于Porasil A,Porasil B,Porasil C,Porasil D。例如Supelco公司和Sigma-Aldrich公司供应用于分析硫化合物的硅胶填充色谱柱:Chromosil 310和 Chromosil 330,有许多实际使用的报告。   硅胶吸附剂的填充柱使用者不多,但在分析硫化物的场合仍然有人在用,如上海大学的Hui Wang等使用Chromosil 310和 GDX 502(极性聚合物多孔小球)以吸附-解吸方是分析色谱方式分析氢气中 ppb 级 SO2. (Intern.J. hydrogen energy,2010,35:2994-2996)。   德国的 Martin Steinbacher等也是使用Chromosil 310 柱(152cm x 3.2mm id )分析土壤和大气中的微量的硫化羰和二氧化硫(Atmospheric Environment, 2004,38:6043&ndash 6052)。   英国的 Evelyn E. Newby 利用 Chromosil 330 柱(244cm x 3.2mm id )在60℃分析口腔气体中的硫化氢和甲基硫醇等气体,评价牙膏消除口臭的作用(Archives of oral biology 53,2008, Suppl. 1 :S19&ndash S25)。   美国的Julie K. Furne等利用Chromosil 330 柱(244cm x 3.2mm id )分析排泄物中的硫化氢。(J. Chromatogr.B, 2001,754:253&ndash 258)。   英国的M. Steinke 等使用Chromosil 330 柱(183cm x 3.2mm id )的顶空气相色谱法测定二甲基硫化物评价硫代甜菜碱裂解酶的活性。(J. Sea Research,2000, 43:233&ndash 244)。   2、 氧化铝吸附剂   氧化铝有5种晶形,在气相色谱里多用g型,它有很好的热稳定性和机械强度,其含水量不同吸附性就有很大的差异,所以在使用前要进行适当的活化处理。上世纪80年代已故色谱学者鞠云甫对氧化铝吸附剂做过深入研究,他得到如下的结论:   (1) 可用改变热处理温度的方法来控制g-氧化铝微球的比表面, 氧化铝微球在350 ℃ 发生相转变, 至420℃ 完全转变为g氧化铝。   (2) g-氧化铝微球表面的酸, 主要是路易斯酸可用涂渍固定液改性的方法予以降低。改性后的 g-氧化铝微球表面酸度低于国外氧化铝表面酸度, 这种改性减弱了固定相的极性。   (3)热处理温度对要分离组分的保留值有重大影响,如用0.3% 阿皮松-L 对经过500℃ 灼烧4小时得到的g-氧化铝微球改性而制得的固定相, 在85 ℃ 柱温下能够全分离C1-C 4的烃类15个组分。(鞠云甫等,燃料化学学报,1983,12(1):69-76)   但是后来的研究表明,人们用碱金属卤化物让氧化铝改性,也可以得到很好的效果。英国的 A. Braithwaitel等研究了用碱金属卤化物处理氧化铝的表面,得到以下的结论:   (1) 未改性氧化铝表面有路易斯酸活化点,可以与不饱和烃的p电子产生作用,比饱和烃的保留时间增加,同时不饱和烃的色谱峰会产生拖尾,用碱金属卤化物改性氧化铝表面会消除拖尾,但是也会影响饱和烃和不饱和烃的分离保留因子。   (2) 氧化铝的改性必须要减少路易斯酸活化点,以便形成更为均一的表面性能,假定氧化铝表面的改性过程是碱金属阳离子和阴离子的共同作用,那么改性剂的阴离子就有选择性封闭大部分路易斯酸活化点的作用,这些活化点就不能再和被分析物作用,但不是所有的卤化物阴离子都有这一作用。改性剂的阳离子也会影响氧化铝的吸附作用,主要是卤化物的阳离子随其阳离子体积的减小,使烯烃/烷烃的分离度增加。其原因显然是表面上的极性或者是表面上阳离子的电荷密度增加所致,或者是两种原因的结合所致。   (3) 假定阳离子对氧化铝表面的改性是由于它降低了吸附剂的吸附特性,从而降低了吸附物质和吸附剂的作用力,被改型吸附剂的活性就可以用改性剂的量来控制,但是只要很少量的改性剂就可以使色谱峰的拖尾消除,得到对称的色谱峰。改性剂浓度超过一个临界值盐就会析出来,就起不到封闭活化点的作用,改性剂的浓度在2-4%之间。(Chromatographia,1996,42(1/2):77-82)   3、分子筛吸附剂   1925年人们发现了天然泡沸石(如菱沸石)对水、甲醇、乙醇等蒸气有很强的吸附作用,而对丙酮、醚和苯等蒸气则不予吸附,这种泡沸石就是天然的分子筛。后来人们模仿天然泡沸石的生成条件,并不断改进合成工艺,合成了多种类型的人造分子筛。所以叫做分子筛,是因为泡沸石具有象笼子一样的结晶结构,笼子的孔穴大小一致,而且正好是与分子的尺寸大小相当,分子尺寸比泡沸石孔穴尺寸小的就容易吸附,相反就不吸附。   分子筛具有几何选择性:分子筛的结晶结构有一定的尺寸,不同类型的分子筛具有不同的尺寸,表 中的数据。因而分子筛的选择性和所用分子筛类型及被分离化合物的临界尺寸有关。所谓临界尺寸是指垂直于其长度的最大横截面的直径,一些化合物的临界尺寸见表3。 表3 气固色谱用分子筛的几何尺寸   分子筛对极性分子和极化率大的分子作用力强,对极性分子和不饱和烃分子有较大的亲和力,如在4A 分子筛上吸附下列气体的能力依次加大:   O2 图3 SBA-15投射电镜图 (A) 6nm, (B)8.9nm (C) 20nm, (D) 26nm   平均孔径数据来自BET和X-射线衍射结果.   国内一些单位把SBA-15介孔分子筛作为气-固色谱固定相,如中科院煤炭化学研究所的赵燕玲等研究了SBA-15介孔分子筛作为气相色谱固定相对含有甲烷、乙烷、乙烯、丙烷和丙烯的气态烃类混合物和正己烷/l-己烯、正庚烷/l-庚烯、正辛烷/1-辛烯 3 种液态烃类混合物的色谱分离性能 并与硅胶作为色谱固定相分离3 种液态烃类混合物的情况进行了比较。与常规色谱填料硅胶相比,SBA-15介孔分子筛更适合作为烯烃/烷烃分离的色谱固定相。(赵燕玲等,石油化工,2010,39(10):1110-1114)   4、高分子多孔小球(GDX)   高分子多孔小球是1966年 Hollis 用苯乙烯和二乙烯基苯进行共聚而得到的,他对这类聚合物的色谱分离性能进行了详细的研究,把它们叫做Porapak。他所研究 Porapak Q 是一种色谱分离性能十分优秀的气-固色谱固定相。不久出现了各种品牌的高分子多孔小球固定相。我国在60年代末中科院化学所也研究出这类高分子多孔小球固定相,把它们命名为GDX(Gaofenzi Duokong Xiaoqiu),是高分子多孔小球汉语拼音的字头。后来天津化学试剂二厂生产了GDX 101、GDX 102、GDX 103、GDX 104、GDX 105、GDX 201、GDX 301、GDX 501等牌号,上海化学试剂厂生产了叫做&ldquo 401.....404有机载体&rdquo 的高分子多孔小球。   (1) GDX的特点   a、GDX的疏水性很强,水峰可以在乙烷后洗脱出,为有机物中微量水的测定提供了一种优良的色谱固定相。   b、GDX是球形,大小均匀,有利于色谱柱的填充,提高了柱效。   c、改变聚合工艺条件,可改变GDX的极性和孔径,制出各种性能的的高分子多孔小球来。   (2) GDX的制备   GDX是用二乙烯基苯和苯乙烯在水中进行悬浮聚合而得。即把要聚合的单体分散在水中,在引发剂的作用下进行共聚,由于在原料中加入一定量的溶剂作稀释剂,在聚合过程中稀释剂不起反应,但它会在小球中占据一定空间,待聚合后把稀释剂赶出来,在高分子多孔小球中就形成了很多小孔。GDX的结构如图4。 图 4 GDX的结构   (3) GDX的性质   GDX是白色或微黄色的圆球,比表面从几十到几百 m2/g,表观密度为0.1~0.5 g/mL,一般可耐高温250~270℃。国内外高分子多孔小球的性能见分析化学手册第5分册-气相色谱分析。   (4) GDX的应用   有机物中微量水的测定:如顺丁橡胶的合成中要求单体丁二烯含水量在3× 10-5 g/mL以下,用100 cm × 0.4cm i.d.GDX-105色谱柱,在120℃柱温下,载气流速 33mL/min,可很好地进行测定。有机溶剂和氯化氢中的微量水分可用GDX-104柱测定。   半水煤气成分的测定:用GDX-104(3.7m)和分子筛(3.0m)的串联柱,通过阀切换在GDX-104柱上分离CH4、CO、CO2。在分子筛柱上分离O2和N2。可避免CO2通过分子筛柱。   自从Hollis 开发出高分子多孔小球之后有很多近一步的研究,但是没有更多的突破,只是在扩大了应用方面有不少研究工作。   5、碳吸附剂   (1)活性碳   早期除去硅胶以外活性碳是气相色谱使用最早的固定相,开始主要使用工业级别的活性碳,但是,使用了一段时间以后,色谱性能不能令人满意,就把它改性,以适应色谱分离的要求。在制备活性碳当中,要得到所需要的性能,碳化和活化过程的参数中最最重要的是原料的选择和预处理。活性碳的基本性质决定于所用原料,使用的原料有自然的木头、泥炭、煤、果核、坚果的外壳以及人工合成物质,主要是聚合物。在没有空气和化学品条件下的碳化过程中,首先是大多数非碳元素(氢、氧和微量硫和氮)由于裂解的破坏而分解挥发了,这样元素碳就留下来,形成结晶化的石墨,其结晶以无规则方式相互排列,而碳则无规律地存在于自由空间里,这一空间是由于滞留在这里的物质被沉积和分解而形成的。进行碳化的目的是使之形成适当的空隙并形成碳的排列结构,碳化过程使碳吸附剂具有较低的吸附容量,使其比表面只有几个 m2/g,一直到没有所担心的过高的吸附性。为了得到高空隙度和一定的比表面积,碳化还要进行活化过程。从天然原料制得的活性碳要比从合成物制得的活性碳具有较高的灰分,从合成物制得的活性碳几乎没有灰分,并且具有很好的机械性能,不易压碎和被磨损。由天然原料制得的活性碳其吸附性能受到它表面化学结构的影响,而其表面性质又决定于与其键合在一起各种杂原子(如氧、氮、氢、硫、氯等)的种类,活性碳是没有特殊选择性,或选择性很小的吸附剂,制备良好的活性碳为多孔结构,主要是各种直径的微孔和介孔,其比表面可达1000 m2/g到2m2/g,或者更高一些,使其具有高的吸附容量。由于活性碳表面具有很大的化学和几何不均一性,特别是工业用活性碳尤为严重,即使是低沸点气体和轻烃,也会产生很厉害的拖尾。在气相色谱发展早期活性碳只用于分析稳定的气体特别是惰性气体和轻烃。上世纪 50年代初捷克的 Janak 和 60年代初波兰的 Zielinski 在使用活性碳作固定相分析气体混合物方面做了很多工作。此后由于气相色谱的发展和活性碳研究的深入,人们就对活性碳的表面进行改性,包括用化学方法除去活性碳中的灰分(除去无机杂质),在无氧气氛中进行高温处理除去活性碳表面结合的氧,用催化活化及高温碳沉积的方法对多孔结构进行改性。用活性碳填充的色谱柱出现拖尾不仅是由于活性碳上的微孔和孔径的不均一所造成毛细管凝聚,更重要的也还由于混合物中的一些成分在各种非碳物质上的强烈吸附所致,这些附加的物质有两类,在活性碳孔中的无机物,他们在表面上没有键合,部分灰分和杂原子(常常是氧和氢、硫、氮、卤素等),这些杂原子与碳骨架进行了化学结合。而且这些附加物会使进行色谱分离的物质产生可逆吸附。在气相色谱的应用中,活性碳的改性是把活性碳在150-200 ℃下处理几个小时,并在0.1 mm Hg真空下除去水分,这样不会影响吸附剂的表面性能。之后就出现了石墨化炭黑和碳分子筛。   (2)石墨化碳黑   为了克服活性碳的缺点,国内外早期进行了许多研究,就把碳黑在真空中或在还原性气氛中进行高温处理,如加热到3000℃,结果在碳表面上形成石墨状的晶形。这样处理之后,表面均匀、活化点也大为减少了。比表面由几百 m2/g 下降到 低于 30 m2/g 。所以大大改善了色谱峰形。提高了分析的再现性。据原苏联基先列夫的研究,认为在石墨化碳黑的表面上没有官能团,没有&pi 键,所以它的吸附性主要靠色散力起作用,因而石墨化碳黑的极性比角鲨烷还小。   为了适应各种样品的分离,可对它进行各种表面处理,如:   ① 涂渍少量固定液消除残存的少量活化点。   ② 分离酸性化合物时可用磷酸处理石墨化碳黑。   ③ 分离碱性化合物时可用有机碱处理石墨化碳黑。   ④ 在100℃下用氢气处理石墨化碳黑可除去表面的氧,适于还原性物质的分离。   (3) 碳分子筛 (碳多孔小球)   1968年 Kaiser 制备出一种碳吸附剂叫&ldquo 碳分子筛&rdquo ,国外的商品名是 Carbosieve B,它是用偏聚氯乙烯小球进行热裂解,得到固体多孔状的碳,其比表面为1000 m2/g,平均孔径为 1.2 nm 。作。 表4 2008年后有关CNTs作气相色谱固定相的研究的工作   2、金属有机框架化合物作气相色谱固定相   金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景,MOFs在分析化学中有多种应用,也是极好的气相色谱固定相。   由于MOFs不容易涂渍在毛细管壁上。南开大学严秀平研究组用动态法把纳米级MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,使最难分离的二甲苯三个位置异构体得到十分漂亮的基线分离,并用于多种混合物的分离上。 图 6 二甲苯三个位置异构体的分离图   近几年国内严秀平研究组和云南师范大学的袁黎明研究组对MOFs作色谱固定相做了许多十分出色的工作,限于篇幅有机会再讨论。   另外固体固定相当今主要用于制备PLOT(多孔层开管柱,这一课题下次再讨论。   在结束此文之际,看到已故蒋生祥先生和郭勇博士团队今年发表的一篇有关碳基吸附剂-碳纳米管的综述(J Chromatogr A, 2014,1357:53&ndash 67)(但是此文只涉及碳纳米管作固相萃取和固相微萃取的论述,没有设计碳基吸附剂作气相色谱固定相的综述)。同时看到瞿其署先生团队在2014年发表的有关石墨烯的制备、性能及在分析化学中应用的综述论文(J Chromatogr A,2014,1362:1&ndash 15 ),有兴趣者可直接阅读。   小结   气-固色谱虽然它的应用广泛性远不如气-液色谱,但它还是一个很有用的方法,有它突出的魅力,是气-液色谱不能代替的技术。使用上述几种吸附剂制备的填充柱或PLOT柱,对低沸点混合物的分离具有独到的作用。不过,近年出现的多种纳米材料可作气-固色谱固定相,虽然它们具有独特的优点,但是还有待进行更深入的工作,形成商品柱,才能发挥其作用。目前实际应用的还是常规的气-固色谱固定相。下一讲,我将介绍PLOT柱的诱惑力。(未完待续)   (作者:北京理工大学傅若农教授)
  • 傅若农:扭转乾坤—神奇的反应顶空气相色谱分析
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 第十讲:傅若农:悬&ldquo 珠&rdquo 济世&mdash &mdash 单液滴微萃取(SDME)的妙用 我们在前面讨论了四讲和顶空分析有关的色谱分析方法,它们都是针对挥发和半挥发性物质的,也就是说难挥发和不挥发性物质是不可以用这些方法分析的。但是化学是一种很神奇的东西,可以扭转乾坤,本来不可为,但是用化学的力量可以变成可为。反应顶空分析就是可以把难挥发和不会发性物质进行顶空分析。   反应顶空分析是反应气相色谱的一个分支,另外两个大的分支是裂解气相色谱和衍生化气相色谱,反应气相色谱就是不可能进行气相色谱的对象经过化学反应,使被分析物转化为有挥发性的物质,从而可以用气相色谱进行分析它们。   2001年华南理工大学的柴欣生教授在美国亚特兰大佐治亚理工大学造纸科学技术研究院任职期间和朱俊勇教授等最先提出了反应顶空分析的概念 [(J. Chromatogr. A,2001, 909:249&ndash 257)(Snow N. H. TrAC,2002,21(9+10):608)]。之后2003年Guzowski等[J Pharm Biomed Anal, 2003,33:963-974] 也把相转化反应技术应用于顶空气相色谱,用以测定化学试剂中的羟胺。通过在醋酸钠缓冲溶液中与FeCl3反应,羟胺在单步反应中可以转变成氧化亚氮(N2O) ,产物气体N2O用电子捕获检测测进行测定。大家知道氧化亚氮(笑气)是比较稳定的化合物,用气相色谱测定很容易。   在之后的十几年里,柴欣生教授在结合制浆造纸、生物质、高分子合成等学科的研究中开发出许多用顶空气相色谱分析不挥发样品的新方法,开通了可以使用顶空气相色谱分析不挥发和难挥发化合物的道路。 反应顶空气相色谱的应用 1. 测定造纸厂黑液中的碳酸盐含量   碳酸盐和酸作用生成二氧化碳,用顶空气相色谱测定CO2含量估算样品中的碳酸盐量,用纯碳酸钠标准溶液进行仪器的标定(J. Chromatogr. A,2001, 909:249&ndash 257),测定方法如下:   把一个21.6 ml的样品瓶配以有隔垫的瓶盖,用130 ml/s流速的氮气吹扫此样品瓶2 min,以排除样品瓶空气中的CO2气,然后加入0.5 ml 2mol/L 的硫酸溶液,用注射器加入10&ndash 1000 ml样品溶液,把样品瓶置于自动进样器上,进行顶空分析。许多工业液体如浓缩的黑液,白液,和绿液可以直接进样,无需预处理。而固体样品必须先溶解成溶液之后进行分析。 (1) 温度的影响   二氧化碳于20℃下在水中的溶解度为(体积比)1:0.878,而在25℃下在水中的溶解度为(体积比)1:0.759,所以提高温度可以减少它在水中的溶解度,把它从水溶液中释放出来,从而提高测定的灵敏度,在本研究中使用60℃,同时溶液有过量的酸保证可以把CO2气体全部释放出来。不过不能是使用太高浓度的酸以防腐蚀仪器。 (2) 检测器线性和恒定的凝固相释放气体速率   这一方法的基础是在给定实验条件下从凝固相中释放出气体的速率时恒定的,大家知道热导池检测CO2在空气中浓度变化的范围,是在热导池的线性范围之内,可以用检测器的线性来考察从凝固相中释放CO2气体的速率是否恒定。用碳酸钠溶液作标准样进行试验,实验证明碳酸钠的浓度可以达100 &mu mol。实验证明从碳酸钠转化为CO2气体的速率是恒定的。 (3) 顶空气体稀释变化对分析准确度的影响   用碳酸钠标准溶液加入量的变化测试顶空气体稀释变化对分析准确度的影响,顶空气体稀释度的变化,可以通过两种反应物的起始样品量的变化,来改变反应瓶中反应后的顶空体积(。作者进行了两组实验,用固定体积的硫酸(反应物R)溶液(VR=0.5 ml)与碳酸钠标准溶液反应。第一组实验使用9个碳酸钠标准溶液含有同样数量的碳酸钠1.06&mu g,但是他们的体积不同,从Vs=100&mu L 到350&mu L,同样数量碳酸钠反应后近似的顶空体积等于[VT-(VR+VS)],由于样品体积变化带来的顶空稀释度的影响可以用GC信号的变化来计算,对使用21.6 ml样品瓶来说,当样品体积从100&mu L到1100&mu L ,GC信号的变化不超过5%。使用的商品自动进样器是恒压近样,可以抵消一部分样品体积变化带来的影响。测定出的相对标准偏差只有1.3%,可以忽略不计,见表1.   表 1样品体积变对准确度的影响 (1) 空气中二氧化碳的影响   空气中含有二氧化碳,会对结果又影响,在标准空气中二氧化碳的量约为15&mu mol/L,在21.6mL样品瓶中含有约0.3&mu mol二氧化碳,这一量高于检测灵敏度0.1&mu mol,这样对低浓度样品就会有影响。为了提高测定准确度需要把顶空瓶中的二氧化碳排除,在加入反映了物之前用用一只23号注射针以氮气彻底吹扫顶空瓶,降低二氧化碳的浓度,结果说明氮气以130mL/min的速度吹扫2min就可以使二氧化碳降低到检测不出来的程度。 (2) 测定精度   作者测定了碳酸钠标准和造纸厂黑液中二氧化碳的浓度,把100&mu L 0.1mol 的碳酸钠标准溶液分析5次,100&mu L造纸厂黑液也分析5次,其结果见表2,标准偏差分别为0.62%和3.74%。   表 2 测定了碳酸钠标准和造纸厂黑液中二氧化碳的精度 2 用顶空气相色谱测定样品中少量酸和碱的方法   柴欣生等[J Chromatogr A, 2005,1093 : 212&ndash 216]使用顶空气相色谱测定少量含酸和含碱样品,这次是与前面的方法相反,使用标准的碳酸氢钠溶液和酸性盐反应产生二氧化碳,用气相色谱的热导检测器测定二氧化碳的含量。 (1) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱)   柱温:60℃   载气:He 3.1 mL/min   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min (2)样品分析步骤   (a)分析样品中的碱:取一定量的样品(液体或固体)加入一定体积的0.100 mol/L的盐酸标准溶液中,把样品中的碱中和掉,还有多余的盐酸标准溶液,用注射器取一定量的此溶液,注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (b)分析样品中的酸:用注射器取一定量的被测溶液,直接注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。   (3)分析条件的影响   (a)温度:60℃时二氧化碳的无因次分配系数大于1000,几乎全部从溶液中释放出来,所以能够用测定二氧化碳进行定量分析样品中的酸或碱。但是在高温下碳酸氢钠会分解。但是碳酸氢钠分解放出二氧化碳也是一个平衡反应,碳酸氢钠分解出来的蒸汽相和液相之间完全平衡,在一个给定的样品瓶密闭空间中需要约8 min,约有10%的碳酸氢钠分解为二氧化碳,所以这样会影响样品测定的准确度,特别是测定的酸含量较低时更为显著。分解与碳酸氢钠的浓度有直接关系,根据实验研究在一个密闭空间、短时间内分解出来的二氧化碳来的二氧化碳量远小于样品分解出来的二氧化碳的量,如图 1所示,在60℃时短时间内分解量很小。 图 1 碳酸氢钠分解出CO2随时间的变化   (b)空气中二氧化碳的影响   在本实验中采用进行空白试验的方法,通过校准抵消空气中二氧化碳的影响。   (c)液体样品的体积   一般来讲,往顶空样品瓶中加入较多的样品量,可以提高测定灵敏度,但同时需要过量的碳酸氢钠,使用现行的商品自动进样器,改变顶空体积就会就会影响检测结果,所以避免大幅度改变顶空的体积,例如在一个20mL的顶空瓶含有4mL碳酸氢钠溶液,使用的样品量为200&mu L,这样会使用顶空体积改变1.25%,对测量结果没有多大影响。对固体样品可以用制备成的溶液量来调节。 (3)这一方法的准确度和精密度   使用现有的商品仪器进行反应顶空气相色谱的精密度和准确度与经典方法进行了对比,如表3和表4所示。 表3 测定酸与滴定法的比较 样品 盐酸/(mol/L) 相对偏差/% 本方法 滴定法 1号溶液 0.1002 0.1000 0.22号溶液 0.0498 0.0500 -0.3 3号溶液 0.0247 0.0250 -1.2 4号溶液 0.0101 0.0100 1.0 表4 测定碳酸钠与电导法的比较 样品 碳酸钠/% 相对偏差/% 本方法 电导法 1号黑液 4.9 4.7 4.3 2号黑液 23.2 24.1 -3.7 3号黑液 25.124.5 2.4 4号黑液 42.0 42.8 -1.9 3 用反应顶空气相色谱测定木纤维中羧基   在纤维材料中含有的羧基(COOHs)代表它的离子交换能力,即在加工过程中吸收金属阳离子的能力,它影响木纤维的膨胀和均匀性,从而有助于纤维的结合,有利于造纸助留剂的吸附,纸的电性能决定于木纤维中羧酸基团结合金属离子的数量。另一方面,被羧酸基团吸着的阳离子对纤维和纸张干燥时的变色机制有影响。这些羧酸基团对木纤维的改性起着重要作用,因为有很强的反应能力,对加成和取代反应至关重要,最后这些羧酸基团可以增加专用级别溶解木浆的粘度并降低纤维的溶解度。   所以对木纤维羧基含量的测定无论是基础研究还是应用研究都是至关重要的。柴欣生等开发了用反应顶空气相色谱分析木纤维中的羧基含量[Ind. Eng. Chem. Res. 2003, 42:L5440-5444],关键问题是优化分析条件,把羧基完全转化为气相色谱可以检测的挥发性物质,以提高测定的准确性。 (1) 测定原理   木纤维上的羧基与碳酸氢钠反应,可以释放出二氧化碳,用气相色谱热导检测器进行检测分析,反应如下: (2) 测定使用的仪器和条件   所有的测定都使用HP-7694自动进样器和HP-6890毛细管气相色谱仪,用热导检测器进行检测。   色谱条件:   色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱30m x 0.53mm )   柱温:60℃   载气:He 3.1 mL/min,使用不分流模式   样品瓶用He加压0.2 min,   样品环注入样品0.2 min   样品环平衡 0.05 min   样品瓶装液体样品平衡2 min   样品瓶装固体样品平衡 10 min   样品瓶如图2所示: 图 2 反应顶空气相色谱测定木纤维中羧基的样品瓶 (3)测定步骤   首先在室温下把纤维样品用0.100mol/L盐酸溶液处理1h,以匀速用磁搅拌器进行搅拌,烘干的纤维在酸溶液中的浓度为1.2%,然后把纤维样品在一个离心果汁萃取器中脱水浓缩,确定脱水纤维的浓度,这样就确定了纤维中残留盐酸的量。   取4mL 0.005mol/L标准碳酸氢钠和0.1mol/L NaCl的混合溶液,注入顶空测试瓶中,取一支长 2.54 cm 的针,穿过顶空瓶隔垫(如图2),称量0.15g脱水纤维置于隔垫里面的针上,样品不要和瓶中的溶液接触反应,把顶空瓶的隔垫盖紧,把针拔出,纤维样品就落入反应溶液中。 (4)这一方法的准确和精密度   表4列出用反应顶空气相色谱分析木纤维中羧基的比较结果 表4 顶空气相色谱分析木纤维中羧基的比较结果 样品 纤维中羧基含量/(mmol/g) 相对偏差/% 本方法 滴定法 1号样品 0.0789 0.0786 0.35 2号样品 0.0682 0.0739 -7.11 3号样品 0.0413 0.0415 -0.57 4号样品 0.06950.0694 0.04 5号样品 0.0815 0.0755 8.01 6号样品 0.0611 0.0610 0.10 7号样品 0.0225 0.0241 -6.87 8号样品 0.0577 0.0581 -0.69 (1) 方法的进一步改进   两年后柴欣生教授的研究组又进一步把方法加以改进[Ind. Eng. Chem. Res. 2005, 44, 10013-10015],把样品制备(即样品酸化之后把样品进行水洗),反应试剂的浓度(即降低碳酸氢钠的浓度,减少它的分解),和样品加入方式(即直接加入样品)进行改进。新方法更为简洁、可靠、更为实用,可以用于非纤维状的样品。   (a)修改后的方法:取烘干后的纸浆样品0.2g 置于装有200mL 0.1mol/L盐酸溶液的烧杯中,在室温下用电磁搅拌混合 1 h,之后把纸浆样品用去离子水彻底清洗,除去残留的盐酸,测定洗涤水的pH值以确定是否清洗彻底,把清洗后的纸浆样品放在恒温恒湿的环境下进行空气干燥。根据纸浆含有羧基的量用分析天平称取0.03-0.08 g样品置于顶空样品瓶中,加入4 mL碳酸氢钠溶液后立即把瓶密封,摇动顶空瓶使样品分散到溶液中,之后置于气相色谱仪的自动进样器中,进行顶空气相色谱分析。   (b)如果样品中含有更强的酸,就会和碳酸氢钠溶液立刻反应产生出二氧化碳,所以既要把样品和碳酸氢钠溶液的混合在顶空瓶密封之后进行,因此设计了如图3的方式,即把碳酸氢钠置于一个小试管中,等顶空瓶加上隔垫盖之后,使之倾倒与样品反应。 图3 测定纸浆中羧基的顶空样品瓶 4 用反应顶空气相色谱测定氧脱木质素过程溶液中的草酸盐   ( JChromatogr A,2006,1122:209-214)   测定造纸过程中氧脱木质素液体中的草酸盐对研究工艺条件有重要作用,大家从基础分析化学知道,测定草酸盐用高锰酸钾标准溶液以滴定法进行测定,反应如下:   这一反应在提高温度是会加速反应,以高锰酸钾的消耗量进行定量,但是这一反应如果样品中含有还原物时不能使用,如有机物,氧脱木质素液体很复杂,其中的草酸盐不能用此法进行定量分析。但是柴欣生教授的研究组把反应顶空气相色谱【他们叫做&rdquo 相变反应&rdquo (Phase conversion reaction,PCR)顶空气相色谱】与他们以前研究的&ldquo 多次顶空萃取&rdquo (multiple headspace extraction)(用于测定造纸厂黑液中甲醇形成的动力学研究(J Chromatogr A,2002,946:177-183)气相色谱相结合来解决这一问题。   氧脱木质素液体中的草酸盐与酸性高锰酸钾反应很快便产生出二氧化碳,但是和其中的有机物经氧化反应产生出二氧化碳要慢得多,因此可以用测定后者产生规律和数据来修正测定氧脱木质素液体中的草酸盐含量的方法。(这一方法相对复杂一些,由于篇幅不做详述,有兴趣的可以阅读柴教授的原文)。   柴欣生教授的研究团队还有许多文章阐述反应顶空气相色谱的应用,这里无法一一介绍。   下面列出部分相关的文献供读者参考: 序号 题目 原始文献 1 制浆过程废液挥发性有机化合物的生成规律(顶空气相色谱法) J. Pulp Paper Sci., 1999, 256-262. 2 顶空气相色谱分析复杂基质中的非挥发性物质 J. Chromatogr. A, 2001, 909:249-257.3 木质纤维羧基含量: 1.顶空气相色谱法测定羧基含量 Ind. Eng. Chem. Res., 2003, 42: 5440-5444. 4 顶空气相色谱测定酸和碱组分 J. Chromatogr. A, 2005, 1093:212-216. 5 顶空气相色谱测定木质素的甲氧基含量 J. Agric. Food Chem., 2012, 60: 5307&minus 5310. 6 顶空气相色谱快速测定纸浆漂白废液的过氧化氢含量 J. Chromatogr. A, 2012,1235:182-184. 7 顶空气相色谱测定丁二酸酐改性纤维素的取代度 J. Chromatogr. A,2012,1229:302-304. 8 一种实用的顶空气相色谱法测定纸浆漂白废液的草酸根含量 J. Ind. Eng. Chem., 2014,20:13-16. 9 一种新颖的顶空气相色谱法分析乙基纤维素的乙氧基含量 Anal. Lett., 2012, 45: 1028-1035. 10 顶空气相色谱技术快速测定个护用品中的甲醛含量 Anal. Sci., 2012, 28: 689-692. 11 顶空气相色谱测定以甲醛为原料的聚合物乳液中的残余甲醛含量 J. Ind. Eng. Chem.,2013,19:748-751. 12 顶空气相色谱法检测纸浆中羰基含量的研究 中国造纸, 2014,33(10): 36-39. 13 静态顶空气相色谱技术 化学进展, 2008,20(5): 762-766. 5 更多反应顶空气相色谱的应用   国内还有不少学者在许多领域使用反应顶空气相色谱解决诸多分析问题,下面列出一些用例。 序号 题目 方法要点 1 顶空进样-气相色谱法测定大气中吡啶的研究 用硫酸溶液为吸收液采集大气中的吡啶,吸收液倒入20 mL 顶 空瓶中,加入3 g 氯化钠,少量氢氧化钠,调节pH为12,密闭摇匀至所加盐全部溶解,于顶空进样器进样,气相色谱仪分析。 王艳丽等,中国环境监测,2013,29(2):62-64 2 顶空气相色谱法测定粮食中的氰化物 称取试样5-10 g于100 ml顶空管中加入 纯水至80 ml, 混匀, 在超声波清洗器中超声提取20 min, 取出, 分别加入磷酸盐缓冲溶液1.0 ml和1%氯胺T溶液0.25 ml, 立即用橡胶反堵胶塞密封, 混匀, 置于40℃恒温水浴中, 反应及平衡50 min, 抽取顶空气体100 &mu l注入气相色谱仪进行测定。 刘宇等,中国卫生检验杂志2009,19(3):552-553 3 顶空气相色谱法测定膨化大枣中的亚硫酸盐含量 将粉碎样品放入500mL 顶空瓶中, 加入浓盐酸,在40℃恒温水浴中反应10min, 亚硫酸盐在酸性条件下转化为SO2气体, 取顶空气体进行气相色谱分析。通过测定气相中二氧化硫的含量, 间接测定样品中的亚硫酸盐含量 王晓云等,山东化工,2007,36(1):36-38 4 使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气 相色谱法 在20 mL 顶空瓶中加入0.1 g 抗坏血酸、0.2 gEDTA 络合物,然后称取5.0 g 匀浆后的样品于此顶空瓶中,再加入10 mL 预先配制好的氯化锡盐酸溶液,加盖密封,超声震荡2 min,然后在水温为80℃的水浴锅中加热2 h,每隔30 min 摇匀一次,摇匀时间为1 min,待反应完成,稍冷,然后置于自动顶空装置托盘,顶空平衡温度60℃,平衡时间3 min,分析反应产生的二硫化碳 聂春林等,精细化工中间体,2010,40(6):63-66 5 测定尿中三氯乙酸的自动顶空气相色谱法 尿中的三氯乙酸加热脱羧生成三氯甲烷进星气相色谱分离,,取5 ml 样品移入顶空瓶中,同时取5 ml 双蒸水作为空白对照,立即加盖密封。顶空瓶放入90 ℃水浴中150 min,然后依次放入顶空装置内,启动自动进样分析 李添娣等,职业与健康 2012,28(16 ):1982-1983 小结:化学反应很神奇,利用它创造出瑰丽的世界,制造出无数无奇不有的物件,满足人们的各种需求,为人们提供了绚丽多彩的生活条件。利用化学反应把本来不能进行顶空气相色谱的样品变为可能,大大提高了它的应用范围。这一方法是有限的,但是这一思路是无限的。 致谢:感谢柴欣生教授提供部分资料并对本文进行审阅和修改。

增若托平相关的仪器

  • 仪器简介:DCS300PA数据采集器是带有双通道前置放大器的微弱信号采集器,作为DCS103型数据采集器的升级版,涵盖了DCS103的所有数据采集功能,由于增加了多档位、高增益的前置放大器,因而适合于更微弱信号的数据采集。技术参数:主要技术参数:◆ 两路I/V信号输入,信号输入范围(满档量程):电压输入:± 100&mu V(FS)~± 10V(FS)电流输入:± 100nA(FS)~± 100mA(FS)◆ 增益设置范围:电压增益:100~104 电流增益:103~107◆ 积分时间:10&mu s~10s◆ 单路AUX电压输入通道,信号输入范围:DC 0-10V◆ 单路温度探头信号输入通道,使用温度探头型号:AD950◆ A/D转换精度:16bits,实现高动态范围信号采集◆ 两路D/A输出可用于控制其它实验设备,输出幅度:DC 0-10VD/A转换精度:12bits◆ 触发输出通道:可控制电子快门和电磁螺管快门◆ 触发输入通道: TTL电平上升沿触发◆ I/O:5路输入,2路TTL输出◆ 标准USB接口◆ CE认证◆ 电源需求: DC 24V,0.3A◆ 尺寸:240(L)× 240(W)× 120(H)◆ 重量:3.3Kg主要特点:主要特点◆ 测量范围宽(9级可至256倍的增益变换)◆ 测量精度高(高性能运算放大器和± 15Bits精度的A/D转换器)◆ 具有双路相同性能的输入通道,可分别设置为直流电压输入或直流电流输入◆ 附有双路0至10V的直流D/A变换输出通道◆ 可进行单通道测量和比率测量◆ 软件系统操作方便
    留言咨询
  • IIM系列像增强模组产品概述典型特点● 触摸屏控制界面● 外同步/常开/内触发三种工作模式● 全新设计高效中继镜头(1:1/2:1)● 25mm 大口径阴极有效探测面● 双层增强,超过2*105亮度增益● P46 超快荧光屏,支持超百万帧速高速相机采集● 多重防过曝光保护设计● 一体化结构设计,灵活适用不同应用场景(A/B/C三款)● 光谱仪拓展转接口定制适用应用场景● 粒子速度场影像(PIV) ● 激光诱导荧光成像(LIF)● 燃烧场诊断成像● 等离子体成像或光谱● 单光子影像● 生物化学发光成像或光谱● 空间天文物理成像● 其他高速影像场景当前在很多的科学研究中,比如燃烧诊断、微光夜视、单分子成像、蛋白质发光、荧光成像、粒子成像中信号都非常的微弱,有些甚至达到了单光子量级,如果使用普通的CCD相机或高速相机很难得到很清楚的图像,如果这时在相机前段加入一个图像增强器,可以将信号放大103-107倍,就可以得到很清楚的结果. 最新推出的IIM系列全新升级版镜头耦合像增强器模块可以简单方便的解决这个问题。IIM系列像增强模组,深度契合客户实际应用,根据应用场景可分为A/B/C 三大结构设计,内部全部采用高度一体化结构设计, 耦合25mm大靶面像增强器,可以提供光电转换,增益控制以及高速快门功能,专门特殊设计用来通过Nikon -F或C接口安装到用户已有的CCD 相机,EMCCD ,sCMOS或高速相机上面,也可以体用光谱仪拓展转接口,完成高速光谱或弱光光谱采集。● IIM-A/B 型采用了触摸屏作为了控制界面,可以控制所有功能。● IIM-A 型为集成一体触摸屏,IIM-B 型为远程控制盒控制,两者触摸屏界面功能相同触摸屏功能包括● 门控Gate及同步输出信号三路输出调节,包括信号宽度以及延迟时间;● 工作模式选择:常开模式/门控外触发模式/内触发模式● 触发沿选择: 上升沿或下降沿● 机械快门模式选择:常闭/常开/触发● 内触发同步频率设置;0-100KHZ● 阳极亮度监控模式开关以及亮度电流水平监控(可选项)● 增强器增益调节设置(0-100%)● 显示屏亮度开关及调节● 信号输出控制开关IIM-A/B 触摸屏设置界面一览全新设计中继镜头中继镜头(Relay lens)作为镜头耦合模组的核心部件,对于整个模组的耦合效率和成像效果有很大的影响。针对此特殊应用,特别优化设计了一种短焦距,大口径,高数值孔径,同时保持低畸变的1:1/2:1成像镜头,在保障全尺寸成像分辨率和低畸变的基础上,有效提高耦合效率。一体化结构设计为保障使用当中的免维护,以及有效保护增强器和光学器件,增强模组采用全新一体化设计结构,安装严丝合缝,整体性强,密封性高,同时增加实用设计:● 增加电动机械快门,免除意外损伤增强器的顾虑;● 增加25mm滤光片插槽,方便针对特定波段的快速增强成像。● 增加成像调节旋钮,方便调节焦面成像。高性能25mm增强器全部采用高性能25mm 增强器设计,兼顾大靶面大视野及高分辨率需求。大口径增强器可适配前端大口径收光F 接口镜头,获得超大视野及高的收光效率,满足大多数高速相机需求。针对较小芯片尺寸相机,也可以选用2:1 缩比配置,保障并提高分辨率及亮度。针对高速成像应用,推荐选配双层MCP,在提供高达105以上的增益同时,P46的300ns超快衰减时间的荧光屏,可满足超过100万帧频的高速摄像需求。灵活适用不同应用场景针对不同的应用场景,IIM系列提供多种不同外形结构的设计:● IIM-A系列: 台式桌面型此系列功能齐全,外观结构厚实稳定,使用简便,适合大多数科研实验室使用,特别是小型或轻量型相机,连接后无需再单独固定。● IIM-B系列:便携远程控制型此系列外形小巧,功能齐全,配备远程控制盒,适合实验过程中需要保持安全距离的测试,如燃烧,爆炸过程等! 另外,轻便的外形结构设计更适合较大尺寸或较重相机的连接和使用。注: 新版A/B 系列USB2.0 远程桌面控制● IIM-C系列:便携手动型此系列外形小巧,简单易用,适合使用场景单一,无需门控和触发控制的实验。● 客户定制:光谱仪接口类型可根据客户已有光谱仪出口尺寸/焦深等定制入口端光谱仪焦面接口,直接将已有光谱CCD或高速相机通过IIM 增强模组连接到光谱仪后端,升级为高灵敏度光谱探测或高速光谱探测系统。参数列表规格型号IIM-A 系列 IIM-B 系列IIM-C 系列可选型号IIM-A125IIM-A225IIM-B125IIM-B225IIM-C125IIM-C225像增强器参数增强器有效口径25mm MCP输入输出窗口Input: SiO2;Output: GL光电阴极S20 (Solar Blind, Bialkali, LNS20, S20B, S25 可选)MCP 类型单级MCP 125, 双极 MCP 225荧光屏类型高亮P20 & 高速P46(300ns Decay time)空间分辨率lp/mmMCP125:=35,MCP225:=20MCP辐射增益@500nmMCP125: =10,000watts/watt @P20 , =3,000w/w@P46MCP 225: =1000,000w/w@ P20 , =250,000w/w@ P46门控宽度快速(F): =3ns , 慢速:=50ns—DCNA光学参数输入接口Nikon F 镜头接口( 其他接口可选)输出转接口Nikon F 镜头接口( 其他接口可选)内部中继镜头50mm 1:1 (2:1可选)控制参数控制方式一体式触摸屏控制盒(带触摸屏)手动控制工作模式常开模式 , 门控模式 ,内触发模式(S,G, I)常开模式门控、延迟控制触摸屏数字设置 3ns---2 S ( 1ns 步距)NA内触发频率0.01HZ-100KHZNA外触发频率0.01HZ-300KHZNA触发沿上升或下降沿可选NA增益控制触摸屏数字设置 0-100%手动旋钮输入输出外触发+1路同步输出SMA接口外触发+1路同步输出 SMA接口 NA软件控制USB2.0 远程桌面控制NA
    留言咨询
  • 仪器简介:◆ 侧窗式,具有电、磁、光屏蔽◆ 可与我公司生产的光谱仪系列、样品室等匹配连接◆ 通过标准BNC插头输出信号◆ 通过专用耐高压BNC插头输入稳定高压◆ 可内置多种型号的侧窗型光电倍增管技术参数:■ PMTH-S1-(x)系列侧窗型光电倍增管产品选型表型号 名称、规格描述 输出信号极性光电倍增管    PMTH-S1-CR316-02光电倍增管(185-650nm) 负(N)PMTH-S1-R1527 光电倍增管(185-670nm),高灵敏型,电流输出模式(蓝敏) 负(N)PMTH-S1-R1527P 光电倍增管(185-670nm),高灵敏型,超低暗计数,电流输出模式(蓝敏) 负(N)PMTH-S1-CR131 光电倍增管(185-900nm),普通型,电流输出模式(红敏) 负(N)PMTH-S1-CR131A 光电倍增管(185-900nm),高灵敏型,电流输出模式(红敏) 负(N)PMTH-S1-R928 光电倍增管(185-900nm),普通型,电流输出模式(红敏) 负(N)PMTH-S1-R2949 光电倍增管(185-900nm),高灵敏型,超低暗计数,电流输出模式(红敏) 负(N)PMTH-S1-R2658 光电倍增管(185-1010nm),普通型,电流输出模式(红敏) 负(N)PMTH-S1-R2658P 光电倍增管(185-1010nm),高灵敏型,超低暗计数,电流输出模式(红敏) 负(N)PMTH-S1-R5108 光电倍增管(400-1200nm),电流输出模式(红敏) 负(N)高压稳压电源   输出电压极性HVC1800 高压稳压电源(0-1500V) 输出电压极性PS310 高压电源(12V-1.25kV),最大输出电流:20mA 正或负PS325 高压电源(25V-2.5kV),最大输出电流:10mA 正或负PS350 高压电源(50V-5kV),最大输出电流:5mA 正或负主要特点:主要特点:◆ 侧窗式,具有电、磁、光屏蔽◆ 可与我公司生产的光谱仪系列、样品室等匹配连接◆ 通过标准BNC插头输出信号◆ 通过专用耐高压BNC插头输入稳定高压◆ 可内置多种型号的侧窗型光电倍增管◆ 电流输出模式◆ 电压输出模式可供选择(具体请洽询)◆ 推荐配合高压稳压电源使用,可达到最佳的效果 ■ HVC1800高压稳压电源HVC1800型高压稳压电源为光电倍增管提供稳定的直流高电压,与光电倍增管配合使用在微弱信号的精密探测应用中。主要特点:◆ 输出电压:0-1500V连续可调,直流负电压◆ 输出电压可手动控制调节,也可通过外接控制端口(0-10V)经由PC机或D/A变换器控制(如:DCS300PA,Page95)◆ 最大输出电流:0.6mA ◆ 输出电压最大漂移:± 0.03%/h◆ 输出电压指示:3位半LED显示■ PS300系列高压稳压电源我们还提供美国SRS公司生产的PS300系列高压电源。主要特点:◆ 输出电压:1.25kV/2.5kV/5kV三种规格可选◆ 输出电压可手控调节,也可通过外接控制端口(0-10V)经由PC机或D/A变换器控制;◆ 最大输出功率:25W,可输出正高压和负高压(通过后面板开关选择)◆ 输出电压最大漂移:± 0.01%/h
    留言咨询

增若托平相关的耗材

  • 安捷伦 顶空进样器阀,电磁瓶增压3600500002
    顶空进样器7694E/G1883A 网络顶空备件说明 部件号针头只有针头,顶空传输管线,脱活,外径0.5 mm 2322590004传输管线针头,内径0.25 mm,外径0.5 mm,镍 301-016-HSP只有针头,顶空传输管线,脱活,外径0.7 mm 2322590005传输管线针头,内径0.4 mm,外径0.8 mm,镍 301-015-HSP进样针头组件,样品瓶针头,脱活 232-2790012-EHS进样针头组件,样品瓶针头,镍 232-2790010-EHS接头 两通,直角接头M5 998-0000053-EHS传输管线螺帽 19258-20830传输管线密封垫圈 19258-20870接头FF 6MB,一套5 件 325-062-HSP 接头T6 MB,一套5 件,黄铜 325-132-HSP接头T5 MA 325-185-HSP阀限流器,不锈钢 321-002-HSP阀,电磁放空,Kalrez 3600500001阀,电磁瓶增压 3600500002管线和传输管线样品定量管,1 mL,脱活 2321700003样品定量管,1 mL,镍制 321-055-HSP样品定量环,2 mL,镍 169-0013-HSP样品定量管,3 mL,脱活 2321700004样品定量管,3 mL,镍制 321-056-HSP10 mL 样品瓶柱箱转换座 301-017-HSP管线,针头,6 通阀,脱活 301-212-HSP管线,针头,6 通阀,镍 301-169-HSP不锈钢放空阀出口管线 301-170-HSP传感器管,125 mm 聚四氟乙烯 321-057-HSP传输管线,脱活的,1 m 301-211-HSP 传输管线,1 m,镍 301-152-HSP传输管线,80 cm,镍 301-011-HSP维修、检漏和OQ/PV 备件废液放空管隔垫螺帽 301-205-HSP顶空渗漏测试工具包 G1888-60701OQ/PV 顶空样品包含2 g/L 叔丁基二硫醚、1,2-二氯苯和硝基苯,溶剂为乙醇 5182-9733
  • 圆底烧瓶托/橡胶烧瓶托/优质圆底橡胶烧瓶托
    圆底烧瓶托/橡胶烧瓶托/优质圆底橡胶烧瓶托由上海书培实验设备有限公司为您生产提供,产品规格齐全,量多从优,欢迎客户来电咨询选购。 圆底烧瓶托/橡胶烧瓶托产品介绍:一:材质:天然橡胶二:主要用于承托圆底烧瓶用三:颜色:红色和黑色两种四:适用于实验室圆底烧瓶放置
  • 样品瓶托盘
    产品信息: 订货信息:样品瓶托盘描述部件号数量室温样品托盘, 可作为主要托盘或次要托盘进行配制368127551主要室温样品瓶托盘, 1 - 150位, 用于 1, 2, 2.5mL 样品瓶240101501主要室温样品瓶托盘, 1 - 54位, 用于 10, 20mL 样品瓶240101601次要室温托盘, 151 - 300位, 用于 1, 2, 2.5mL 样品瓶240101551次要室温托盘, 55 - 108位, 用于 10, 20mL 样品瓶240101651带加热/冷却功能的样品瓶托盘, 可作为主要托盘或次要240101901托盘进行配制  带加热/冷却功能的主托盘, 1 - 96位, 用于 1, 2, 2.5mL 样品瓶240101951带加热/冷却功能的主托盘, 1 - 33位, 用于 10mL 样品瓶240102001带加热/冷却功能的次要托盘, 97 - 192位, 用于1, 2, 2.5mL240102151样品瓶  带加热/冷却功能的次要托盘, 34 - 66位, 用于 10mL 样品瓶240102201

增若托平相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制