还原绿

仪器信息网还原绿专题为您提供2024年最新还原绿价格报价、厂家品牌的相关信息, 包括还原绿参数、型号等,不管是国产,还是进口品牌的还原绿您都可以在这里找到。 除此之外,仪器信息网还免费为您整合还原绿相关的耗材配件、试剂标物,还有还原绿相关的最新资讯、资料,以及还原绿相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

还原绿相关的资料

还原绿相关的论坛

  • 镉柱还原率低

    镉柱还原率一直达不到95%,只有70-80%,是买来的镉粒!有没有大神可以说下提高还原率的方法呀!

  • 硝酸盐还原率问题

    使用国标传统方法采用锌镉还原法测海水硝酸盐,还原率不达标怎么办?已经试过不同品牌的锌片,也考虑震荡时间及位置问题。

还原绿相关的方案

  • 微波预处理强化高磷铁矿粉的气态还原
    利用气相还原动力学及微波预处理对其气相还原行为,对高磷矿石还原动力进行阐明,提高其金属化速率。采用热重法对气体还原动力学进行了研究,高温微波反应器对四功率级铁矿粉进行微波预处理。采用CO或H2作为还原剂,可使矿粉金属化率提高10% ~ 13%。
  • 使用自动还原糖测定仪检测玉米中糖分的实验操作步骤
    自动还原糖测定仪是一种用于测定食品中还原糖含量的仪器,其原理是利用还原糖与还原铜盐反应生成氧化铜,通过测定氧化铜的颜色深浅来确定还原糖的含量。以下是使用自动还原糖测定仪检测玉米中糖分的一般实验操作步骤:实验准备:仪器准备:确保自动还原糖测定仪处于正常工作状态。根据仪器的使用说明书,连接必要的电缆和管道。试剂准备:准备还原糖标准溶液,以建立标准曲线。准备玉米样品,并将其制成适当的提取液。操作步骤:标定仪器:使用已知浓度的还原糖标准溶液进行仪器标定。按照仪器使用说明书进行标定步骤,确保仪器的准确性。准备样品:将玉米样品加入样品瓶中。使用适当的提取液提取玉米中的糖分。提取液的选择应当考虑到对糖分的有效提取。样品处理:根据实验要求,可能需要对样品进行预处理步骤,如过滤或稀释。加载样品:将处理好的样品加载到自动还原糖测定仪中。确保样品加载的精确性和重复性。测定:启动自动还原糖测定仪进行测定。仪器会自动进行反应、测定和记录。记录数据:记录每个样品的测定结果。如果使用了标准曲线,将测定结果与标准曲线相对应,计算样品中糖分的浓度。质控:进行质控步骤,例如测定控制样品,确保仪器的稳定性和准确性。数据分析:分析实验结果,计算样品中糖分的平均浓度,并进行统计学处理(如果需要)。
  • 还原氧化石墨烯绿色合成Pd/Fe3O4复合材料及其在食品安全检测中的应用
    如今,化学还原法是制备石墨烯基纳米复合材料的常见方法。但是,用于化学还原氧化石墨烯(GO)和金属离子的还原剂如肼与NaBH4为有毒害物质,也存在一定的安全隐患。多功能生物聚合物聚多巴胺(PDA)可以通过多巴胺(DA)的自聚合形成表面粘附涂层来修饰各种基材。 PDA涂层可以用作通用平台,不仅可以改善RGO的亲水性并防止RGO团聚,还可以在RGO表面上原位成核和生长金属、金属氧化物和半导体等。兰州大学叶为春课题组基于polyDOPA(3,4-Dihydroxy-l-phenylalanine,DOPA)平台原位成核和生长Fe3O4和Pd纳米粒子。该方法没有引入还原剂或者结构导向剂,合成的Pd / Fe3O4 / polyDOPA / RGO复合材料作为亚硝酸盐电化学传感器,表现出良好的电催化活性。结果表明,这种电化学传感器检出限低、选择性好、线性范围宽,可以成功应用在河水、香肠制品及白菜腐烂过程中亚硝盐浓度检测,在日常检测中具有广阔的应用前景。

还原绿相关的资讯

  • 土壤氧化还原电位仪(土壤氧化还原电位仪的作用)
    前言: 土壤氧化还原电位仪是一种专门用于测量土壤中氧化还原势(Eh)的专业仪器,其在揭示土壤健康状况、指导农田管理和环境保护等方面具有重要价值。 产品链接https://www.instrument.com.cn/netshow/SH104275/C307153.htm 一、【实时检测土壤,评估土壤环境】 土壤氧化还原电位仪可以实时准确地测定土壤的氧化还原电位值,这一参数反映了土壤环境中电子转移活动的程度。通过持续监测和分析,能够判断土壤是处于氧化还是还原状态,进而评估土壤肥力水平、污染物降解能力及微生物活性等多方面土壤健康状况。 二、【指导科学施肥与改良措施】 利用土壤氧化还原电位仪得到的数据,农业生产者可以更准确地了解土壤对养分的有效性以及潜在的重金属污染风险。据此调整施肥策略,避免过度施肥导致的土壤酸化或盐碱化问题,并采取针对性的土壤改良措施,提高农作物产量与品质,实现土壤资源的可持续利用。 三、【环保治理与生态修复的重要工具】 在土壤污染治理和生态修复领域,土壤氧化还原电位仪同样发挥着关键作用。通过对受污染土壤Eh的动态监测,可为污染物迁移转化规律的研究提供依据,指导实施有效的土壤修复方案。此外,在湿地保护、矿山复垦等领域,该仪器也能帮助科学家和工程师深入理解并调控土壤系统的氧化还原过程,促进生态环境恢复。
  • 2.15亿元多晶硅还原炉订单成交
    近日,双良节能官网发布公告称,继之前中标的新疆大全29,220万及云南通威17,670万项目后,双良节能再获大单,中标新疆东方希望新能源有限公司6万吨/年多晶硅项目多晶硅还原炉设备,金额15,876万元;以及中标青海亚洲硅业半导体有限公司60000t/a电子级多晶硅一期项目多晶硅还原炉设备及撬块,金额5,658.422万元。两大订单合计金额高达2.15亿元。据了解,多晶硅还原炉是发生氢还原反应的场所,是直接产出多晶硅的设备。在多晶硅还原炉内,精制氯硅烷和高纯氢气在1000~1200℃下发生化学气相沉积反应,生成多晶硅沉积在载体硅芯上,随时间增长直径逐渐变大,长成多晶硅棒。新疆东方希望新能源有限公司办公室地址位于古代举世闻名的丝绸之路昌吉,新疆昌吉州准东经济技术开发区,于2016年05月05日在昌吉州工商行政管理局新疆准东经济技术开发区分局注册成立,要经营生产及销售:多晶硅;销售:硅片、铝锭、铝合金、氧化铝、PVC等。亚洲硅业(青海)股份有限公司成立于2006年12月,是全球领先的高纯硅材料供应商,国家高新技术企业。目前拥有19,000吨/年高纯多晶硅及9,000吨/年光纤级四氯化硅生产能力和185MW并网光伏电站。 先后成为国家知识产权优势企业、国家级绿色工厂、国家两化融合贯标试点企业、国家智能光伏试点示范企业、工信部绿色制造和智能制造双项支持企业、工信部工业企业知识产权运用试点企业,建有国家企业技术中心、博士后科研工作站,多晶硅产品进入工信部绿色设计产品名单。公司以数字化研发建成了全球首条全48对棒加压还原炉万吨级单体生产线,该项目获得了青海省科学技术进步一等奖。
  • 液态金属还原氧化石墨烯在生物传感中的应用
    Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing布鲁克纳米表面仪器部 李勇君 博士自室温和近室温液态金属(LMs)出现以来,此类材料因其软流体性质、高电子和热导率特性而受到研究者们越来越多的关注。其中,镓及其共晶合金因其低毒性和低蒸汽压等特性成为了LMs家族的典型代表之一,其可用于驱动表面化学反应,设计纳米结构等应用。到目前为止,众多研究者已经在 LMs 表面探索了多种反应,以生成基于层状材料和纳米粒子等不同涂层,但其表面在暴露于氧的情况下易形成天然氧化层而快速钝化,形成损害LMs导电性的绝缘表面,从而限制了在电化学和电子系统中的应用。因此,在LMs表面建立导电层,以实现高导电界面是对于需要电子、电荷转移这类应用的一种有前景和十分重要的策略。2021年11月,澳大利亚新南威尔士大学和中国香港大学的研究人员通过共晶镓(Ga)-铟(In)液态金属(EGaIn)与氧化石墨烯(GO)的界面相互作用成功实现了衬底上、单独GO的还原(rGO),合成了基于rGO与LM的核-壳复合材料(LM-rGO)。进一步,研究者通过布鲁克公司的原子力显微镜(AFM)、 峰值力扫描电化学显微镜(PF-SECM)、纳米红外光谱(nanoIR)、X射线能谱(EDS)等技术系统、详细地表征和讨论了LM对GO的还原能力,LM-rGO界面的相互作用,LM的界面传递,以及LM-rGO的电化学性能等,证实了LM−rGO是一种有效的功能材料和电极改性剂。最后,研究者基于LM-rGO开发出来的纸基电极实现了抗生物干扰的多巴胺选择性传感,展示了该低成本技术的商业应用前景。该项研究工作最终以“Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing”为题发表在2021年11月的《ACS NANO》杂志上。原文导读:研究背景:在过去十年中,自室温和近室温液态金属(LMs)出现以来,其在治疗学、微流体学、材料合成和催化等多个研究学科中得到了广泛的应用。作为LM家族的代表,镓及其共晶合金因其低毒性和低蒸汽压而倍受关注。具体而言,Ga基LMs的可调表面特性以及柔软、动态的界面使其成为合成多种材料的理想反应介质。基于Ga的LMs的另一个独特特性与Ga的不同氧化状态有关,这使得能够在电解或电流调节中调整氧化还原介导的合成路线。在界面上,LMs通常用于两种设想的合成路线:①作为柔软的超光滑模板,然后从表面剥离目标材料,②作为反应点和稳定载体,用于生成颗粒。将所有这些优点结合在一起,基于Ga的LMs可被视为有效的功能载体,为功能化合物的保留和生成提供了多功能界面。还原氧化石墨烯 (rGO) 是常用、流行的平面材料之一,其具有高导电性和跨平面的机械强度等特点。尽管研究者们已经提出了许多用于rGO 生产的方法,但开发一种高度可控的在室温下可行,并且对试剂的需求最少的还原方法仍然具有很大的前景。凭借其超反应性界面,可提供两种自由电子和离子,LMs 可能可以提供这样的反应介质,使 GO 薄膜和各种厚度的GO膜能够在室温下实现还原。一方面,LMs的动态可再生界面可用作重复使用的还原GO试剂,从而在无需任何外部输入(特别是施加电压)的情况下将成本和废物产生降至最低。 另一方面,LMs 的非极化表面可以轻松地从其表面捕获产生的 rGO,无需额外的化学步骤及可形成LM-rGO核-壳复合结构。在本研究中,研究者探索了共晶镓-铟 (EGaIn)和 GO 薄片之间的界面相互作用,考虑了不同的方法:包括利用 LMs 块体作为反应模板来还原GO 和利用LMs微颗粒作为的小型反应位点来合成复合材料。对于这两种情况,研究者都对 LMs表面的 rGO 进行了广泛的表征,以全面了解还原 rGO的特征和组成。 最后,研究者将合成的LM-rGO 微颗粒复合物用于标准电化学电池和电化学纸基分析装置 (ePAD) 中的传导表面改性修饰剂,用于在存在其他生物干扰的情况下对多巴胺 (DA) 进行选择性生物传感和检测。结果及讨论:为了研究LM对GO的界面影响,研究者考虑了不同的实验条件,包括使用LM块体作为软介质来还原不同厚度的GO膜、单独的膜,以及利用LM微液滴作为还原剂核心来生成LM-rGO核−壳复合结构。1. 衬底上GO膜的LM还原研究图1 a, 显示了衬底(Si/SiO2)上GO放入LM中还原的方法。通AFM表征还原前后的GO单层膜发现:LM处理后,单层膜膜厚从1.2 nm减小到了0.6 nm,膜厚的减小可归因于GO还原后变形的sp3碳结构和各种含氧官能团的去除。另外,通过对另外两个GO和rGO样品的AFM图像进行厚度统计分析,研究者进一步证实了暴露于LM后GO单层的厚度减少(图2,原文补充信息Figure S2)。在石墨结构的拉曼光谱中,D带(ID)和G带(IG)的强度之比被认为是石墨烯层内缺陷的指标,拉曼光谱显示LM还原前后的ID/IG从0.89变化到1.2,同时结合ID/IG拉曼成像(图1. d、e)可以进一步确认LM相对均匀地还原了GO单层。在这种方法中,LM大部分在设计的原电池中既是导体又是电解液。换句话说,导体本身可以提供一个充满离子和反应性金属位置的环境,而不是使用外部介质来移动负责电偶反应的电荷载体。LMs的柔软性还提供了液体块体和目标基板之间的有效界面接触,使所需的金属物种易于在表面上接触。图1. (a)基于衬底的GO的LM还原方法示意图 AFM图像:(b)暴露于LM前的GO样品和(c)LM反应后获得的rGO样品 (d)衬底上的GO和(e)浸入LM后获得rGO的拉曼光谱测量,D带和G带的表面拉曼成像及相应的ID/IG成像。图2. Si/SiO2衬底上不同样品的AFM成像和厚度分析:(a-b)LM还原前的GO样品和(c-d)LM还原后的rGO样品。2. 单独GO膜的LM还原研究为了进一步探索开发的基于LM的工艺能力,研究者探索了其独立薄膜GO的LM还原潜力。图3 a,显示了制备独立GO膜的LM还原方法。拉曼光谱证实了还原的有效性(图3c)。为了研究暴露于EGaIn前后表面官能团的分布,转移的厚rGO样品(~1.6 μm, 原文Figure S3-nanoIR表征的测量膜厚度)被进一步通过纳米红外光谱(nanoIR)进行了表征。如图3d所示,纳米红外成像是一种基于AFM的高空间分辨率化学成像和光谱研究技术,其中脉冲红外激光用于产生光热诱导共振和热膨胀。光吸收引起的膨胀激发了AFM悬臂梁的共振振荡,悬臂振荡的振幅正比于相应波长的红外光谱吸收。该技术被用于在高空间分辨率下评估GO和rGO样品中表面官能团的分布。从GO的纳米红外光谱(图3f)中可以看出,羰基峰1730 cm−1(C=O)具有很高的纳米红外振幅, 纳米红外成像也显示了GO表面上相对均匀的羰基分布。另外,GO样品的纳米红外光谱在1615 cm−1处也显示出明显的峰值,对应于GO中的C=C。同样,纳米红外光谱成像也显示了C=C分布的均匀性。GO和rGO之间的主要区别在于:rGO样品纳米红外光谱中羰基峰的消失(图3e),证实了厚GO样品的成功还原。纳米红外光谱中剩余的C=C振动(1593 cm−1),源自石墨烯环,在rGO纳米红外成像中也显示出高振幅和适当的分布(图2e)。最后,表征研究结果证实基于LM还原工艺也可以用于生成独立的rGO膜。图3.(a)单独GO的LM还原方法示意图 (b)单独GO膜的照片;(c)在暴露于LM之前和之后的GO薄膜拉曼光谱 (d)纳米红外光谱原理示意图 (e)浸入LM后获得rGO的纳米红外光谱、AFM表面形貌、偏转信号和C=C分布纳米红外成像 (f)浸入LM前GO的纳米红外光谱、AFM表面形貌、偏转信号和C=O、C=C分布纳米红外成像。3. LM-rGO复合材料的制备及表征为了探究GO还原过程的适用性,并在实际功能应用中了解LM微颗粒的还原能力,研究者进一步研究了在酸性GO悬浮液中通过超声波处理制备的LM-rGO复合材料。其合成过程的示意图如图4a所示。研究者通过透射电镜(TEM)证实并研究了LM-rGO核-壳结构,如图4b所示,球形LM颗粒被稳定的石墨片壳包裹,这表明粒子和LM颗粒表面的有效相互作用。另外,研究者也通过X射线能谱(EDS)完成了Ga, In,C,O元素的分析,EDS结果进一步证实了LM颗粒表面存在碳层和rGO片层的全覆盖。图4. (a) LM-rGO复合材料合成过程示意图 (b)LM-rGO核−壳结构的TEM图像 (c) SAED分析和HR-TEM图像 (d) LM-rGO不同放大倍数和角度下的SEM图 (e) LM-rGO表面的镓、铟、碳和氧元素的EDS成像。另外,为了收集更多关于合成复合材料元素组成的信息,研究者通过X射线光电子能谱(XPS)也对GO和LM-rGO复合材料进行了详细的研究。研究者也通过传统宏观傅里叶红外光谱(FT-IR)对LM-rGO表面官能团进行了研究,表明GO含氧官能团被广泛去除。4. LM-rGO复合材料的电化学行为由于LM-rGO复合材料具有高表面积、高活性界面和导电性等特点,可将合成的材料作为电活性改性修饰剂。因此,研究者在玻璃碳电极(GCE)和丝网印刷纸电极(PEs)上进行了大量的电化学性能评价,以探索LM基改性剂与纸张技术的相容性,以及开发低成本生物传感器的可能性。在这两种情况下,研究者采用电化学行为已知的亚铁氰化钾作氧化还原探针,并从电化学阻抗谱(EIS)响应、电活性表面积的变化等方面评估了改性剂对电化学性能的影响,并利用循环伏安法、微分脉冲伏安法、方波伏安法等多种电化学技术进行了表征。结果显示:LM-rGO改性修饰后的电极优于GCE和PE裸电极,证实了改性剂LM-rGO的优良电化学特性。另一方面,研究者也通过峰值力扫描电化学显微镜(PF-SECM)在纳米尺度对LM- rGO复合材料与电解溶液的界面电导率进行了评估,并研究了其表面的局部电化学活性。在PF-SECM方法中,利用AFM探针的纳米尖端和利用样品表面与针尖之间发生的可逆氧化还原反应,可以研究电荷转移的动力学。AFM探针纳米尖端可以实现表面高空间分辨率的电化学成像。PF-SECM操作示意图如图5a (原文Figure S9),PF-SECM工作在布鲁克专利的峰值力轻敲(PFT)模式下,该模式下纳米探针在一定振幅和频率下振荡,以收集样品的形貌和导电性等信息。PF-SECM模式使用“interleave mode”,在每个振荡实例中,探针被提升到样品上方250 nm的距离。当探针从样品表面提升时记录探针尖端电流,而该探针在样品表面一定距离的电流,可用来表征样品表面电化学活性。本研究中,六胺钌氧化还原反应被用于PF-SECM成像。图5b显示了LM-rGO复合材料的形貌。图5c显示了与样品表面接触时的针尖电流,该电流既反映了样品在电解溶液中的界面局部电导率,又反映了样品表面的电化学活性。纯电化学活性数据(图5d)为AFM探针从样品表面250 nm提升高度处的探针测量电流,这证实了电荷转移可能发生在整个表面。LM-rGO微颗粒边界具有较大电化学活性,并与附近颗粒的壳相互连接。边界处电流的轻微增加是由于这些边界代表样品中的低洼区域(如山谷形状),具有高有效表面积,可再生还原剂六胺钌。PF-SECM测量结果显示LM-rGO在纳米尺度具有良好的整体电化学活性,电流可达1.7 nA。图5. PF-SECM原理和LM-rGO粒子PF-SECM分析结果:(a)PF-SECM工作原理示意图(RE、CE和WE分别对应于参比电极、对电极和工作电极);(b) LM-rGO微粒的AFM图像;当针尖位于样品表面(c)(此处的电流代表界面电导率和电化学活性)和距离样品表面250 nm高度(d)(代表样品和电解质之间界面的电化学活性)时,针尖电流成像。5. 多巴胺的选择性传感在完成了前述的详细研究后,在抗坏血酸(AA)和尿酸(UA)存在的情况下,研究者采用了多巴胺(DA,重要的神经调节剂之一)进行了LM-rGO修饰电极用于DA检测的适用性和选择性评估。LM-rGO修饰,rGO修饰 (ErGO)和裸GCE电极的电化学EIS光谱被用来显示LM- rGO复合物中每个组件的作用。如图6a所示,ErGO显示表面DA反应的Rct值仍然较高(50.7Ω)。然而,在LM-rGO中, Rct值为20.3 Ω。这一观察结果证实了LM在系统电化学性能中的作用,与ErGO相比,LM产生的混合物对电荷转移的阻力更小。为了探索LM-rGO的作用,研究者将修饰剂、裸电极和修饰电极暴露于含有DA、AA和UA混合物的溶液中,然后记录了电化学信号(DPV和CV)。图6b、c、h显示了从裸电极, LM-rGO 修饰GCE和 PE的信号。结果可以看出:对于裸电极,DA、AA和UA的氧化还原峰显示出重叠和接近。然而,在修饰后,在不同的电位窗口中可观察到每种化合物相应的分离峰,因而证实在存在其他干扰化合物的情况下,直接测定DA成为可能。另外研究者也通过FT-IR测量了DA、AA和UA与LM-rGO的特定相互作用(图5f)。LM-rGO的FT-IR光谱显示,LM-rGO在低波数区(低于900 cm-1)尤其是在667 cm-1(代表Ga−OH基团) 表现出剧烈变化。LM-rGO表面的Ga−OH还原仅在存在AA中观察到,这为选择性峰移机制提供了证据。UA向高电位的选择性转移来源于LM-rGO表面剩余负电荷基团和带负电荷的UA分子之间的电荷排斥作用。因此,这种表面相互作用因为AA和UA的峰移,从而增强了DA的选择性。为了获得最大的传感响应,研究者对修饰材料的用量进行了优化。在最佳修饰膜厚度下,研究者获取了LM-rGO修饰GCE和PE的DA定量测定校准曲线。根据图6d,i中提供的结果,该传感器可定量测量100 nM至1500μM(GCE)和400 nM至750μM(PE)范围内的DA浓度水平,GCE和PE的灵敏度分别为30和100 nM。与GCE相比,尽管PE具有更高的电活性表面积,但观察到的动态范围更窄,灵敏度更低,这是由于PEs中已知的耗尽效应和有限的扩散。在不同浓度水平的DA和其他干扰化合物(包括AA、UA和葡萄糖(GLU),高浓度1.0 mM)共存的情况下,研究者也对界面选择性也进行了评估。图6e结果显示,DA的原始信号不会受到其他干扰物的影响,目标分析物DA的测量具有良好的选择性。最后,研究者在人血清样本中进一步研究了该传感器用于DA生物传感的适用性和选择性,结果证明:研究者设计的传感器在如此复杂的生物基质中的具有良好的准确度和精确度。图6.(a)裸GCE(i),LM-rGO修饰的GCE(ii)和ErGO修饰GCE(iii)的EIS光谱(DA用作电化学探针);LM-rGO对GCE表面进行修饰前后,含有AA、DA和UA的混合物的CV(b)和DPV(c)信号;(d) LM-rGO修饰GCE的校准曲线,DA浓度从0到1500μM不等;(e)LM-rGO修饰GCE上进行的DA选择性试验,AA和UA浓度为1 mM;(f)LM-rGO,LM-rGO暴露于AA、UA和DA的FT-IR光谱;(g)ePAD的结构图像和 LM-rGO修饰前后PE表面的显微图像;(h)LM−rGO进行表面修饰前后,含有DA、UA和AA混合物的DPV测量信号;(i)LM-rGO修饰PE的校准曲线,DA浓度从0到750μM不等;分别使用Ag/AgCl和碳准参比电极测量从GCE和PE获得的电化学信号。 研究结论:在本研究中,研究者探索了室温LMs和GO薄片之间的界面相互作用。证明了LM和GO之间存在很强的电偶相互作用,这可以用于生成rGO单层膜和rGO厚膜。研究者对所制备的rGO样品进行了AFM,nanoIR, EDS和PF-SECM等详细表征,实验结果确认通过LM能均匀有效地还原GO薄片。研究者所提出的基于LM的rGO生产方法,有望实现rGO独立膜和衬底支撑单层膜的简易合成。此外,这种界面作用也被用于合成LM-rGO核−壳复合结构。研究者对LM-rGO修饰电极进行的电化学表征显示在AA和UA存在下LM-rGO修饰电极对DA具有良好的选择性,可用于生物传感。总之,本研究显示了LMs对GO薄片室温的还原能力,以及展示了构建功能性应用的可能性。类似利用LMs的界面特性的工艺,可以在未来的研究和工业应用中具有大量潜在应用前景。Bruker公司的AFM,nanoIR,PF-SECM,EDS等纳米技术手段因其高空间分辨率的形貌,纳米光谱和化学成像,纳米电化学,纳米元素分析的能力,将为各类复合材料纳米结构的界面研究提供新的多样化表征手段和研究方法。原文链接:Mahroo Baharfar, Mohannad Mayyas, Mohammad Rahbar, Francois-Marie Allioux, Jianbo Tang, Yifang Wang, Zhenbang Cao, Franco Centurion, Rouhollah Jalili, Guozhen Liu, and Kourosh Kalantar-Zadeh,Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing,ACS Nano,(2021)15 (12), 19661-19671https://pubs.acs.org/doi/10.1021/acsnano.1c06973?ref=PDF

还原绿相关的仪器

  • 总还原硫烟气排放连续监测系统 特点:可测量包括硫化氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳、氧硫化碳等在内的还原态硫化物浓度,以SO2计,作为臭气浓度稀释法采样,可以彻底解决凝结水的问题系统简单、可靠、运行稳定分析仪检出限可达0.5ppb 即使在高SO2工况下仍能测量低浓度TRS的独特能力 Thermo Scientific排放连续监测系统(CEMS)用于测量总还原硫(TRS)。使用 Thermo Scientific稀释探针从工艺中提取样品,可以彻底避免在系统中产生凝结水的问题,采样系统没有组份损失,而且维护量更低。已稀释的样品通过样品管线传输至仪器柜,并穿过选择性洗涤器,在此去除二氧化硫(SO2)并允许 TRS 通过。然后,将样品传输至热式氧化炉,TRS 化合物在此在高温条件下与 O2 发生反应,最后传输至 43i 型脉冲荧光 SO2 分析仪。结果,TRS 化合物以 1:1 的比例转化为 SO2。分析仪的 SO2 读数就是样品中 TRS 含量的真实体现 Thermo Scientific 总还原硫排放连续监测系统技术参数Thermo Scientific 43i 型 SO2 分析仪预设量程0-0.05、0.1、0.2、0.5、1、2、5 和 10 ppm扩展量程0-0.05、1、2、5、10、20、50 和 100 ppm自定义量程0-0.05 至 100 ppm零点噪音0.25 ppb RMS (平均 300 秒)检测下限0.5 ppb(平均 300 秒)零漂移(24 小时)低于 1 ppb量程漂移(24 小时)±1%FS响应时间80S精密度读数的 1% 或 1 ppb线性满量程的±1%样品流速0.5 L/min温度范围(操作)0-45 ℃输出可选电压,RS232/RS485,TCP/IP, 10 状态继电器以及电源故障指示(标配)。0-20 或 4-20 mA 隔离电流输出(选配)输入16 路数字输入(标配)、8 路 0-10Vdc 模拟信号输入(选配) Thermo Scientific 热式氧化炉 最大流速1000 cc/min最大操作温度1093℃最大压力最高温度下为 5 PSIG规格3.5"Hx17"Wx13"D氧化介质石英加热器陶瓷纤维,220 瓦传感元件K 型热电偶温度控制器基于微处理器,程序 PID和自动调谐 Thermo Scientific PRO2001稀释探头加热过滤器0.1微米玻璃纤维,温度控制在149℃临界小孔石英玻璃,温度控制在149℃组件重量39lbs(17.7kg)稀释比例20:1 至 200:1 之间选定仪器空气要求露点-40℃下的清洁干燥仪表气,最低 60 PSI操作环境温度范围- 40℃ 至 50℃最高处理温度538°C 外壳玻璃纤维,NEMA 4 X 43.2cm W x 48.3cm H x 26.7cm D Thermo Scientific SO2 去除器仪表气要求5 升/分钟,30-45 psi,无油,无 SO2,-20℃露点水要求蒸馏,无硫环境温度范围4-32℃允许样品流速400-800 cc/分钟组件尺寸20"(50.8cm) H X5"( 12.2cm) W X6" (15.2cm) D
    留言咨询
  • PCA330哈纳HANNA酸度氧化还原余氯总氯四合一控制器PCA330哈纳HANNA酸度氧化还原余氯总氯四合一控制器由上海晖望工贸有限公司销售。余氯总氯测量范围:0.00 to 5.00 mg/L (ppm);酸度pH测量范围:0.00 to 14.00 pH氧化还原测量范围:0 to 2000 mV,温度测量范围:5.0 to 75.0°C (41.0 to 167.0°F)从饮用水和废水处理到泳池和水疗环境卫生,监测氯水平对公共健康以及供暖系统和工业应用的ROI和效率具有影响。可以调整四个氯水平:比例计量设定值,两个警报设定点和*XIAO剂量水平。可以调整三个pH值:给料设定值和两个报警设定点。可以为温度和ORP设置两个警报级别。可以启用或禁用所有警报。模拟输出0 to 10 mV,0 to 100 mV,0 to 1 V,4 to 20 mA,0 to 20 mA,包括与SCADA系统的连接。模拟输出完全可编程,可与氯浓度,pH,ORP或温度值成比例。可以为每个参数选择模拟输出的限制.具有控制时间周期,可由用户根据受控系统的尺寸设置。可以根据该时间周期执行测量过程,配量命令和警报。循环时间范围为3 to 90分钟.可以存储多达3500个读数(至少7天,采样间隔3分钟),可用于查询或下载。记录的记录包含时间戳,有关参数值的完整信息以及当时的警报状态哈纳PCA330酸度-氧化还原-余氯-总氯分析仪技术参数:余氯-总氯技术指标【适用于PCA310、PCA320、PCA330、PCA340】测量范围0.00 to 5.00 mg/L (ppm)解析度/精度0.01 mg/L (ppm);±8%或±0.05 mg / L;以较大者为准校准模式单点校准*检测限0.05 mg/L (ppm)取样间隔时间取样间隔可设置时间范围3 to 90分钟加药继电器比例继电器或4 to 20 mA输出加药设置加药设置范围0.1 to 5 mg/L (ppm)酸度pH技术指标【适用于PCA320、PCA330、PCA340】测量范围0.00 to 14.00 pH解析度/精度0.01 pH 25oC/77oF ±0.05 pH校准模式单点或两点校准,或者在线校准取样间隔时间取样间隔可设置时间范围3 to 120秒加药继电器ON / OFF继电器或比例继电器或4 to 20 mA输出加药设置加药设置范围0.10 to 2.00 pH滞环宽度可选择范围0.05 to 2.00 pH选配电极HI1005放大器和内置温度【Pt100】传感器酸度电极氧化还原ORP技术指标【适用于PCA330】测量范围0 to 2000 mV解析度/精度1 mV 25oC/77oF ±1 mV选配电极HI2008放大器氧化还原反应ORP铂金电极温度技术指标【适用于PCA320、PCA330、PCA340】测量范围5.0 to 75.0°C (41.0 to 167.0°F)解析度/精度0.1 °C (0.1°F);±0.5°C (±1.0°F)其他技术指标数据管理RS485数据接口,记录存储3500个读数,波特率选择1200、2400、4800、9600 bps取样指标进样品压力:0.07 to 4 bar,无外部压力调节器(压力超过4 bar,需要外部压力调节器)样品流速:100 to 300毫升/分钟;样品温度:5 to 40°C(41 to 104°F)记录器输出0 to 10 mV,0 to 100 mV,0 to 1 V,4 to 20 mA,0 to 20 mA【PCA310,PCA320,PCA330】4 to 20 mA,0 to 20 mA【PCA340】电源模式230 VAC ±10%、50/60 Hz、20 VA
    留言咨询
  • 一、产品介绍  YT-YHP土壤氧化还原电位仪(ORP计)主要用于现场原位测试新鲜或湿润土壤的氧化还原电位,水(介质)氧化还原电位、PH、温度等数据的测量。符合《HJ746-2015土壤氧化还原电位的测定电位法》标准。  土壤氧化还原电位(ORP/Eh)作为土壤环境条件的一个综合性指标,已沿用很久,它表征介质氧化性或还原性的相对程度,对土壤的化学和生物学过程有重要的影响,是理解土壤的性质和过程的重要参数。氧化还原电位越高,氧化性越强,氧化还原电位越低,还原性越强。电位为正表示溶液显示出一定的氧化性,为负则表示溶液显示出一定的还原性。  水质氧化还原电位(oxidationreduction potential ORP)是非常重要的水质指标之一,它虽然不能独立反应水质的好坏,但是能够综合其他水质指标来反应水生系统中的生态环境。1.工业污水处理:用于水处理上的氧化还原系统,主要是铬酸的还原与氰-化物的氧化 2.水的消毒与应用:氧化还原电位能衡量对游泳池水、矿泉水及自来水的消毒效果。因为水中大肠菌的杀菌效率与氧化还原电位有关,所以氧化还原电位是水质的可靠指标 3.养殖行业:氧化还原电位可以反映出水中某些无机物的浓度、水生生物状态、水中含氧量,体现水质宏观氧化还原性,是判断水质状况的一个综合指标。  二、产品参数  (1)ORP:测量范围 -2000mV——2000mV  分辨率 0.1mV  误差范围 ±10mV  (2)PH: 测量范围 0——14PH  分辨率0.1PH  误差范围:0.05PH  (3)温度:测量范围 5——60℃  分辨率:0.1℃  误差范围 ±1℃  (4)外接电源:DC 5V /2A  (5)额定功率:3W  (6)电池容量:6000mAh  三、产品特点  ●ARM Cortex-M3架构处理器,Android系统。  ●标准Type-c充电,可直接使用手机充电器为设备进行充电。  ●连续检测,数据采集时间可按min设定。  ●支持校准  ●YT-YHP土壤氧化还原电位仪具有自动温度补偿功能,支持手动温度补偿  ●配套专用ORP电极、参比电极和不锈钢空心杄,可直接插入土壤  ●具有读数锁定功能(自动读数),测量结果为终结果,无需换算和计算  ●检测结果可上传。  ●检测结果可导出Excel表格,连接电脑进行查看。  ●检测结果存储容量500万条,支持数据存储、查阅。  ●支持Wi-Fi,检测结果直接传至监管平台  ●3.5寸彩色触摸屏,提供更好的用户体验。  ●具有自动背光及自动关机功能   ●P65防护等级。  四、配置清单  序号名称数量单位  1铝箱1个  2主机1台  3ORP电极1套  4参比电极1套  5PH电极1套  6校准配件1套  7取土探针1套  8饱和氯-化钾溶液100ml1瓶  9ORP标准液 220mv±15mv1瓶  1050ml塑料烧杯1个  11充电器1个  12Type-c数据线1根  13说明书1份  14合格证1份  15保修卡1份
    留言咨询

还原绿相关的耗材

  • 锌粉还原柱
    锌粉还原xinc redLCtioaa prose,以锌粉为还原列将芳 香族硝基化合物转换成芳香胺类化合物或联芳胺类化合物的 过程。在酸性介质中,锌粉可将硝基苯转换成苯胺 在强碱性 介质中,锌粉可将邻氯硝基苯转换成氛化偶氮苯类化合物,后 者在酸性介质,}i再发生分子内重排反应,将Zi =}1键合转变 为两个笨环以L --C键合,从而生成联苯胺类化合物
  • Exeter 燃烧管 还原管(氧化还原管) 还原管
    燃烧管 还原管(氧化还原管)Various Reduction Tube产品名称货号参照货号CHN氧化管-氧化还原管CN086010240-1225CHN还原管-氧化还原管CN086020240-1573二次还原管-氧化还原管CN086030240-1963S 燃烧管-氧化还原管CN086040240-1369S 还原管-氧化还原管CN086050240-1961
  • 柱后锌粉还原柱
    锌粉还原xinc redLCtioaa prose,以锌粉为还原列将芳 香族硝基化合物转换成芳香胺类化合物或联芳胺类化合物的 过程。在酸性介质中,锌粉可将硝基苯转换成苯胺 在强碱性 介质中,锌粉可将邻氯硝基苯转换成氛化偶氮苯类化合物,后 者在酸性介质,}i再发生分子内重排反应,将Zi =}1键合转变 为两个笨环以L --C键合,从而生成联苯胺类化合物

还原绿相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制