真空抽滤系统

仪器信息网真空抽滤系统专题为您提供2024年最新真空抽滤系统价格报价、厂家品牌的相关信息, 包括真空抽滤系统参数、型号等,不管是国产,还是进口品牌的真空抽滤系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合真空抽滤系统相关的耗材配件、试剂标物,还有真空抽滤系统相关的最新资讯、资料,以及真空抽滤系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

真空抽滤系统相关的厂商

  • 东莞福运莱真空科技有限公司作为福雪莱公司的子公司,公司位于广东省东莞市,是一家集研发、制造、销售、服务为一体的专业真空设备供应商,我们拥有强大的开发团队和严格的制造流程及完善的质量管理体系。 福运莱专为腐蚀性气体抽真空设计的系列化学变频隔膜泵,所有与被抽气体接触部件均由耐酸碱的铁氟龙材料制造,具有较强的化学耐腐蚀性和蒸汽耐受性。我们拥有专业的品质检测团队,每一台隔膜泵在出厂前都需要通过长达十几小时到几天的性能检测、参数调试和设备稳定性测试,所有测试均为全自动的、在由电脑自动检测,不需人工干预。 我们自主研发的化学变频隔膜泵控制系统,拥有较强的自动稳压功能,稳压能力达到行业领先水平。 我们始终坚持“品质优异、客户满意”的经营理念,为广大客户提供优良的产品和完善的服务。
    留言咨询
  • 重庆千洛过滤设备制造有限公司是集研制、开发、生产、销售及售后为一体的高新技术环保企业。公司自创立以来,本着诚信品质服务创新的理念,密切关注顾客需求,以雄厚的技术实力保证新产品的研究和开发。公司拥有成熟的加工设备、精密的检测设备、完善的加工工艺和制造技术。公司的产品主要包括:物理离心滤油机、真空离心滤油机、变压器油专用滤油机、高效双级真空滤油机,润滑油专用滤油机、透平油专用滤油机、抗燃油专用滤油机、绝缘油专用滤油机、聚结分离滤油机、真空抽气机组、有载分接开关在线净油装置等各种过滤产品。广泛地运用在电力、石化、冶金、矿山、航空、船舶、铁路等各领域,为广大客户降低能耗、减少环境污染起到了重要作用,受到了广大用户的一致好评。重庆千洛过滤设备制造有限公司始终以产品品质和完善的售后服务为宗旨,服务于新老客户是我们不变的追求,真诚企盼与广大客户互惠互利、共谋卓越、共同创建一个科技过滤,环保过滤的新时代。
    留言咨询
  • WELCH介绍 Welch威伊是提供优质耐用真空泵产品的专家。我们的丰富产品线涵盖了隔膜泵,旋片泵和分子泵以及配套系统和附件。 作为真空领域的持续创新者,我们的顾客遍布,包括实验室和设备制造商。曾使用Ilmvac(中文名:伊尔姆)作为另一个独立品牌的Welch公司,目前代表了真空技术领域两个显赫的品牌 Welch和 Ilmvac的创新组合。 WELCH主要产品和应用 Welch威伊提供实验室和工业用真空泵,包括真空活塞泵,真空隔膜泵,真空旋片泵,螺旋泵,涡轮分 子泵,液体输送泵等,还有各种真空测量仪,真空控制器,真空蒸馏装置,真空浓缩设备,真空抽吸设备等 本公司产品广泛应用于化学,生物,制药,环保等领域的研发和生产。 TRICONTINENT介绍 TriContinent特瑞康是源自美国加州Grass Valley的一家生产精密OEM注射泵和液体处理自动化设备的制造商。我们是医疗和生化诊断分析设备的优选供应商。TriContinent在循环肿瘤细胞隔离(CTC isolation),聚合酶链式反应技术(PCRtechniques)以及其他对于剂量要求极为精准的分子诊断领域都能提供适合的解决方案。在泵类领域的持续研发提供微流量和低震动的产品使我们在业内广受赞誉。 THOMAS介绍 Thomas是一家为在医疗,实验室,环境和工业领域的OEM厂商提供压缩机,真空泵和液体泵产品的制造商。Thomas的流体技术涵盖压力,真空和液体各领域, 可以提供WOB-L活塞泵、铰接活塞泵、隔膜泵、微型隔膜泵,旋片泵、线性泵和蠕动泵等产品,同时Thomas提供了业界超广泛的无油产品系列。具备如此丰富的产品线,Thomas可设计超理想的,定制化的压力及真空的解决方案以满足客户的个性需求。
    留言咨询

真空抽滤系统相关的仪器

  • 液相色谱技术理想的样品制备系统 作为第一个直接与标准HPLC进样小瓶兼容的真空抽滤装置,可灵活过滤1到8个样品,Samplicity打破了样品制备的瓶颈。只要简单四步:接上真空泵-上样-扳动手柄-澄清样品,就可轻松得到过滤好的样品。 基于默克密理博数十年滤膜专业经验,配套的Millex Samplicity滤器使用特别的漏斗形,非常容易上样,并且一联四个,方便快速上样。 轻松快速的样品制备体验 超高的样品回收率 超低的溶出率 高粘度、高颗粒度及小体积样品的最优选择Samplicity 多通道抽滤系统超越手动过滤 Samplicity多通道抽滤系统被广泛用于包括质控和研发实验在内的各种领域,以及: 药物溶出度测试&mdash &mdash 固体制剂在消化道中的溶解速度的强制性评估食品安全&mdash &mdash 测试食物或饮品中,已知或未知毒素如乙二醇, 三聚氰胺和蓝细菌(cyanobacteria)等化妆品业&mdash &mdash 分离和检测化妆品组分生物燃料业&mdash &mdash 藻类和其他来源中分析和提取油脂药物(代谢)动力学/药效学(PK/PD)测试&mdash &mdash 定量检测药物与身体间相互作用随时间的变化询价|申请试用|申请资料
    留言咨询
  • 真空抽滤泵 400-838-7877
    无油真空泵是一种无需任何油作润滑既能运转工作的机械真空泵。它具有结构简单、操作容易、维护方便、不会污染环境等优点。大排气量,在大过滤量、高黏度介质、富含颗粒介质场合更有优势真空膜由聚四氟乙烯经一次成型制作,厚度大,可长时间连续使用壳体及部件均经过防腐处理在腐蚀性和有机性气体条件下可正常工作结构设计简单,外壳小巧美观,低噪音,低振动多种真空度选择更满足您的需求
    留言咨询
  • 真空抽滤系统 400-860-5168转0237
    仪器简介:真空抽滤系统是为溶剂过滤及脱气而设计的,它使用与液相色谱分析中的流动相的过滤及除气,并对于延长仪器和色谱柱的使用寿命、提高检测精度的作用,同时在重量分析、微量分析、胶体分离、及无菌实验中也得到了应用。 真空抽滤系统由过滤瓶装置和真空泵组成。 过滤瓶包括:三角形集液瓶(2000毫升和1000毫升) 、砂芯过滤头、过滤杯(250毫升和300毫升) 和固定夹。1、过滤瓶选用优质高强度硬玻璃材料,抗温度变化达270度,具有耐压性。 2、过滤瓶为批量生产,不仅外观制作精美,壁厚均匀,而且互换性好。 3、为过滤瓶装置而配套设计的无油真空泵,小巧实用,操作简便,效率高,噪声低。 4、溶剂直接提取部件,它可使过滤过程尽量保持全密封,可减少污染,可加强除气效果。技术参数:Part No Desc 900140 低压溶剂过滤器,1L/2L 900141 低压溶剂过滤器,玻璃组件,1L/2L 900148 低压溶剂过滤器,真空泵(无油隔膜式) 900143 低压溶剂过滤器,滤杯,300mL 900144 低压溶剂过滤器,收液瓶,1L/2L 900145 低压溶剂过滤器,滤嘴 主要特点:利用真空脱气原理,它还可以除去被检液中的气泡,提高检测精度和样品澄清度合格率;在重量分析、微量分析、分离纯化、发酵除菌等实验中得到应用。
    留言咨询

真空抽滤系统相关的资讯

  • 洛科可携式真空抽滤系统 吸睛
    洛科可携式真空抽滤系统 吸睛 全球实验室真空抽滤设备领导大厂洛科仪器,于日前落幕的生物科技大展公开展出Lafil 100可携式多功能真空抽滤系统,产品结合真空过滤、试剂纯化及废液抽取3大功能,完整应用在生命科学及细胞培养领域。体积小、内建电池、可放入无菌操作台操作的特色,吸引生技业者的目光。 洛科仪器表示,Lafil 100可携式多功能真空抽滤系统能用以抽吸培养皿、微孔盘等培养液或离心完后之上层液的装置;也可搭配抛弃式漏斗或可重复使用之过滤漏斗,用以纯化组织培养液或缓冲液;采用人体工学握法,设计贴心的Lock键,可固定抽吸按键,相当省力。 洛科仪器主要研发、制造,营销真空抽滤设备及加热控制等产品,而实验室真空过滤系统包括真空帮浦、过滤设备及生命科学常用耗材,应用于食品检验、水质检测、微生物检验、分生实验及各种物质纯化,目标客户为工厂实验室,包括生技、药厂、半导体厂及学校。原厂产品顺利通过ISO9001-2000、欧盟CE及北美CSA认证,且获得多项专利与荣颁2015第二届仪器精品奖特优,并成功外销至欧洲、美国、印度、东南亚及俄罗斯等50多个国家。 洛科仪器应用先进的技术研发,以合理的价格,真诚的服务,提供世界级优良产品。未来也将持续投入研发生产更多符合客户需求的产品,成为真空抽滤全方位解决方案的领导品牌。source from:工商時報
  • 理加LI-2100全自动真空抽提系统的海外之旅
    不同水体的氢氧稳定同位素可用于植物水分利用来源、水汽输送、土壤水运移和补给机制、补给源和地下水机制、水体蒸发、植物蒸腾和土壤蒸发的区分、径流的形成和汇合、重建古气候等方面的研究。因而引起了水文学家,生态学家以及气候学家等的广泛关注。但问题是:在进行水稳定同位素测试之前如何将植物木质部和土壤中的水分无分馏的提取出来?LI-2100是LICA自主研发的一款全自动真空冷凝抽提系统,且已通过CE认证。从根本上解决了植物和土壤水分提取的难题,克服了传统液氮冷却的繁琐,不仅可以防止同位素分馏,而且安全高效,不会对植物和土壤造成破坏。可与LGR水同位素分析仪和质谱仪配套使用。许多科学家已经结合LI-2100和LGR的水同位素分析仪进行了诸多研究。从研发生产至今,LI-2100在国内已经销售了近百台,国内的科研工作者利用这台仪器发表了诸多文献,得到了用户的众多好评。随着LI-2100在国内的广泛应用及众多文献的发表,国外的一些科学家也开始关注理加公司研发生产的LI-2100,理加公司也积极在海外推广该产品,由此拉开了LI-2100走出国门、走向海外的序幕。LI-2100在海外的安装案例1. 巴西国家空间研究所(INPE)应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。科学家简介:Laura De Simone Borma (劳拉德西蒙娜博尔玛)1988 年毕业于欧鲁普雷图联邦大学土木工程专业,1991 年获得里约热内卢联邦大学土木工程硕士学位,以及里约热内卢联邦大学土木工程-环境岩土工程博士学位(1998)。自 2009 年起在 INPE(国家空间研究所)担任研究员,从事生态水文学和土壤物理学领域的工作,重点是实地观察陆地和极端天气事件对土壤-植物-大气相互作用以及气候变化、土地利用和覆盖变化的影响。她目前是 INPE 的 PGCST(地球系统科学研究生)和 PGSER(遥感研究生)的教授。协调 CCST/INPE 的生态水文学 (LabEcoh) 和生物地球化学 (LapBio) 实验室。她是 ISMC(国际土壤建模联盟)的成员。她对巴西不同生物群落中土壤-植物-大气相互作用、生态水文学以及水和气候调节的生态系统服务领域的研究感兴趣。LI-2100在海外的安装案例2. 澳大利亚Flinders大学 College of Science and Engineering应用:利用LI-2100抽提土壤、植物中的水,进行同位素相关研究。 LI-2100在国内的部分安装案例1、沈阳气象局2、中国林业科学研究院亚热带林业研究所3、广西植物园4、中国科学院西双版纳热带植物园...发表文献1. Qiu X, Zhang MJ, Wang SJ. 2016. Preliminary research on hydrogen and oxygen stable isotope characteristics of different water bodies in the Qilian Mountains, northwestern Tibetan Plateau. Environmental Earth Sciences, 75(23):1491.2. Wang J, Fu BJ, Lu N et al. 2017. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau. Science of the Total Environment, 609: 27-37.3. Huang XY, Meyers PA. 2018. Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peat deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, doi: 10.1016/j.palaeo.2018.12.017. 4. Sun L, Yang L, Chen LD et al. 2018. Short-term changing patterns of stem water isotopes in shallow soils underlain by fractured bedrock. Hydrology Research, doi: 10.2166/nh.2018.086. 5. Zhang YG, YU XX, Chen LH. 2018. Comparison of the partitioning of evapotranspiration –numerical modeling with different isotopic models using various kinetic fractionation coefficients. Plant and Soil, 430: 307-328, https://doi.org/10.1007/s11104-018-3737-z. 6. Zhao X, Li FD, Ai ZP et al. 2018. Stable isotope evidences for identifying crop water uptake in a typical winter wheat–summer maize rotation field in the North China Plain. Science of the Total Environment, 121-131.7. Zhu G, Guo H, Qin, D et al. 2018. Contribution of recycled moisture to precipitation in the monsoon marginal zone: estimate based on stable isotope data. Journal of Hydrology, doi: 10.1016/j.jhydrol.2018.12.014. 8. Che CW, Zhang MJ, Argiriou AA et al. 2019. The stable isotopic composition of different water bodies at the Soil–Plant–Atmosphere Continuum (SPAC) of the western Loess Plateau, China, Water, doi:10.3390/w11091742.9. Li EG, Tong YQ, Huang YM et al. 2019. Responses of two desert riparian species to fluctuation groundwater depths in hyperarid areas of Northwest China. Ecohydrology, 1-12. 10. Liu JC, Shen LC, Wang ZX et al. 2019. Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 571: 485-493.11. Liu Y, Zhang XM, Zhao S et al. 2019. The depth of water taken up by walnut trees during different phenological stages in an irrigated arid hilly area in the Taihang Mountains. Forests, doi:10.3390/f10020121. 12. Liu Z, Ma FY, Hu TX et al. 2019. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933.13. Luo ZD, Guan HD, Zhang XP et al. 2019. Examination of the ecohydrological separation hypothesis in a humid subtropical area: Comparison of three methods. Journal of Hydrology, 571, 642-650. 14. Qiu X, Zhang MJ, Wang SJ et al. 2019. The test of the ecohydrological separation hypothesis in a dry zone of the northeastern Tibetan Plateau. Ecohydrology, https://doi.org/10.1002/eco.2077.15. Qiu X, Zhang MJ, Wang SJ et al. 2019. Water stable isotopes in an Alpine setting of the northeastern Tibetan Plateau. Water, doi:10.3390/w11040770.16. Wang J, Fu BJ, Lu N et al. 2019. Water use characteristics of native and exotic shrub species in the semi-arid Loess Plateau using an isotope technique. Agriculture, Ecosystems and Environment, 276: 55-63. 17. Wang J, Lu N, Fu BJ. 2019. Inter-comparison of stable isotope mixing models for determining plant water source partitioning. Science of the Total Environment, 666: 685-693. 18. Wu X, Zheng XJ, Li Y, Xu GQ. 2019. Varying responses of two Haloxylon species to extreme drought and groundwater depth. Environmental and Experimental Botany, 158, 63-72.19. Xu YY, Yi Y, Yang X, Dou YB. 2019. Using stable hydrogen and oxygen isotopes to distinguish the sources of plant leaf surface moisture in an urban environment. Water, doi:10.3390/w11112287. 20. Dai JJ, Zhang XP, Luo ZD et al. 2020. Variation of the stable isotopes of water in the soil-plant-atmosphere continuum of a Cinnamomum camphora woodland in the East Asian monsoon region. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125199. 21. Jiang PP, Wang HM, Meinzer FC et al. 2020. Linking reliance on deep soil water to resource economy strategies and abundance among coexisting understorey shrub species in subtropical pine plantations. New Phytologist, doi: 10.1111/nph.16027. 22. Liu L, Bai YX, She WW et al. 2020. A nurse shrub species helps associated herbaceous plants by preventing shade‐induced evaporation in a desert ecosystem. Land Degradation and Development, https://doi.org/10.1002/ldr.3831. 23. Liu Z, Ma FY, Hu TX. 2020. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2019.105933. 24. Pan YX, Wang XP, Ma XZ et al. 2020. The stable isotopic composition variation characteristics of desert plants and water sources in an artificial revegetation ecosystem in Northwest China. Catena, https://doi.org/10.1016/j.catena.2020.104499. 25. Su PY, Zhang MJ, Qu DY et al. 2020. Contrasting water use strategies of Tamarix ramosissima in different habitats in the Northwest of Loess Plateau, China. Water, 12, 2791 doi:10.3390/w12102791. 26. Wang J, Fu BJ, Wang LX et al. 2020. Water use characteristics of the common tree species in different plantation types in the Loess Plateau of China. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2020.108020. 27. Xiang W, Evaristo J, Li Z. 2020. Recharge mechanisms of deep soil water revealed by water isotopes in deep loess deposits. Geoderma, https://doi.org/10.1016/j.geoderma.2020.114321. 28. Xiao X, Zhang F, Li XY et al. 2020. Hydrological functioning of thawing soil water in a permafrost-influenced alpine meadow hillslope. Vadose Zone Journal, doi: 10.1002/vzj2.20022.29. Yang B, Meng XJ, Singh AK et al. 2020. Intercrops improve surface water availability in rubber-based agroforestry systems. Agriculture, Ecosystems and Environment, 298, 106937.30. Yang B, Zhang WJ, Meng XJ et al. 2020. Effects of a funnel-shaped canopy on rainfall redistribution and plant water acquisition in a banana (Musa spp.) plantation. Soil, Tillage Research, https://doi.org/10.1016/j.still.2020.104686.31. Yong LL, Zhu GF, Wan QZ et al. 2020. The soil water evaporation process frommountains based on the stable isotope composition in a headwater basin and northwest China. Water, 12, 2711 doi:10.3390/w12102711. 32. Zhang Y, Zhang MJ, Qu DY et al. 2020. Water use strategies of dominant species (Caragana korshinskii and Reaumuria soongorica) in natural shrubs based on stable isotopes in the Loess Hill, China. Water, doi:10.3390/w12071923. 33. Zhang YG, Wang DD, Liu ZQ et al. 2020. Assessment of leaf water enrichment of Platycladus orientalis using numerical modeling with different isotopic models. Ecological Indicators, https://doi.org/10.1016/j.ecolind.2019.105995. 34. Li Y, Ma Y, Song XF et al. 2021. A δ2H offset correction method for quantifying root water uptake of riparian trees. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125811. 35. Yang B, Meng XJ, Zhu XA et al. 2021. Coffee performs better than amomum as a candidate in the rubber agroforestry system: Insights from water relations. Agricultural Water Management, doi.org/10.1016/j.agwat.2020.106593. 36. Qiu X, Zhang MJ, Dong ZW et al. 2021. Contribution of recycled moisture to precipitation in northeastern Tibetan Plateau: A case study based on Bayesian estimation. Atmosphere, 12, 731. https://doi.org/10.3390/ atmos12060731. 37. Zhao Y, Wang L. 2021. Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz xylem water from root water stable isotope measurements. Hydrology and Earth System Sciences, 25, 3975-3989.38. Shi PJ, Huang YN, Yang CY et al. 2021. Quantitative estimation of groundwater recharge in the thick loess deposits using multiple environmental tracers and methods. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126895.39. Zhu GF, Yong LL, Zhang ZX et al. 2021. Infiltration process of irrigation water in oasis farmland and its enlightenment to optimization of irrigation mode: Based on stable isotope data. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.107173.40. Fang FL, Li YJ, Yuan DP et al. 2021. Distinguishing N2O and N2 ratio and their microbial source in soil fertilized for vegetable production using a stable isotope method. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2021.149694.41. Wang JX, Zhang MJ, Argiriou AA et al. 2021. Recharge and infiltration mechanisms of soil water in the floodplain revealed by water-stable isotopes in the upper Yellow River. Sustainability, 13, 9369.42. Zhu G F, Yong L L, Xi Z et al. 2021. Evaporation, infiltration and storage of soil water in different vegetation zones in Qilian mountains: From a perspective of stable isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-376.43. Qiu GY, Wang B, Li T et al. 2021. Estimation of the transpiration of urban shrubs using the modified three-dimensional three-temperature model and infrared remote sensing. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125940.44. Tang YK, Wang LN, Yu YQ et al. 2021. Differential response of plant water consumption to rainwater uptake for dominant tree species in the semiarid Loess Plateau. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-351.45. Lin W, Ding JJ, Li YJ et al. 2021. Determination of N2O reduction to N2 from manure-amended soil based on isotopocule mapping and acetylene inhibition. Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2020.117913.46. Liu JZ, Wu HW, Zhang HW et al. 2021. Controls of seasonality and altitude on generation of leaf water isotopes. Hydrology and Earth System Sciences, https://doi.org/10.5194/hess-2021-289.47. Qin WY, Chen G, Wang P et al. 2021. Climatic and biotic influences on isotopic differences among topsoil waters in typical alpine vegetation types. Catena, https://doi.org/10.1016/j.catena.2021.105375.48. Zhang X, Zhang QL, Xu ZH et al. 2021. Mechanism of environmental factors regulating water consumption of Larix gmelinii forests. Journal of Soils and Sediments, https://doi.org/10.1007/s11368-021-03025-7.49. Zhu WR, Li WH, Shi PL et al. 2021. Intensified interspecific competition for water after afforestation with Robinia pseudoacacia into a native shrubland in the Taihang Mountains, northern China. Sustainability, 13(2), 807 https://doi.org/10.3390/su13020807.50. Liu ZH, Jia GD, Yu XX et al. 2021. Morphological trait as a determining factor for Populus simonii Carr. to survive from drought in semi-arid region. Agricultural Water Management, https://doi.org/10.1016/j.agwat.2021.106943.51. Zhu GF, Yong LL, Zhang ZX et al. 2021. Effects of plastic mulch on soil water migration in arid oasis farmland: Evidence of stable isotopes. Catena, https://doi.org/10.1016/j.catena.2021.105580.52. Zhao Y, Wang L, Knighton J et al. 2021. Contrasting adaptive strategies by Caragana korshinskii and Salix psammophila in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2021.108323.53. Shi Y, Jia WX, Zhu GF et al. 2021. Hydrogen and oxygen isotope characteristics of water and the recharge sources in subalpine of Qilian Mountains, China. Polish Journal of Environmental Studies, 30, 3, 2325-2339.54. Wu A, Behzad HM, He QF et al. 2021. Seasonal transpiration dynamics of evergreen Ligustrum lucidum linked with water source and water-use strategy in a limestone karst area, southwest China. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2021.126199.55. 周盼盼, 张明军, 王圣杰等. 2016. 兰州城区绿化植物稳定氢氧同位素特征. 生态学杂志, 35(11): 2942-2951.56. 李亚飞, 于静洁, 陆凯等. 2017. 额济纳三角洲胡杨和多枝柽柳水分来源解析. 植物生态学报, 41(5): 519-528.57. 李桐, 邱国玉. 2018. 基于稳定氢氧同位素的盐水与纯水蒸发差异分析. 热带地理, 38 (6): 857-865.58. 霍伟杰, 蒲俊兵, 李建鸿等. 2019. 断陷盆地高原面典型岩溶洼地旱季土壤水氢氧同位素时空差异特征.中国岩溶,38(3): 307-317.59. 戴军杰, 章新平, 罗紫东等. 2019. 长沙地区樟树林土壤水稳定同位素特征及其对土壤水分运动的指示. 环境科学研究,32(6): 974-983.60. 胡士可和叶茂. 2020. 基于氢氧稳定同位素的柽柳水分来源分析. 广东农业科学, 47(2):54-60.61. 李盼根, 王震洪, 李赫等. 2020. 基于稳定氢氧同位素的黄土高原不同生长年限油用牡丹水分来源研究. 水土保持通报, 40(1): 108-115.62. 史佳美, 余新晓, 贾国栋等. 2020. 不同动力学分馏系数对北京山区侧柏叶片水δ18O的模拟. 应用生态学报, 31(6): 1827-1834.63. 苏鹏燕, 张明军, 王圣杰等. 2020. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源. 应用生态学报, 31(6): 1835-1843.64. 孜尔蝶巴合提, 贾国栋, 余新晓. 2020. 基于稳定同位素分析不同退化程度小叶杨水分来源. 应用生态学报, 31(6): 1807-181665. 王露霞, 梁杏, 李静. 2020. 基于典型钻孔的江汉平原地下水成因分析. 地球科学, 45(2): 701-710.66. 王锐, 章新平, 戴军杰等. 2020. 亚热带地区不同林分下植物水分利用的季节差异. 生态环境学报, 29(4): 665-675.67. 王锐, 章新平, 戴军杰等. 2020. 亚热带典型植物水分利用来源变化的水稳定同位素分析. 水土保持学报, 34(1): 202-209.68. 王锐, 章新平, 戴军杰等. 2020. 亚热带湿润区樟树吸水的土层来源及研究方法对比. 水土保持学报, 34(5): 267-276.69. 郝帅和李发东. 2021. 艾比湖流域典型荒漠植被水分利用来源研究. 地理学报, 76(7): 1649-1661.70. 李雨芊, 孟玉川, 宋泓苇等. 2021. 典型林区水分氢氧稳定同位素在土壤-植物-大气连续体中的分布特征. 应用生态学报, 32(6): 1928-1934.71. 刘秀强, 陈喜, 刘琴等. 2021. 西北干旱区尾闾湖过渡带陆面蒸发和潜水对土壤水影响的同位素分析. 干旱区资源与环境, 35(6): 52-59.72. 王家鑫, 张明军, 张宇等. 2021. 基于稳定同位素示踪的黄河兰州段河漫滩土壤水特征分析. 干旱区地理, 44(5): 1449-1458.73. 王锐, 章新平, 戴军杰等. 2021. 亚热带针阔混交林土壤-植物-大气连续体(SPAC)中水稳定同位素特征. 生态环境学报, 30(6): 1148-1157.74. 王欣, 贾国栋, 邓文平等. 2021. 季节性干旱地区典型树种长期水分利用特征与模式. 应用生态学报, 32(6): 1943-1950.75. 武昱鑫, 张永娥, 贾国栋. 2021. 基于多种同位素模型的侧柏林生态系统蒸散组分定量拆分应用生态学报, 32(6): 1971-1979.76. 张泽, 孙贺阳, 李陶珂等. 2021. 拆分典型草原群落蒸散组分方法研究. 中国草地学报, 43(4): 87-95.LI-2100特点1. 沿用传统经典的真空蒸馏冷冻方法,数据可靠2. 无需液氮:压缩机制冷,提高安全性3. 快速高效:一次可同时提取14个样品4. 全自动抽提:全过程无人值守5. 安全便捷:自我断电与自我保护功能6. 质量控制:故障提示与自动报警7. 全球首创:专利技术8. 氢氧稳定同位素前处理 性能指标提取速度>110 个/天可同时提取样品数14 个系统真空度<1000 Pa系统漏率<1 Pa/s抽提率>98%回收率99%-101%真空泵5 L/min, 24 V, 最大压力, 0.3bar制冷无需液氮,压缩机与冷阱结合,最低制冷温度可达 -95℃制热电磁制热,最高制热温度可达 130℃显示与操作TFT LCD (7寸, 800*480 65536). 触摸式人机友好交互界面自动保护温度过高或超出设定温度值,加热系统自动关闭自动报警制冷系统故障提示并报警与真空泄露故障报警尺寸90 cm (H)×74 cm (W)×110 cm (D)重量120 KgLI-2100是国际上第一款全自动植物土壤真空抽提系统,也是国内全自动植物土壤真空抽提系统的领导品牌。LI-2100为客户取得更为准确的数据提供了有利的方法和保障。理加公司专注国产生态仪器的研发和生产,是国内生态领域自主研发比较早、国产化比较好的一家公司。相信随着加大研发的投入和市场及时间的积累,理加公司一定会生产出更多、更好的生态仪器,给更多的国内外客户提供更有价值的产品。海外市场的拓展不是一条容易走的路,但理加会坚定地走出去。
  • 洛科仪器新品 废液抽吸、真空过滤一机两用
    p  strong仪器信息网讯/strong 2015年10月27-30日,中国分析测试协会主办的第十六届北京分析测试学术报告会暨展览会(BCEIA2015)在北京国家会议中心盛大召开。作为历经30年的国内分析测试领域专业化程度和知名度最高的盛会,吸引了业内近四百家厂商参展。/pp  作为BCEIA2015的战略合作媒体,仪器信息网在本次展会现场视频采访了洛科仪器股份有限公司市场部经理洪国展,他介绍了此次洛科仪器重点推出的两款新品:Lafil 100 可携式废液抽吸系统 / 吸引器和Rocker 430无油式真空帮浦/泵。/ppscript type="text/javascript" src="https://p.bokecc.com/player?vid=D192A4B3A2DAFCBE9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=true& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1"/scriptp/p/p

真空抽滤系统相关的方案

真空抽滤系统相关的资料

真空抽滤系统相关的试剂

真空抽滤系统相关的论坛

  • 关于真空抽滤系统。

    各位大哥,你们做[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]时,水样是否经过真空抽滤系统,过0.45微米的滤膜?你们能告诉我你们的系统的价格?我这里一个溶剂过滤器要350,你们觉得贵吗?

  • 高低温试验箱制冷系统如何抽真空

    抽真空是否彻底也是直接影响高低温试验箱制冷效果好坏和产生冰堵的重要原因。为了防止冰堵或脏堵,对使用过多年的高低温试验箱,在维修过程中必须更换新过滤器,以增强对水分的吸附能力。抽真空采用两侧抽真空法,即在过滤器(三通过滤器)的引出管和加液管两处同时抽真空。某些高低温试验箱产生内漏后又没及时维修,会使系统内部积累大量水蒸气以及在压缩机底部出现水珠,抽真空时很难将水珠排除系统外部。对此,在抽真空时应将焊枪火焰朝压缩机底部加热,使底部水珠蒸发后抽出系统外。  抽完真空后开机运转,并给系统内加入少量制冷剂,待运行20分钟左右后停机,再抽真空至无气体排出时,即可正式注入额定量的制冷剂。  检验高低温试验箱的真空度是否良好,可采用简单的方法进行判别:加好制冷剂后,开机10~20分钟,用手摸冷凝器,若上部热,下部凉,说明抽真空不彻底,若上下部分都发热,而且温差不大,说明抽真空良好,且制冷效果也较好。抽真空时间一般不少于1小时。  认真做到以上几点,高低温试验箱的返修率必然能大大降低。

  • 环境试验箱的制冷系统的维修及在抽真空的方法

    环境试验箱的制冷系统的维修及在抽真空的方法

    在[b]环境试验箱[/b]系统出现的故障方面的维修,与在试验过后因会带有的试后问题的空气残留,所以在这方面,让小编来为大家解决对于这方面的困恼,将其真正所存在的问题进行解答。[align=center][img=,348,348]https://ng1.17img.cn/bbsfiles/images/2021/05/202105131014408794_9343_1037_3.jpg!w348x348.jpg[/img][/align]  在抽真空是否能够彻底的是会直接影响到,环境试验箱的制冷效果的好快情况的,并且会产生冰堵的重要原因。然而为了防止冰堵塞或者是脏东西的堵塞,对于使用了多年的环境试验箱的情况,在维修过程中必须更换新的过滤器,会更加的增强对于水分的吸附能力。在抽取真空的好方面就是采用两侧抽真空法,即能够在过滤器的引出管以及和加液管两处能够同时抽真空,在某些环境试验箱产生内漏且没有能够及时的进行维修,将会使得系统内部积累更多以及大量的水蒸气,在压缩机底部出现水珠,在抽真空时也很难将水珠排除在系统的外部。因此在抽真空的时候应当将焊枪火焰朝往压缩机底部加热的情况下,使得底部水珠蒸发后抽出系统外部,抽完真空后也能够开机运转。并且能够给系统内加入不少量的制冷剂,等待运行20分钟左右后停机,在进行抽真空以至于无气体进行排出时,也可正式的注入额定量的制冷剂。  在检验环境试验箱真空度的是否良好,也可采用简单的方法进行判别。加好制冷剂后,在开机10~20分钟的情况下,用水摸冷凝器的时候,若上部热或是下部的凉,这就说明了抽真空不彻底,如果上下部分都会发热的话,而且在温差不大。这就说明了抽真空良好的情况下,制冷效果也比较好,抽真空时间一般也处于1小时。

真空抽滤系统相关的耗材

  • Lafil400 - LF 30真空过滤系统
    ◆体积小、操作安全Lafil400是全球第一台整合过滤瓶组与真空源为一体的系统,发挥工业设计巧思,除比传统组合减少一半台面占用面积外,并使用围篱式平台固定废液瓶,避免操作者不小心碰触瓶身而倾倒。◆过滤瓶组采用PES高等工程塑胶制作过滤瓶组采用聚醚砜(PES)工程塑胶射出成型,产品耐冲击能力强、且可耐高温(180℃),能直接使用高温高压灭菌◆废液抽取转接盖接收瓶设计配附废液抽取转接盖,可以随时更换设备就能更把接收瓶快速变成废液瓶使用。◆过滤漏斗杯盖标准配附过滤漏斗盖,可以帮助您做更多微生物检验的实验。◆溢满保护装置接收瓶设计溢满保护装置,可防止水满被抽出瓶外◆专利滤膜垫片导流设计滤膜垫片专利的导流设计,可大幅增进过滤速率,让您花更少的时间就完成实验。◆进气过滤装置Rocker系列帮浦每个机种在进气口均装有滤心,可过滤粉尘、水气,以净化进气,延长汽缸及活塞的使用年限。真空过滤系统:保固期限◆2年免费零件服务真空过滤系统:产品应用◆悬浮固形物检测(Suspendedsolid)◆微生物检测◆真空抽滤真空过滤系统:订购资讯◆197401-11(22) Lafil400-LF30真空过滤系统◆197400-11(22) Lafil400真空过滤主机◆197010-30 LF3047mmPES过滤瓶组基本规格:◆最大真空度:720mmHg◆最大流量:37l/min◆搭配过滤杯容量:300ml◆接收瓶容量:1200ml◆适用滤膜直径:47mm/50mm◆适用软管内径:5/16in.(8mm)◆有效过滤面积:12.5cm2◆材质: 漏斗上杯-PES 漏斗基座-PC 滤膜垫片-PP 接收瓶-PC 废液抽取转接盖-PP 瓶塞-矽胶 主机外壳-ABS产品特色:◆产品提供2年免费零件服务◆体积小、操作安全◆过滤瓶组能直接使用高温高压灭菌◆废液抽取转接器◆过滤漏斗杯盖◆专利滤膜垫片导流设计◆溢满保护装置◆进气过滤装置
  • Lafil400 - LF 32真空过滤系统
    ◆体积小、操作安全Lafil400是全球第一台整合过滤瓶组与真空源为一体的系统,发挥工业设计巧思,除比传统组合减少一半台面占用面积外,并使用围篱式平台固定废液瓶,避免操作者不小心碰触瓶身而倾倒。◆过滤漏斗采用SUS316不锈钢制作过滤漏斗使用高级不锈钢材料SUS316制作。耐腐蚀能力强,能使用火焰、蒸气及烤箱等灭菌◆接收瓶采用PES高等工程塑胶制作接收瓶组采用聚醚砜(PES)工程塑胶射出成型,产品耐冲击能力强、且可耐高温(180℃),能直接使用高温高压灭菌◆专利旋卡紧扣设计过滤漏斗采用洛科专利(M381450)旋卡扣紧技术,不但安装快速、紧密且不需使用夹具◆溢满保护装置接收瓶设计溢满保护装置,可防止水满被抽出瓶外◆废液抽取转接盖接收瓶设计配附废液抽取转接盖,可以随时更换设备就能更把接收瓶快速变成废液瓶使用。真空过滤系统:保固期限◆2年免费零件服务真空过滤系统:产品应用◆微生物检测◆真空抽滤◆各种溶液过滤真空过滤系统:订购资讯◆197402-11(22) Lafil400-LF32真空过滤系统◆197400-11(22) Lafil400真空过滤主机◆197010-32 LF3247mmPES过滤瓶组基本规格:◆最大真空度:720mmHg◆最大流量:37l/min◆搭配过滤杯容量:100ml◆接收瓶容量:1200ml◆适用滤膜直径:47mm/50mm◆适用软管内径:5/16in.(8mm)◆有效过滤面积:9.6cm2◆材质: 漏斗上杯-SUS316 漏斗基座-SUS316 滤膜垫片-SUS316 瓶塞-硅胶(16号) 接收瓶-PC 废液抽取转接盖-PP 瓶塞-硅胶 主机外壳-ABS产品特色:◆产品提供2年免费零件服务◆体积小、操作安全◆过滤漏斗采用SUS316不锈钢制作◆过滤瓶组能直接使用高温高压灭菌◆专利旋卡紧扣设计◆溢满保护装置◆废液抽取转接盖
  • Samplicity多通道抽滤系统
    液相色谱技术理想的样品制备系统 作为第一个直接与标准HPLC进样小瓶兼容的真空抽滤装置,可灵活过滤1到8个样品,Samplicity打破了样品制备的瓶颈。只要简单四步:接上真空泵-上样-扳动手柄-澄清样品,就可轻松得到过滤好的样品。 基于默克密理博数十年滤膜专业经验,配套的Millex Samplicity滤器使用特别的漏斗形,非常容易上样,并且一联四个,方便快速上样。 轻松快速的样品制备体验 超高的样品回收率 超低的溶出率 高粘度、高颗粒度及小体积样品的最优选择Samplicity 多通道抽滤系统超越手动过滤 Samplicity多通道抽滤系统被广泛用于包括质控和研发实验在内的各种领域,以及: 药物溶出度测试&mdash &mdash 固体制剂在消化道中的溶解速度的强制性评估食品安全&mdash &mdash 测试食物或饮品中,已知或未知毒素如乙二醇, 三聚氰胺和蓝细菌(cyanobacteria)等化妆品业&mdash &mdash 分离和检测化妆品组分生物燃料业&mdash &mdash 藻类和其他来源中分析和提取油脂药物(代谢)动力学/药效学(PK/PD)测试&mdash &mdash 定量检测药物与身体间相互作用随时间的变化
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制