荧光测试系统

仪器信息网荧光测试系统专题为您提供2024年最新荧光测试系统价格报价、厂家品牌的相关信息, 包括荧光测试系统参数、型号等,不管是国产,还是进口品牌的荧光测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合荧光测试系统相关的耗材配件、试剂标物,还有荧光测试系统相关的最新资讯、资料,以及荧光测试系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

荧光测试系统相关的厂商

  • 山东塑邦荧光科技有限公司自1998年创始至今,只专注于荧光增白剂及其中间体的研发、生产和销售。此产品被广泛用于塑料、洗化、油墨油漆、水性涂料、鞋材、印染、纺织、建材等领域。山东塑邦产品科技含量高、生产设备先进、技术力量雄厚、检测手段齐全,并同国内知名大学:华东理工、山东大学、大连理工等建立了长期科研协作关系。并且有自营进出口权,可出口创汇。公司产品销售到全球50多个国家和地区,与数十家国际著名化工企业建立了长期稳定的供求关系。山东塑邦专注打造全球专用化学品领域的“领军”企业;坚持环保可持续发展;坚持科技创新发展;持续提升社会责任。山东塑邦全体员工欢迎业界人士共同发展,欢迎业界精英加盟和协作,为社会做出应有的贡献和努力!山东塑邦荧光科技有限公司是专业生产:塑料荧光增白剂OB-1,PVC塑料荧光增白剂、塑料荧光增白剂OB,扣板荧光增白剂、化纤荧光增白剂、塑编荧光增白剂,鞋材荧光增白剂、吹膜荧光增白剂、印染荧光增白剂、造纸荧光增白剂,洗涤荧光增白剂,水性油墨油漆荧光增白剂,涂料荧光增白剂的生产厂家
    留言咨询
  • 明鑫索能为深圳明鑫集团旗下控股公司,深圳明鑫下辖两家国家级高新技术企业,两家深圳市高新技术企业,一家香港科技公司,明鑫索能在江苏昆山和四川成都等地设立有分支机构。我们通通过自主品牌‘索能’ 、‘明鑫’为各类企业提供全方位优质服务。 我公司以技术为核心竞争力:在环保领域应用方面拥有一支经验丰富的技术与销售团队,产品与技术获得多项国家专利。 产品主要有ROHS分析仪、rohs检测仪、卤素分析检测仪、X射线荧光光谱仪、卤素测试仪、X-RAY 3D探伤仪,X-RAY安检设备、化合物检测仪化学分析仪、物理分析仪等 。其中,专门为欧盟ROHS指令、玩具指令、包装指令以及无卤分析等环保指令设计的X射线荧光光谱仪遍及全国多个地区几百家企业。 ROHS卤素检测仪从内部品质管控的角度上满足企业自身产品的检测要求的同时,也有效控制了供应商提供的原材料环保风险,为企业在竞争中赢得时间和优势同时提升企业产品核心竞争力。 深圳市明鑫索能智能系统有限公司是X射线荧光光谱仪、卤素测试仪、X-RAY 3D探伤仪,X-RAY安检设备、化合物检测仪化学分析仪、物理分析仪、土壤分析仪、水质分析仪等产品专业生产加工的公司,拥有完整、科学的质量管理体系。深圳市明鑫索能智能系统有限公司的诚信、实力和产品质量获得业界的认可。欢迎各界朋友莅临参观、指导和业务洽谈。
    留言咨询
  • 布鲁克(北京)科技有限公司是布鲁克在中国的全资子公司。布鲁克中国的总部位于北京海淀区,在上海和广州设有分公司。布鲁克AXS公司负责中国区X射线类产品的销售和售后服务工作,主要产品有X射线多晶衍射仪、X射线单晶衍射仪、X射线荧光光谱仪和三维X射线显微镜。关注AXS微信公众号,获取更多X射线分析技术和产品介绍。
    留言咨询

荧光测试系统相关的仪器

  • 作为一套现代化、模块化的数据采集分析和成像系统,平面激光诱导荧光(PLIF) 是对燃烧实验进行诊断的独特工具。通过对燃烧自由基、污染物、燃料示踪剂等的测量,该系统可以对诸如燃料注入、点火现象和火焰锋面等现象进行研究,从而加深对燃烧过程的理解。PLIF 中的LIF- 激光诱导荧光(LIF) 技术LIF 技术的工作原理为:调谐激光波长,使激光的光子输出频率和燃烧场内待探测离子的某一对上下能级间的跃迁频率相同,形成共振吸收,将下能态粒子泵浦到上能态,当相应的上能态粒子向下跃迁时,会产生荧光信号,然后通过分析荧光信号的强度或光谱形态,获得燃烧场内探测分子浓度、分布及温度等燃烧参量信息。激光诱导荧光LIF 技术对燃烧诊断的优点调谐激光实现待测分析或离子的共振吸收,选择性激发荧光,选择性探测荧光,极大的提升探测灵敏度与信噪比。可通过后数据分析获得被探测分子浓度,分布场和温度等丰富的燃烧参量信息。该系统具有如下特点1、激光辅助光学诊断,是光学非侵入式燃烧组分分析与成像的手段, 配套标准化光学测试系统,可用于航空航天、先进能源等燃烧过程检测2、集成一体式可调谐染料激光系统,稳定,易操作,易维护3、宽动态范围的高灵敏度的影像强化ICCD 实现纳秒级别的影像或光谱采集4、PLIF 系统具有亚纳秒级的同步时间精度5、具有系统搭建、数据采集、数据分析、结果可视化的完整软件平台6、系统具备燃烧自由基LIF 和燃料示踪剂LIF 的专用分析软件7、可实现单组份及多组份测试需求8、可根据用户实际需求, 提供个性化光学实验方案9、可扩展离子图像测速技术(PIV)平面激光诱导荧光(PLIF)PLIF: (Planar Laser Induced Fluorescence) 即所谓的“平面激光诱导荧光”,平面激光诱导荧光实验系统为二维测量系统。如下图所示:实验中通过柱面透镜,将激光光束厚度进行整形,形成激光片(laser sheet), 激光片穿过火焰与火焰相交,形成一个二维截面,通过光学成像的办法,测量火焰中探测粒子的二维荧光图像,从而求出探测粒子在火焰中的浓度分布及温度场的分布等信息。小结:平面激光诱导荧光PLIF 是在LIF 基础上,将激光整形成片状光,切入到燃烧场内,从而激发并探测二维的燃烧场信息。本公司代理ICCD 拍摄的PLIF 图像OH LIF, CO LIF, reaction rate (RR), temperature (T),and mixturefraction (f)平面激光诱导荧光(PLIF)系统架构&bull 染料激光系统:可以根据测试对象的不同,调谐输出不同的输出波长与能量;&bull 激光整形与传输光路:用于把激光变成可以用于PLIF 系统的片状光;&bull 探测系统:根据要求采用合适的ICCD,进行适当的延迟后得到特定时刻的荧光信息;同时还可以加上光谱仪等设备,进行光谱分析,以便得到更丰富的信息;&bull 时序控制装置:对整个实验的时序进行控制;&bull 附属设备:附属设备主要包括用于搭建光路所必须采用的光学平台,光具座,调整架以及反射镜,激光功率能量计等光学配件;&bull 数据采集与分析软件:可以对温度以及浓度场进行分析研究。PLIF图像处理框图配套推荐设备分项参数可调谐染料激光器及片光源整形传输光路&bull 激发波长:220-780nm 连续可调,可以根据要求延展到200-4500nm&bull 线宽: 0.06cm-1&bull 单脉冲能量:110mJ@560nm&bull 柱面镜焦距:50mm&bull 球形聚焦透镜:焦距500mm&bull 片光厚度:0.1-0.3mm&bull 重复频率:10Hz常用激发波长对应测试自由基及本设备对应激光能量时间延迟同步装置&bull 时间延时范围:0-2000s&bull 时间延迟精度5ps&bull 延迟同步通道:4 通道,可根据要求延展到8 通道超快探测器本公司提供多种纳秒超快探测器ICCDiStar 系列ICCD 采用高品质二代或三代像增强器,采用光纤锥高效耦合科学级CCD。 iStar 系列影像ICCD 是目前高端科研市场上应用*为广泛的带有时间闸门的增强型CCD。真实光学门宽小于2ns,该系列产品主要用于燃烧过程、生物发光机制、化学反应过程等研究领域,利用其信号增强功能和时间闸门控制特点,实现极弱信号采集、纳秒时间分辨影像捕捉等实验功能。主要特点&bull 18mm 或25mm 像增强器可选&bull 提供P43 和P46 两种类型的荧光屏&bull *短时间闸门宽度: 2ns( 真正光学闸门宽度)&bull 光阴极重复频率高达500KHz&bull 半导体制冷温度-40℃&bull 内置多通道数字延时发生器,可轻松同步多台设备&bull 内置数字延迟发生器&bull 10ps 的延迟分辨率&bull *低的传输延迟:19ns&bull In telligateTM 微通道板与光阴极实现同步门控,在深紫外段也保持1:108的开关比&bull USB2.0 计算机接口技术参数指标:附件选项:C 接口适配器、F 接口适配器、水冷机IntelligateTM: 优化 的 UV-VUV 区域门控技术( 标准配置)iStarCMOS 相机,更高帧率!ANDOR 的*新的iStar sCMOS 系列像高灵敏度瞬态探测器可提供要求高分辨率,高帧频以及纳秒时间分辨测试的解决方案。2560×2160 分辨率的探测器广泛应用于时间分辨实验的应用领域,例如等离子体分析。做PLIF 实验测试时,可满足快速瞬态现象采集实验,提供多兆赫兹读出速度,USB3.0 接口,以及配置一台完全集成的、软件控制的数字延时脉冲发生器。该系列探测器可应用于各种复杂的试验中,可通过软件对时间和增益进行控制,二代及三代像增强器可配合各种入射窗口光阴极材料。&bull USB3.0 接口: 即插即用&bull 550 万像素高分辨率sCMOS&bull 50 帧每秒全幅帧频,203 帧@512*512 ROI&bull 内置脉冲延时发生器: 功能软件可控&bull 光学快门: 小于2ns 的真实光学门宽&bull *低的插入延时: *低19ns&bull 独特PIV 模式: 两幅连拍*小间隔200ns&bull IntelligateTM 微通道板与光阴极实现同步门控: 紫外关断比优于10-8:1&bull 光阴极开关速率高达500kHz: 高速激光实验中,增加信噪比&bull 独特的Crop 模式: 专门的采集模式,实现*快的图像采集速度&bull GII 及GIII 像增强器可选&bull 热电制冷*低0℃ C: 理想的低光应用领域&bull 实时控制: 用户界面实时采集优化&bull 光阴极干燥气体吹扫端口: 减小EBI,适用于微光测试领域技术参数指标:附件选项:C 接口适配器、F 接口适配器、水冷机行业**的影像采集速度 超快多通道模式读出速度通道数( 中心垂直 )通道高度(h 像素数 )通道间隔(d 像素数 )*快帧速fps212121,967220201,37021547726520121222220202013550121289502020542568052
    留言咨询
  • 一、荧光分布成像系统(EEM View)简介 作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到日立F-7000/71000荧光分光光度计的样品仓内。入射光经过积分球漫反射后均匀照射到样品,利用荧光光度计标配的荧光检测器可以获得样品荧光光谱,积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光成分图像。 二、 荧光分布成像系统特点: 1. 可以全面测定样品的光谱数据(反射光、荧光特性)在不同光源条件下(白光和单色光)拍摄样品图像,(区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm),同时利用先进的光谱算法,分别显示荧光图像和反射图像, 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)2. 样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具荧光分布成像系统是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。
    留言咨询
  • 近中红外荧光光谱系统近中红外具体指哪个波段?红外波,是电磁频谱中的重要组成部分。相较于我们常说的可见光波段,是人眼所无法看到的成分。红外辐射覆盖从700nm到1mm的范围,常见地按照波段进行区分,红外分为以下几个部分:近红外(0.751.4μm)、短波红外(1.4-3μm)、中红外(3-8μm)、长波红外(8-15μm)、远红外(15-1000μm),所以近中红外区我们大致概括为700nm到8μm范围。红外与电磁波谱的关系波段波长范围应用领域近红外0.75 - 1.4μm材料科学、光纤通信,医学领域短波红外1.4 - 3μm电信和军事应用中红外3 - 8μm化学工业和天文学长波红外8 - 15μm天文望远镜和光纤通信远红外15 - 1000μm通常用于癌症治疗不同红外区的波段及应用近中红外荧光材料的典型应用——近中红外激光晶体Er:YAG和Cr,Er:YAG激光晶体棒的图片由于3μm中红外波段激光在军工领域、激光理疗设备及环境监测等领域有着重要的应用前景,稀土离子掺杂的固体激光材料因此得到广泛关注及大量研究。较早被研究的材料有基于808nm、980nm激光器激发的Er3+的2.7μm发射(4I11/2-4I13/2跃迁),随着半导体激光器在短波长逐渐成熟,衍生出了Ho3+离子掺杂的LiYF4,使用640nm的激光激发可产生1.2μm(5I6-5I8),2.0μm(5I7-5I8),2.8-3μm(5I5-5I7)均具有较强的荧光,再有硫系玻璃如Ho3+掺杂的Ge-Ga-S-CsI玻璃,在900nm激发下能够发射2.81μm(5I6-5I7)和3.86μm(5I5-5I6)。近中红外客户案例与实测数据1) 掺铒微晶玻璃的中红外荧光光谱在众多激光玻璃材料中,由于Er离子掺杂的氟化物玻璃具有较低的声子能量、优异的中红外透过特性、较高的激光损伤阈值,因此它是目前实现2.7μm波段光纤激光器的候选材料并备受关注,其2.7μm波段发光源于Er3+离子的4I11/2-4I13/2跃迁。采用卓立汉光中红外荧光测试系统,系统组成:980nm激光器、Omni-λ5015i影像校正型红外单色仪、红外镀金反射式样品室、液氮制冷型InSb探测器(光谱响应范围1-5.5um)。掺铒中红外荧光微晶玻璃PL谱测试结果,发射峰在2.7μm左右。2) 近中红外荧光光谱系统配置808nm,980nm激光器掺Er离子样品发射在1550nm,2730nm左右。3) 近中红外荧光光谱系统PbS量子点ns寿命测量及时间分辨荧光光谱碲酸盐玻璃掺杂硫酸锌YAG:Er晶体系统性能及指标稳态测试发射光谱:1-5.5μm(选配探测器拓宽光谱范围)瞬态测试荧光寿命衰减尺度:μs-ms-s(需配置示波器,具体视激发光源而定)激发光源连续激光808nm、980nm、1064nm、1550nm、1940nm等OPO可调谐激光器可选输出范围:3000-3450nm,2700-3100nm,650-2400nm,410-2400nm,210-2400nm。重复频率:20Hz,脉冲:≤6ns,mJ级别的单脉冲能量纳秒固体激光器2940nm,1064nm,532nm等光路切换外置3路激光切换装置,通过推拉装置进行光路切换,无需移动或调整激光样品仓结构红外专用镀金反射式样品仓,带两个激光吸收阱,带高通滤光片插槽样品架标配:液体、粉末、薄膜样品架光谱仪光路结构Czerny-Turner(CT)光路设计,焦距:320mm,杂散光:1*10-5光栅配置配置三块进口光栅,尺寸:68mm×68mm光子计数型探测模块近红外光电倍增管950-1700nm,TE制冷型,制冷温度:-60℃,最小有效面积Ø 1.6mm,增益:1×106,阳极暗计数:2.5×105,阳极脉冲上升时间:0.9ns近红外光电倍增管300-1700nm,液氮制冷型,制冷温度:-80℃,最小有效面积3×8mm,增益:1×106,阳极暗计数:2.5×105,阳极脉冲上升时间:3ns单光子计数器计数率:100Mcps,采样速率:1MB/S,四通道模拟输入:1-10V,通道数:10000时间相关单光子计数器计数率:100Mcps,分辨率:16/32/64/128/256/512/1024ps,通道数:65535模拟信号型探测模块TE-InGaAs探测器800-1700nm,TE制冷型,制冷温度:-40℃,光敏面直径:3mm,峰值响应度:0.9 A/W,配置温控器及前置放大器,温度稳定度:±0.5℃,信号输出模式:电流TE-InGaAs探测器800-2600nm,TE制冷型,制冷温度:-40℃,光敏面直径:3mm,峰值响应度:1.2 A/W,配置温控器及前置放大器,温度稳定度:±0.5℃,信号输出模式:电流LN-InSb探测器1-5.5μm,液氮制冷型,制冷温度:77K,光敏面尺寸:Ø 2mm,峰值响应度:3A/W,配置前置放大器,信号输出模式:电流LN-MCT探测器2-12μm(另有14μm、16μm、22μm选项),液氮制冷型,制冷温度:77K,光敏面尺寸:1×1mm,峰值响应度:3x103V/W,配置前置放大器,信号输出模式:电压锁相放大器参考信号通道,频率范围:50mHz至102kHz,输入阻抗:1MΩ/25pF,输入信号类型:方波或正弦波,相位分辨率:0.01°,相位漂移:低于10kHz 0.1°/℃;高于10kHz:0.5°/℃斩波器频率范围:标配20~1KHz( 10孔),30~1.5KHz(15孔),60~3KHz(30孔),TTL/COMS电平输入输出,频率稳定性:250ppm/℃,频率漂移:1%,输入输出连接器:BNC时序控制器可编程延时发生器脉冲通道个数:6个,一个T(时钟基准),其他为CH1-CH5,单个脉冲周期:最小值100ns(10MHz),最大值1s(1Hz),单个脉冲宽度:≥50ns,脉冲延迟:100ns-1s(基于T通道时钟),脉冲输出高电平:T,CH1-CH2:5±0.5V/20mA;CH3:4.5V±0.5V/100mA(适用于50Ω输入阻抗外设);CH4-CH5:3.3±0.5V/高阻,分辨率:1μs,上升时间:4-6ns电源:USB供电:5V/500mA,通讯接口:USB2.0,输出接口:SMA示波器示波器模拟带宽:500 MHz,通道数:4+ EXT,实时采样率:5GSa/s(交织模式),2.5GSa/s(非交织模式),存储深度:250Mpts/ch(交织模式),125 Mpts/ch(非交织模式)电脑及软件标配电脑标配操作系统Windows系统Omni-Win控制软件稳态测试功能:激发扫描,发射扫描,同步扫描,三维扫描瞬态测试功能:动力学扫描,寿命扫描,时间分辨光谱扫描可选功能:温度控制扫描光学平台阻尼隔振光学平台尺寸(L×W×H):1500mm×1000mm×800mm阻尼隔振光学平台尺寸(L×W×H):1800mm×1200mm×800mm相关文章成果液氮制冷型MCT检测器1、基于全光纤结构的2-6.5μm红外高能量超连续光源输出光谱测量[1] (a) 不同长度的As2S3光纤输出光谱测量 (b) 4m As2S3 光纤在不同输入光能量下的输出光谱2、PPLN晶体中通过温度调谐自由差频产生的连续波2.9-3.8μm 随机激光光谱测量[2]2.9μm-3.8μm可调谐中红外随机激光光谱测量液氮制冷型InSb检测器1、中红外发光硫卤玻璃陶瓷中红外发光研究[3],通过引入Ga2S3纳米晶,极大增强了硫卤玻璃陶瓷位于2.3和3.8μm处的中红外发光强度。下图为440℃不同热处理时间下的硫卤玻璃陶瓷中红外发射光谱测试,浅蓝曲线为主体玻璃陶瓷的发光。硫卤玻璃陶瓷中红外发射光谱2、能量转移相关的Ho3+掺杂Yb3+敏化氟铝酸玻璃的中红外2.85μm发光研究[4]Ho3+/Yb3+ 掺杂氟铝酸玻璃的中红外荧光光谱TE制冷型InGaAs检测器Bi:CsI晶体的超宽近红外发光光谱[5]300K不同激发波长下Bi:CsI 晶体的近红外发光光谱参考文献:【1】Bin Yan etal, Optics Express, Vol. 29, No. 3【2】Bo Hu etal, Science China-Information Sciences , August 2023, Vol. 66【3】Shixun Dai etal, Journal of Non-Crystalline Solids 357 (2011) 2302–2305【4】Beier Zhou etal,Journal of Quantitative Spectroscopy & Radiative Transfer, 149(2014)41–50【5】Liangbi Su etal, OPTICS LETTERS , Vol. 36, No. 23, December 1, 2011
    留言咨询

荧光测试系统相关的资讯

  • HORIBA推出高精度荧光寿命测试系统DeltaPro
    仪器信息网讯 在第六届上海慕尼黑生化展中,HORIBA推出了最新的高精度荧光寿命测试系统DeltaPro。高精度荧光寿命测试系统DeltaPro  该款仪器采用模块化设计,具有超宽荧光寿命测试范围(25ps-1s),可以满足荧光、磷光寿命测定要求;配备多种脉冲半导体光源,包括DeltaDiode、NanoLED和SpectraLED,用户可以根据自己的需求选择不同的光源;其中,最新设计DeltaHub计时模块,死时间极短(10ns),无需再校准;另外,大样品仓设计可加载搅拌和控温装置;皮秒检测模块标准配置为250-850nm,可升级至1700nm。  据介绍, HORIBA一直致力于荧光光谱仪的研发和销售,相继推出了Flurolog-3模块化荧光光谱仪、NanoLog红外荧光快速测量系统、FluroMax-4紧凑型荧光光谱仪、FluroCube荧光寿命光谱仪、Tempro荧光寿命测量单元、DeltaPro高精度荧光寿命测试系统、DynaMyc荧光寿命成像显微镜等。并且也一直在积极的推进相关应用标准的制定工作。
  • HORIBA发布Ultima TCSPC荧光系统——超短寿命测试的首选
    在收购了PTI等国际品牌后,HORIBA科学仪器事业部进一步巩固了全球荧光光谱仪的地位。近期,HORIBA成功推出了一款针对超短寿命测试需求的UltimaTM TCSPC荧光寿命系统。 Ultima荧光系统结合了先进的超高时间分辨率TCSPC电子系统,并配合即插即用的高频脉冲光源和高度集成化的检测器技术,整机采用灵活性配置,可实现超高性能的单光子计数。 Ultima是分辨率高的商品化荧光寿命系统,时间分辨率优于400 fs/point,相比现有商品化寿命系统,实现了具有短寿命测试能力;可选的多种测试时间窗口(100ns-s),大的时间通道数(16K);以及简单易用的USB式电脑连接控制方式,给您的操作带来了大的便利性。 HORIBA科学仪器事业部的荧光产线总经理Ishai Nir在发布Ultima时说:“高度灵活和简单易用的Ultima可以完美实现端超短寿命测量的需求,结合已有的Delta系列超快寿命系统,HORIBA的高性能产品可完全满足市场上荧光寿命测试的所有需求。”获取更多信息,请点击http://www.horiba.com/us/en/scientific/products/fluorescence-spectroscopy/lifetime/ultima/ultima-tm-27115/关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • 日立发布荧光分布成像系统新品
    1. 荧光分布成像系统(EEM View)简介作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到F-7100荧光分光光度计的样品仓内。入射 光经过积分球的漫反射后均匀照射到样品,利用F-7100标配的荧光检测器可以获得样品荧光光谱,结合积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光图像。 2. 荧光分布成像系统特点:? 测定样品的光谱数据(反射光、荧光特性)? 在不同光源条件下(白光和单色光)拍摄图像 (区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm)? 利用自主研发的分析系统1),分开显示荧光图像和反射图像? 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)1) 国立信息学研究所 佐藤IMARI 教授?郑银强副教授共同研究成果荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具总结以上为荧光分布成像系统的特点和功能结束,这是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。创新点:创新点主要有两个方面:硬件方面:全球首创将将荧光分光度计与CMOS相机结合在一起,能够同时观察样品光谱和图像的技术。软件方面:运用了智能光谱算法,可以获取样品任意区域的光谱信息。常规的荧光分光光度计测得的是样品表面信息平均化的信号,得到的是一条荧光光谱,这个新的系统能够对样品表面进行分区,从而获得不同区域的光谱信号,使得光谱信息细致化了。荧光分布成像系统

荧光测试系统相关的方案

荧光测试系统相关的资料

荧光测试系统相关的试剂

荧光测试系统相关的论坛

  • 【第十六届原创】微型化荧光量子产率测试系统的搭建研究

    【第十六届原创】微型化荧光量子产率测试系统的搭建研究

    [align=center][b][font=黑体]微型化荧光量子产率测试系统的搭建研究[/font][/b][/align][align=center][font=宋体]魏[/font][font=宋体]巍[/font], [font=宋体]李莉,朱倩倩,李军,李艳肖[/font][/align][align=center][font=宋体]江苏大学[/font][font=宋体]分析测试中心[/font], [font=宋体]江苏[/font] [font=宋体]镇江[/font] 212013[/align][b][font=黑体]摘[/font][font=黑体]要[/font]: [/b][font=宋体]通过微型化荧光量子产率测试系统的搭建,可以很好地增强弱信号荧光样品的响应,对有效解决该类样品的绝对量子产率难测定等难点,微型化的积分球系统实现了快捷简便的操作,获得液体、薄膜和粉末样品绝对量子产率的测量。首次微型化积分球,对测试系统关键部件进行设计及优化,分析了测试系统存在和误差和量子效率的影响因素,进一步完善固体荧光材料量子产率测试技术,为新型量子产率体系提供理论指导。[/font][b][font=黑体]关键词[/font]: [/b][font=宋体]荧光量子产率;微型化[/font][font=宋体];荧光光谱;测试[/font][align=center][b]Construction of miniaturized fluorescence quantum yieldmeasurement system[/b][/align][align=center] WEI Wei, LI Li, ZHU Qian-qian, LIJun, LI Yan-xiao[/align][align=center]Analysis &Testing Center, Jiangsu University,Zhenjiang 212013, China[/align][b]Abstract:[/b]Through the establishment of theminiaturized fluorescence quantum yield test system, the response of weaksignal fluorescence samples can be well enhanced, and the difficulty ofdetermining the absolute quantum yield of such samples can be effectivelysolved. The miniaturized integrating sphere system can achieve quick and simpleoperation, and the absolute quantum yield of liquid, film and powder samplescan be measured. For the first time, the key components of the test system weredesigned and optimized, the factors affecting the existence and error of thetest system and the quantum efficiency were analyzed, and the quantum yieldtest technology of solid fluorescent materials was further improved, providingtheoretical guidance for the new quantum yield system.[b]Key words:[/b]fluorescence quantum yield microminiaturization fluorescence spectra measurement[font=宋体]众所周知,光致发光([/font]Photoluminescence[font=宋体]),是指物体依赖外界光源进行照射,从而获得能量,产生激发导致发光的现象。也指物质吸收光子(或电磁波)后重新辐射出光子(或电磁波)的过程。从量子力学理论上,这一过程可以描述为物质吸收光子跃迁到较高能级的激发态后返回低能态,同时放出光子的过程。光致荧光发光是多种形式的荧光([/font]Fluorescence[font=宋体])中的一种。而在现阶段光致发光材料的研究中,对荧光量子产率([/font]Quantum Yield of Fluorescence[font=宋体],[/font]QY[font=宋体])的数值的准确性和重现性十分重要,因其显示光化学反应中光量子的利用率从而反映光致发光材料发光能力的重要特征。荧光技术的应用几乎涉及了生活的方方面面。材料荧光技术在工业、能源、生物医药、环境监测、军事领域等均扮演着极其重要的角色。新技术、新产品的不断涌现,对该类产品的核心参数荧光量子产率的测量也提出了越来越高的要求。[/font][font=宋体]量子产率的物理意义为单位时间(秒)内,发射二次辐射荧光的光子数与吸收激发光初级辐射光子数之比值,用来描述荧光材料发光能力。目前测量样品的荧光量子产率有两类方法:([/font]1[font=宋体])相对量子产率:需要一种已知量子产率的标准品作为参照,通过对标准物和样品进行吸光度和荧光的测量换算得到样品的量子产率。只适用于液体样品。([/font]2[font=宋体])绝对量子产率:不需要标准样品进行对比,广泛适用于液体、薄膜和粉末样品。荧光量子产率评价指标在光电器件、生物医药、传感器等研究领域有着举足轻重的分量。国外主要的荧光仪器公司均已推出商品化的绝对荧光量子产率测试系统。绝对量子产率测定法可直接对待测试样的量子产率进行测定,对荧光材料的研制有着重大的意义。[/font][font=宋体]随着我国现代化进程的发展,对各类科研分析仪器的需求与日俱增。研制国产绝对荧光量子产率测量系统,将终结这一领域长期依赖国外产品的历史,同时降低检测成本,使得更多的实验室都用得起、用得上荧光量子产率测量技术,促进我国新材料等领域更高速的发展。[/font][b]1[font=宋体]研究背景[/font]1.1[font=黑体]选题背景[/font][/b][font=宋体]近年来,我校各类学科的持续发展,共有[u]工程学[/u][/font][u]1[font=宋体]个学科进入[/font]ESI[font=宋体]全球前[/font]1[font=宋体]‰[/font][/u][font=宋体],农业科学、化学、材料科学、临床医学、药理学与毒理学、生物学与生物化学、环境生态学、分子生物与遗传学等[/font][u]8[font=宋体]个学科进入[/font]ESI[font=宋体]全球前[/font]1%[/u][font=宋体]。其中,[/font]2021[font=宋体]年,我校环境生态学、分子生物与遗传学[/font]2[font=宋体]个学科新晋全球排名前[/font]1%[font=宋体]。特别是伴随理工和医学药学等学科发展,对于各类研究手段或检测技术提出了更高的要求,量子产率的测试需求也随之增多。目前,我校在研的国家自然科学基金项目有关量子产率要求的科研项目不在少数,[/font]2018[font=宋体]年[/font]7[font=宋体]项,[/font]2019[font=宋体]年[/font]8[font=宋体]项,[/font]2020[font=宋体]年[/font]9[font=宋体]项,平均年资助金额超过[/font]200[font=宋体]万元,特别在能源、医学等热门研究领域对该测试的需求量持续攀升,为我校高质量高影响力论文的发表提供了基础。[/font][font=宋体]与此对应的测试条件,目前全校可测试绝对量子产率的仪器仅我校分析测试中心拥有,该仪器为高级稳态瞬态荧光测量系统([/font]QuantaMaster & TimeMasterSpectrofluorometer[font=宋体],产品型号:[/font]QuantaMaster?40[font=宋体])。该系统于[/font]2009[font=宋体]年购置安装运行,超过十多年的服务过程,分析测试中心的服务团队根据学校各学科的测试需求开发了激发[/font]/[font=宋体]发射光谱、上转换[/font]/[font=宋体]下转换光谱、荧光寿命、近红外荧光光谱、激光诱导荧光光谱等测试服务,该些测试手段的开发和使用也获得众多的肯定,如:[/font]2018[font=宋体]年获得[u]江苏分析测试科学技术奖[b]二等奖[/b][/u],[/font]2019[font=宋体]年作为典型测试服务[u]入驻[/u][/font][u]“[/u][b][u][font=宋体]江苏高校分测联盟[/font][/u][/b][u]”[/u][font=宋体]。但面对不断提高的测试要求和日益发展的测试技术,也逐步发现量子产率测试中存在了亟待解决和改进的问题。[/font][b]1.2[font=黑体]拟改进的问题[/font][/b][font=宋体]绝对荧光量子产率的定义为样品发射的光子数除以样品吸收的光子数。相比相对量子产率不需要标准品,广泛适用于液体、薄膜和粉末样品。该数值为目前较为认可的量子产率测试。但测量时需要积分球附件(图[/font]1[font=宋体])。[/font][b][font=宋体]积分球[/font][/b][font=宋体]([/font]IntegratingSphere[font=宋体])为内表面涂层一般是高反射性材料。样品表面各个方向的激发光或者是发射光进行积分球均匀化后从出射口出来,并进入到单色器中后被检测器检测到。多年的测试经验,研究发现该系统的量子产率测试存在如下拟解决或改进的问题:[u]([/u][/font][u]1[font=宋体])积分球体积过大[/font]-[font=宋体]操作复杂;([/font]2[font=宋体])内部材料易损伤[/font]-[font=宋体]误差较大;([/font]3[font=宋体])反射背景易污染[/font]-[font=宋体]数据失真。[/font][/u][align=center][img=,486,244]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092058386226_3462_5248244_3.png!w690x346.jpg[/img][/align][align=center][b][font=宋体]图[/font]1. [font=宋体]绝对量子产率测量系统及存在的难点[/font][/b][/align][font=宋体]不难发现,积分球为该测试模块中最为核心的部件,作为测量系统中收集光的器件,光在积分球内多次漫反射。从图[/font]1[font=宋体]中可以看出该球内部的涂层为全反射材质(中心的配件为硫酸钡),且球体的直径[/font]100 mm[font=宋体],而待测样品需要放置在球体中心位置,仅暂居球体的小部分体积,无疑增加了操作过程的复杂度和清洁的难度。在实际操作过程中,对液体样品来说,采用石英比色皿,只需保证液体体积和浓度在可测试范围内,多次测试扣除背景也能够获得比较可信的数据。但相比溶液样品,准确测定固体样品量子产率的难度要大。因固体样品槽和积分球本身对光都有吸收,尤其是紫外段,因此量子产率测定肯定会有误差。且内部镀层易年份已经也较易在使用过程受到损伤(硫酸钡被剥落),使用的反射背景也很易受到外部环境污染,造成数据失真等问题。目前,积分球的体积和材质造成绝对量子产率测定中存在难以避免的误差:样品槽、积分球都会吸收光,造成量子产率测定的不准确性;溶液吸光度不同,会显著影响量子产率测定值;积分球污染会产生不必要的荧光,致使量子产率无法测试。所以,如何解决以上问题,是绝对量子产率测定中所面临的巨大挑战。[/font][b]1.3[font=黑体]拟采取的研制方法[/font][/b][font=宋体]基于前期调研,研究团队拟采用耦合积分球测试理论与反向倍加计算理论,利用现有的高级稳态瞬态荧光测量系统,搭建微型化积分球测试系统,从而实现绝对量子产率的瞬时测定、多种形态样品的测定和高灵敏度探测等测试手段,在测量得到材料的反射率、漫透射率和准直透射率后,利用反向倍加算法得到其基本光学参数如散射系数、吸收系数和各向异性系数,并进一步优化测试方法,从而优于国际上公开的标准绝对量子产率测试方法。[/font][b][font=宋体]技术路线:[/font][/b][font=宋体]项目的具体技术路线如图[/font]2[font=宋体]所示。[/font] [img=,534,160]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092058471471_2138_5248244_3.png!w690x206.jpg[/img][align=center][b][font=宋体]图[/font]2. [font=宋体]微型化量子产率测量系统的技术路线[/font][/b][/align][font=宋体]本项目将从量子产率的发光机理出发,基于宏观参数测量理论和基本参数计算理论等核心技术,研究内容由以下三部分组成:[/font][b][font=宋体]([/font]1[font=宋体])微型化积分球的可行性[/font][/b][font=宋体]积分球,能够确定量子产率而不依赖于某一项量子产率的标准。使用积分球是确定固体,粉末和薄膜材料的量子效率的唯一方法。设计新型微型积分球提供了一个简单的方法来测量绝对量子产率而无需重新配置硬件。[/font][font=宋体]通过引入半积分球原理来微型化积分球,用一面平面镜堵住半球开口,利用平面镜对称成像原理对半球实物成立一个全等的虚像,实物半球与虚像半球共同构建出一个完整的积分球,进而微型化积分球,构筑微型化的球体方便地取代了常规比色皿支架避免了样品室的光学干涉。球体的顶部部分可以拆除,将测试样品很快的放进去,而无需使用任何工具。它可以容纳常规比色皿,薄膜和粉末。这是一个用来表征发光半导体,玻璃,陶瓷和纳米材料的重要工具。[/font][b][font=宋体]([/font]2[font=宋体])积分球内部结构的优化设计[/font][/b][font=宋体]积分球内壁白色漫反射层的质量,对测试精度影响较大。所设计的微型积分球,其所选用的高反射涂层,采用特殊配方和特殊工艺喷涂,反射率接近[/font]100%[font=宋体],反射率随波长变化小,具有良好的耐久性、防水性、耐辐射性。同时因激发光源和样品发射荧光的强度相差较大,在测量时既要满足最大光强不溢出,又要使样品的荧光发射强度满足测试所需的最小信噪比要求,因此对积分球内部设计如:样品与光源位置的设计,夹具的设计、内部挡板尺寸和位置的选择及积分球上用于入光和出光所开的窗口等因素等都需要进行相应的研究,从而最大程度的降低测量误差。[/font][b][font=宋体]([/font]3[font=宋体])耦合积分球和测试系统与优化升级[/font][/b][font=宋体]在原有的高级稳态瞬态荧光测量系统([/font]QuantaMaster? 40[font=宋体])的基础上,通过上述内容的研究完成微型化积分球及内部结构的优化从而借助原系统的现有功能,完成了[/font][font=宋体]微型积分球量子产率测量系统中各个部件的设计与选取,整合各个部件,搭建完整的测试系统。考虑其灵敏度、信噪比及光谱范围,对关键部件进行选取后,根据量子效率测量原理及基于积分球的量子效率测量方案从而耦合微型化积分球和测试系统的整合达到优化升级的效果。[/font][font=宋体]由于受到光源、单色器和探测器等的光谱特性的影响,由仪器直接记录的荧光光谱并不是所测量物质的真实光谱,这样的光谱被称为未校正光谱,这种光谱的形状和最大发射峰位置等与真实光谱都有一定的区别。在对物质进行荧光量子产率测量时,就必须对所使用的荧光分光光度计仪器进行光谱校正,获取物质的真实光谱,才能得出准确的荧光量子产率。[/font][b] 2 [/b][font=宋体][b]结果与分析[/b][/font][b]2.1 [font=宋体]设计思路[/font][/b][font=宋体]针对现有技术的不足,本装置搭建的目的在于提供一种基于双光路微型积分球的量子产率测试装置,有效解决了因现有积分球体积大,不便携,造成的样品难固定且易污染积分球等难题,简化绝对量子产率测试过程。[/font][font=宋体]为了实现上述目的,本发明采取的技术方案如下:提供一种用于量子产率测试的双光路微型积分球,所述积分球装置包括壳体、球体两部分,所述壳体的内部为球体,所述球体壁上开设有第一入光口、第二入光口和出光口,所述第一和第二入光口均在壳体中,且入光口均配有活塞可以关闭,所述第一入光口和第二入光口均可有光源通过,出光口与输出端连接。优选的,所述双光路积分球装置的外部大小依据配置的样品室调节,壳体为黑色航空铝合金箱体。优选的,所述的入光口对准积分球中心样品槽。优选的,所述的积分球表面喷砂氧化黑,内壁均设有漫反射材料层。进一步的,所述漫反射材料层可为硫酸钡涂层或聚四氟乙烯涂层。(图[/font]3[font=宋体]中,[/font]1[font=宋体]、样品架,[/font]2[font=宋体]、出光口,[/font]3[font=宋体]、第一入光口,[/font]4[font=宋体]、第二入光口。)[/font][align=center][img=,214,217]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092059144920_587_5248244_3.png!w335x302.jpg[/img][/align][align=center][b][font=宋体]图[/font]3. [font=宋体]基于双光路微型积分球的量子产量测试装置的整体俯视示意图[/font][/b][/align][b]2.2 [font=宋体]实物图[/font][/b][font=宋体]针对现有技术的不足,本装置搭建的目的在于提供一种基于双光路微型积分球的量子产率测试装置,有效解决了因现有积分球体积大,不便携,造成的样品难固定且易污染积分球等难题,简化绝对量子产率测试过程。原有的高级稳态瞬态荧光测量系统([/font]QuantaMaster? 40[font=宋体])的基础上,设定图(图[/font]4[font=宋体]左),实物图(图[/font]4[font=宋体]右)。依照原有测试系统的内部格局进行了相关参数的限定,引入可调节底座,更好的符合原有系统的升级。[/font] [font=宋体]对现有参数)积分球内部结构的优化设计,进行三维建模,实际内部图和模型图如图[/font]5[font=宋体]所示:[/font][align=center][b][img=,298,166]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092059207524_4542_5248244_3.png!w453x246.jpg[/img][/b][/align][align=center][b][font=宋体]图[/font]4. [font=宋体]微型化积分球的实物设计图(左)和实物图(右)[/font][/b][/align][align=center][b][img=,280,212]https://ng1.17img.cn/bbsfiles/images/2023/10/202310092059260612_4504_5248244_3.png!w425x307.jpg[/img][/b][/align][align=center][b][font=宋体]图[/font]5. [font=宋体]微型积分球的内部实物图(左)和三维建模图(右)[/font][/b][/align][b][font=宋体]([/font]1[font=宋体])主要功能[/font][/b][font=宋体]测试发光材料的[b]绝对量子产率[/b](量子效率[/font]=[font=宋体]样品发射出的光子数[/font]/[font=宋体]样品吸收的光子数),样品(固体、液体、粉末及薄膜)被放置在[b]微型化积分球[/b](相当于样品腔)内,氙灯发射出的连续光谱经过单色仪分光后再通过光纤引入到积分球内的样品上,荧光样品受激发后会发出荧光,荧光光谱通过光纤被后端的光谱探测系统接收,可实现高灵敏度的多波长实时测量。[/font][b][font=宋体]([/font]2[font=宋体])技术参数、指标要求[/font][/b][font=宋体]微型化量子产率测试系统主要技术参数、指标要求:[/font][font=宋体]([/font]a[font=宋体])光致荧光效率测试范围:[/font]200 nm ~ 900 nm[font=宋体];([/font]b[font=宋体])积分球直径<[/font]100 mm[font=宋体],便于安装操作;([/font]c[font=宋体])量子效率最小测试误差不大于[/font]1%[font=宋体];微型化积分球便于灵活使用,结构稳定,系统无需频繁校准,满足液体、薄膜和粉末样品的绝对量子产率的多次测量。[/font][b]2.3 [font=宋体]测试过程[/font][/b][font=宋体]原则上,要做两次发射扫描。而且,在数据采集时每一次都要做激发校正和发射校正。发射校正为必要检测项是因为检测系统的量子转换效率随波长变化而不同。激发校正为选作项,因为此项是用来校正灯泡功率波动和强度漂移。[/font]1[font=宋体])第一次样品的发射扫描必须同时记录下激发峰和所有的荧光发射峰。为了保持线性关系,初始强度必须低于[/font]1000,000counts/s[font=宋体](在使用狭缝和楔形光闸的情况下),选择的步长精度要能解析激发峰。当激发光谱和荧光光谱有效分离时,仪器会分两部分记录光谱扫描结果。[/font]2[font=宋体])第二次扫描激发光谱和背景曲线是在只有溶剂或缓冲液的条件下测定,作为空白对照值。[/font][b]2.4 [font=宋体]数据分析[/font][/b][font=宋体]荧光量子产率为荧光量子数与吸收量子数的比值。荧光量子数为第一次空白中曲线中全部荧光谱线的积分值。吸收量子数为激发谱线中曲线第二次样品曲线减去第一次空白曲线的面积的积分值。可通过积分软件在选择范围内积分得出两个值。“总面积”代表[/font]X[font=宋体]轴与曲线间面积的积分值。“峰面积”代表在测量范围内曲线与线性背景之间面积的积分值。在此背景下,用“峰面积”来计算比用“总面积”计算更为准确。[/font][b]3[font=宋体]结[/font][font=宋体]论[/font][/b][font=宋体]研制的国产绝对荧光量子产率测量系统,主机采用高级稳态瞬态荧光测量系统,样品光路设计采用积分球技术,光谱校正采用量子计数器和标准钨灯方式,配合荧光量子产率分析软件,可实现对物质荧光量子产率的绝对法测量。用已知量子产率的标准物质进行验证,通过实现绝对量子产率的升级和改造,增加现有仪器的新功能开发,提高仪器的完好率、利用率、降低维修率等;将新功能应用更好地应用于物理、化学、医药和材料科学等研究领域,以满足日益增长的科研测试需求,从而进一步反馈学校科研项目的发展和高质量科技成果的产出,系统的研制将对我国在绝对荧光量子产率测量方面取得重要进展。[/font][b][font=宋体]参考文献:[/font][/b][1][font=宋体]石广立[/font],[font=宋体]张恒[/font].[font=宋体]测量荧光量子产率的方法及装置[/font].CN201811115211.4[P].[2][font=宋体]王培虎[/font],[font=宋体]潘东杰[/font],[font=宋体]蔡贵民[/font].[font=宋体]一种使用积分球测量荧光量子产率的测量装置[/font]:CN201720505578.1[P].[3][font=宋体]张伟[/font],[font=宋体]邹贤劭[/font].[font=宋体]一种荧光量子产率测试仪及其测试方法[/font]:CN201910032496.3[P].[4][font=宋体]胡晓月屈泽华黄红香[/font].[font=宋体]积分球测量荧光量子产率的最优测试条件研究[/font][J].[font=宋体]中国测试[/font],2021, 47(10):59-62,74.[5][font=宋体]魏巍[/font],[font=宋体]束爽[/font],[font=宋体]寿邱杰[/font],[font=宋体]等[/font].[font=宋体]一种基于双光路微型积分球的量子产率测试装置[/font]:202310647492[P].[6][font=宋体]冯国进[/font],[font=宋体]王煜[/font],[font=宋体]郭亭亭[/font].[font=宋体]固体材料绝对荧光量子产率测量的研究进展[/font][C]//[font=宋体]中国计量测试学会光辐射计量学术研讨会[/font].[font=宋体]中国计量测试学会[/font], 2009.[hr/]

  • 荧光光谱时间衰减测量系统

    荧光寿命一般是几十纳秒---几十毫秒,时间跨度为6个数量级,不通的荧光材料其荧光衰减曲线各有特色,我公司已经研发成功时间采样速率达到纳秒量级的光谱测试系统,为荧光材料的研发技术人员带来福音。 主要测试参数: 光谱区间:350纳米-800纳米 光谱分辨率:0.5纳米 时间分辨率:1纳秒、2纳秒、4纳秒、10纳秒、20纳秒、40纳秒...... 欢迎有兴趣的朋友和我们交流。 天津市九维光电科技有限公司 电话:022-81296881 022-83712903 Email:tjjwgd@sohu.com 联系人:张炜 先生

荧光测试系统相关的耗材

  • 荧光显微成像系统配件
    荧光显微成像系统配件和欧洲进口的显微成像系统,可用于研究细胞形态、荧光探针检测(GFP)、荧光共振能量转移(FRET)和快速分子过程。荧光显微成像系统配件集成方案 使用的现代荧光成像技术极大得帮助科研人员研究细胞形态、荧光探针检测 量转移和快速分子过程。 提供实验所需的曝光时间,根据相机的设置 有效集成并优化同步各种部件 显微成像系统集成方案 已经成为研究活细胞和分子结构比不可少的科研工具 能够以相机的最大速度连续采集一系列图像 可以产生每秒幅的比率图像 在更短的时间内获得更好的实验数据 荧光显微成像系统配件 可编程控制的光源 时成像控制单元 显微成像系统科研型相机 显微镜适配器 成像软件和工作站 价值尽量减少光毒性 显微成像系统特点 时序控制准确: 满幅图像帧频最高可达图像分析灵活: 非常适合单个细胞或一组活细胞的动态过程的研究 荧光显微成像系统配件特点 图像采集和传输的控制达到微秒精度图像采集快速: 软件具有多维图像分析功能和各种应用模块 三维成像要求在轴上能够快速成像,才能获得重建数据 孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。 我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。 更多关于显微成像系统价格等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • 默克密理博 HY-LiTE® 2 卫生监控系统荧光仪 1.30100.0301
    HY-LiTE® 2 SystemATP荧光卫生检测系统HY-LiTE 2卫生检测系统式依据生物发光反应原理设计的。ATP提供能量,荧光素在萤火虫光素酶催化下被氧化,反应过程发出荧光。光子的数量与ATP含量成正比。因为每种生物活细胞种ATP含量恒定,所以ATP的含量可以清晰的表明样品中微生物和其他生物残余的多少。不同于传统微生物检测方法,HY-LiTE不仅可以检测出微生物,还能同时检测出其他生物残余污染物,可以更彻底的判断卫生状况。适用于食品饮料生产过程关键控制点监控,医疗卫生机构即时采样检测,以及油类微生物状况的检测。HY-LiTE 2卫生检测系统式依据生物发光反应原理设计的。ATP提供能量,荧光素在萤火虫光素酶催化下被氧化,反应过程发出荧光。光子的数量与ATP含量成正比。因为每种生物活细胞种ATP含量恒定,所以ATP的含量可以清晰的表明样品中微生物和其他生物残余的多少。HY-LiTE 2系统是通过检测存在于所有活细胞和绝大多数生物原料中的ATP来判别卫生状况的。传统的微生物学方法只能检测细菌和其它微小生物的存在与否。HY-LiTE 2卫生监控系统是通过检测存在于所有活细胞和绝大多数生物原料中的ATP(三磷酸腺苷)来判别卫生状况的。从被测试区域的采集样品与酶试剂在特殊研制的HY-LiTE样品笔中混合。ATP与酶反应并发光,在HY-LiTE 2荧光检测仪中测定发光强度。ATP越多,光强度越高,仪器读数越大。这可以清晰地表明存在于设备缝隙、表面和洗涤废水中微生物与食物残余的多少利用ATP进行检测不仅可以达到上述效果,更能检测到它们的残片,甚至可以用于检测虽经消毒,但由于消毒不彻底,因而可能导致微生物污染的设备表面。适用于食品饮料生产过程关键控制点监控,医疗卫生机构即时采样检测,以及油类微生物状况的检测。主要特点:• 节省时间,一分钟得出结果 • 便携易用,操作简便 • 开机自检功能 • 自动温度补偿 • 存储2000个结果 • 连接PC, 坚固,轻便,小巧,宽阔易读的显示屏幕和内置的打印机 • 用于食品饮料生产过程中关键点控制 • 卫生监督及保障 • 可单一用于卫生检测,并打印输出结果;或检测并储存结果(可储存2000个结果,打印输出或下载到PC机);或作为HACCP计划的一部分(使用在Windows3.1或Windows95/NT下运行的强力数据分析处理软件包TREND2)技术参数:前处理时间1分种读数时间10 - 15秒应用生产过程HACCP环境卫生检测;化工油品类微生物检测;食品安全卫生现场检测配有专门的样品笔显示结果生物发光强度,荧光值RLU仪器显示工作范围(显示相对吸光值)0-99.000RLU对数范围0-5.00 log10 RLU可人工进行相对转换相对于量程cfu/ml或cfu/g0 -107 (说明:CFU单位是菌落形成单位,是一个估计值,也是根据ATP荧光计算的相对吸光值进行转换)灵敏度1cfu/ml理化特性ATP总量数据存储强大记忆容量,2000组数据存储测试模式HACCP Plan, Test £t Store, Test Only显示图标显示,可调亮度,14行控制键1 on/off键,4功能键打印机内置热敏打印机温度补偿自动温度补偿 自动检测校正测量温度5-35摄氏度 空气湿度5-95%干冷环境转移至湿热环境,仪器放置于包装内半小时左右,温度稳定,注意避免冷凝水连接RS323数据连接接口2个RS232接口电源直接连接或4节5号电池可测试固体表面,液体(配置采样试剂笔)尺寸11×13×28cm认证CE TUV GS UL订货信息:名称product name订货号卫生检测系统(整机带便携包)HY-Lite® Hygiene Monitoring System1.30100.0301卫生检测系统(整机带便携包)HY-Lite® Hygiene Monitoring System1.30100.0302液体卫生检测笔(50支)Sampling pens1.30102.0021集面卫生检测包(100支样品笔和涂抹棒)Refill pack 100 pens for surface control and100 ATP一free swabs1.30101.0021航油检测试剂盒(50支笔,2X20支吸液管)Jet At Fuel Test Kit1.30196.0021游离ATP检测笔(50支)Free ATP Pens1.30194.0021ATP标准液ATP Standard 1.0 NG/ML1.30195.0005打印纸5卷Replacement paper rol]for printer1.30110.0205
  • 冻干型荧光PCR检测试剂盒
    检测原理:基于Real Time PCR技术,利⽤ 针对于⽬ 标菌特异性基因的引物、荧光探针以及其他反应所需试剂,加⼊ 待检样品即可进⾏ 扩增反应。在发⽣ 扩增过程中,荧光探针与⽬ 的基因⽚ 段结合,可被Taq酶分解并产⽣ 荧光信号,此时荧光定量PCR仪可识别该荧光信号,同时根据其强弱变化绘制出相应的实时扩增曲线,进⽽ 判定⽬ 标菌是否检出。产品特点:1、荧光定量PCR检测试剂盒灵敏度⾼ :能对低拷⻉ 或多样性模板进⾏ 定量。2、特异性强:采⽤ 热启动酶的激活机制,抑制⾮ 特异性扩增。3、重复性好:扩增曲线重合度⾼ ,受⼲ 扰影响少。4、扩增效率⾼ :扩增曲线Ct值低,起峰快,效率⾼ 。沙门氏菌扩增曲线:流程图:订购信息:货号产品名称用途PCR001⾦ ⻩ ⾊ 葡萄球菌核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品样本或可疑菌落中⾦ ⻩ ⾊ 葡萄球菌的检测PCR002沙⻔ ⽒ 菌核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品中沙⻔ ⽒ 菌的检测PCR003志贺⽒ 菌核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品中志贺⽒ 菌的定性检测PCR004单增李斯特⽒ 菌核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品中单增李斯特⽒ 菌的检测PCR005副溶⾎ 性弧菌核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品中副溶⾎ 性弧菌的定性检测PCR006⼤ 肠埃希⽒ 菌O157:H7核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品中⼤ 肠埃希⽒ 菌O157:H7的检测PCR007阪崎肠杆菌核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品中阪崎克罗诺杆菌的检测PCR008⼩ 肠结肠炎耶尔森⽒ 菌核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品中⼩ 肠结肠炎耶尔森⽒ 菌的检测PCR009布鲁⽒ 菌核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品中布鲁⽒ 菌的检测PCR010溶藻弧菌核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品、⽔ 产样本中溶藻弧菌的检测PCR011空肠弯曲菌核酸检测试剂盒(PCR-荧光探针法)⽤ 于⻝ 品、样本中空肠弯曲菌的检测全球发货 厂家直发品质保证
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制