偏振测量系统

仪器信息网偏振测量系统专题为您提供2024年最新偏振测量系统价格报价、厂家品牌的相关信息, 包括偏振测量系统参数、型号等,不管是国产,还是进口品牌的偏振测量系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合偏振测量系统相关的耗材配件、试剂标物,还有偏振测量系统相关的最新资讯、资料,以及偏振测量系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

偏振测量系统相关的厂商

  • 瑞凯通信科技成立于2008年,总部位于深圳沙井众恒晟科技园,公司始终专注于研发和生产高性能的保偏高功光率无源器件。产品包括:保偏准直器,保偏隔离器,保偏环形器,保偏 FWDM/DWDM,保偏拉锥/波片式耦合器,保偏分路器(1x2,1x3,1x4,1x8,1x16),保偏跳线,起偏器,消偏器,偏振分束器,偏振合束器,高功率大光斑准直器(1W-20W),高功率准直输出隔离器(10W-20W),高功率隔离器(10W-20W),高功率环形器,高功率跳线(FC/APC,SMA,LC,SC接头)。产品销往欧洲,美国,加拿大,新加坡,印度,被广泛运用于光纤高速率通信系统,激光技术,传感探测,航天航空,环境监测,医疗设备等重要领域。瑞凯的保偏器件以卓越的性能,高可靠性,在高速光网络及超快测量领域有广泛的应用。我们自主研发的高功率光纤产品可以承受高达50W的平均功率。瑞凯一直是高功率器件和保偏器件用户的首选品牌之一。
    留言咨询
  • 广州神科光电有限公司广州神科光电科技有限公司主要从事国内外各知名品牌激光、光电子、光纤、光学仪器和光纤通讯等高校/研究所以及企业所需产品的设计、引进、咨询和经销。我们以品种齐全,交货快捷,价格合理,服务周到,逐渐得到广大科研用户的认可和支持。经过数年的勤奋拼搏,目前已经成为中国最大的光电子产品供应商之一。公司自主研发产品:分布式光纤温度感温器——被大量的应用到智能建筑的防火监控;未来数字家电产品的相关温度/湿度/压力等的传感;消防/隧道/大坝/科研/石油勘探等各个行业领域 锁相放大器——微弱信号检测,在科研和工业领域有大量应用 公司主营产品:各种超快光纤激光器(如大功率光纤激光器、纳秒/皮秒/飞秒光纤激光器,窄线宽光纤激光器等)半导体激光器(连续/脉冲激光器)光纤放大器(EDFA)特种光纤(掺铒光纤,非线性光纤,保偏光纤,聚酰亚胺涂层光纤等)光无源器件(光纤合束器MFPC,光纤耦合器,波分复用器WDM,隔离器,法拉第镜,环形器,谐振腔等)光测量产品(光纤识别仪,可视故障仪,TIA光电转换器,光时域发射仪OTDR,光学斩波器,光纤激光转计,模拟数字光纤链接机,光谱仪等)光纤传感器(Snkoo分布式光纤感温系统)光纤通信器件(数字可调/手动可调衰减器,录波器,偏正控制器,光纤延迟线,保偏耦合器,偏振旋转片,光纤光电探测器,偏振合束器/分束器。其他光电应用解决方案与产品DTS 分布式光纤感温系统/FBG 光纤光栅温度/FBG 光纤光栅应变系统光学精密位移台/光学机械附件/光学实验仪器/光纤调节架等应用光学/近代物理光学等实验室课程解决方案OTDR 光纤测量系统/锁相放大器系统实验室用各种SOI 硅/Si/Ge/GaAs/GaSb/蓝宝石/InAs 片激光防护镜,各种光学用滤光片如需深入了解可联系:13760786617 联系人:罗先生 QQ:1284920222公司网页:www.snkoo.com
    留言咨询
  • 400-860-5168转4764
    公司成立于2010 年,专业代理欧美(美国、加拿大、德国、英国、瑞士等)高精度的光学检测设备,致力于为科研和工业客户提供一流的光学检测解决方案及包括售前、售中和售后在内的全方位服务。主要包括: 光学检测产品:应力双折射、折射率、弱吸收、反射率、散射仪、非接触式测厚仪、测角仪、可调相位延迟波片等; 激光检测产品:激光功率计、能量计、光束质量分析仪、THZ 探测器等; 其他产品:集成系统所需的激光器、步进位移平台、偏振光转换器等;显微系统所需的XYZ 电动载物台、波片进片机、高速相机ICCD、像增强器300ps 门控时间、FLIM、高精度脉冲延时器等。 近年来公司科研团队自主研发PCI弱吸收测量仪,CRD光腔衰荡法高反测量仪,偏心曲率测量仪等产品,相关指标达到国际先进水平。
    留言咨询

偏振测量系统相关的仪器

  • 偏振片 400-628-5299
    1.偏振片:通常是指将二向色性物质涂在透明薄片上制成的偏振片,此种偏振片损伤阈值较小,而且无法分离出p偏振光和s偏振光;A. OPSP系列偏振片偏振片(Plastic Sheet Polarizers)选型表:偏振片(Plastic Sheet Polarizers)型号名称尺寸(mm)通光孔径Ф0(mm)波长范围(nm)OPSP12.7偏振片Ф12.7*4mm8.9400-700OPSP25.4偏振片Ф25.4*4mm20.3400-700B. 偏振片(进口)1)偏光板示意图及尺寸图:相关说明: 1.把含有卤化银的玻璃融解,再经过热处理,延伸,研磨和还原工序而制成的偏光器件。其制作过程大致如 下:在热处理工序中沉淀出卤化银粒子,然后把玻璃加热到软化点附近并延伸,这样卤化银粒子就会变成 椭圆形,研磨后再进行氢还原,把卤化银粒子还原为银。 2.玻璃中的银椭圆粒子的长轴方向平行的电场被吸收,具有和其长轴垂直方向的电场的光通过。 3.透过方向:100W/cm2(CW)、6J/cm2、脉冲宽度13ns(脉冲)吸收方向:25W/cm2(CW)、0.1J/cm2、 脉冲宽度13ns(脉冲)有效尺寸(mm)8.5× 8.5PLC系列铬膜分束镜(SIGMA)选型表:型号保护框尺寸(mm)波长范围(nm)最小透过率(%)PLC-10-660ø 30× 6630~70083PLC-10-800ø 30× 6740~86091PLC-10-900ø 30× 6840~96094PLC-10-1060ø 30× 6960~116095PLC-10-1310ø 30× 61275~134598PLC-10-1550ø 30× 61510~1590982)薄膜偏光板示意图及曲线图:相关说明: 1.薄膜偏光板是一种薄膜滤光镜,此膜夹在两块玻璃中间,并安装在一个铝框内; 2.它不仅可以从一个非偏光中提取线偏光,而且,还可以象ND 滤光片一样用作光衰减器; 3.三种波长可选:紫外用(320~400nm);可见光用(400~700nm);近红外用(760~2000nm); 4.使两块偏光板处于通光状态(开),通过一束直线偏光{两块透过率(平行放置)} 使两块偏光板处于 不通光状态(关),没有光通过{两块透过率(正交放置)}。我们称此时的透过率为消光比。薄膜偏光板(SIGMA)选型表:型号使用波长(nm)保护框尺寸(mm)厚度(mm)通光孔径(mm)防反射膜NSPFU-30C320~400Ф30× 62.4ø 24SLAR (双面)SPF-30C-32400~700Ф30× 63ø 24BMAR(双面)SPF-50C-32400~700Ф30× 63ø 44BMAR(双面)SPFN-30C-26760~2000Ф30× 63ø 24SLAR (双面) 3)塑料薄膜偏光板(进口)示意图及曲线图:塑料薄膜偏光板(SIGMA)选型表:型号设计波长(nm)D(mm)T(mm)USP-25.4C-38400~700ø 25.40.8USP-30C-38400~700ø 30.00.8USP-50C-38400~700ø 50.00.8USP-100C-38400~700ø 1000.8C. 超快激光用偏振片(进口)曲线图、示意图及相关参数: 选型表:
    留言咨询
  • A. 激光波长偏振分光立方体:Narrow Band Polarizing Beamsplitter命名规则:OPBS边长-波长型号名称透射率TP反射率RS波长消光比边长OPBS10-488488nm偏振分光立方体>95%>99%488>100:110mmOPBS20-488488nm偏振分光立方体>95%>99%488>100:120mm OPBS10-514514nm偏振分光立方体>95%>99%514>100:110mmOPBS20-514514nm偏振分光立方体>95%>99%514>100:120mm OPBS10-532532nm偏振分光立方体>95%>99%532>100:110mmOPBS20-532532nm偏振分光立方体>95%>99%532>100:120mm OPBS10-632.8632.8nm偏振分光立方体>95%>99%632.8>100:110mmOPBS20-632.8632.8nm偏振分光立方体>95%>99%632.8>100:120mm OPBS10-10641064nm偏振分光立方体>95%>99%1064>100:110mmOPBS20-10641064nm偏振分光立方体>95%>99%1064>100:120mmB. 宽带偏振分光立方体 Broadband Polarizing Beamsplitter命名规则:OBPS边长-波长范围(取微米数)型号名称波长范围透射率TP反射率RS边长OBPS20-0406宽带偏振分光立方体450-680>95%>99%20OBPS20-0608宽带偏振分光立方体650-850>95%>99%20OBPS20-0912宽带偏振分光立方体900-1200>95%>99%20OBPS20-1215宽带偏振分光立方体1200-1550>95%>99%20
    留言咨询
  • 高精度偏振态测量(斯托克斯量测量)系统紫外~近红外 高精度斯托克斯量测量系统 利用光弹调制器技术,Hinds公司的科研级高精度偏振态量测量系统可以获得比一般偏振测量一高出一个数量级的精度(Stokes parameter sensitivity: 0.0001)。速度上,也可以从一秒钟10组(40个)斯托克斯量提升到100组(400个斯托克斯量)。波段上,除了可见光波段,该套测量系统还可以用在紫外/深紫外/近红外及中远红外系统的使用斯托克斯测量系统,偏振测量系统,偏振测量仪,椭偏仪,偏振态测量仪,偏振分析仪,偏振态分析仪利用光弹调制器技术,Hinds 公司的科研级高精度斯托克斯量测量系统/高精度偏振测量系统/高精度偏振态测量仪可以获得比一般偏振测量一高出一个数量级的精度(Stokes parameter sensitivity: 0.0001)。速度上,Hinds 公司的科研级高精度斯托克斯量测量系统/高精度偏振测量系统/高精度偏振态测量仪也可以从一秒钟10组(40个)斯托克斯量提升到每秒100组(400个斯托克斯量)。波段上,Hinds公司的科研级高精度斯托克斯量测量系统/高精度偏振测量系统/高精度偏振态测量仪除了可将光波段,该套测量系统还可以用在紫外/深紫外/近红外及中远红外系统的使用总的来说,Hinds公司的科研级高精度斯托克斯量测量系统/高精度偏振测量系统/高精度偏振态测量仪为有高精度,高速度需求的偏振态测量需求提供了全套解决方案。产品参数:1. Wavelength Range: 400 – 700 nm 可拓展到深紫外至 中远红外 (130 nm to 18 um)2. Stokes parameter accuracy: better than 1%3. Stokes parameter sensitivity: 0.00014. Fiber compatible options available5. 探测强度:皮瓦 产品应用:1. 质检测量2. 材料测量3. SOP and DOP4. 天文探测5. 光纤偏振态探测
    留言咨询

偏振测量系统相关的资讯

  • 长春光机所在光学系统偏振像差理论研究中取得进展
    p  中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室的黄玮课题组在光学系统偏振像差理论的研究中取得新进展:首次提出了一种能同时表征偏振像差在光学系统的光瞳与视场上分布规律的正交多项式,该多项式在偏振像差的测量与补偿方面有很大潜在应用价值。相关结果发表于近期的Optics Express(Opt. Express 23,21, 27911-27919, 2015, doi:10.1364/OE.23.027911)。/pp  对于高数值孔径的光学系统,如光刻物镜和显微物镜,偏振照明成为一种提高分辨率的方法。但偏振照明光束经光学系统后,受偏振像差影响,其偏振状态会发生改变,进而影响分辨率。已有的研究多集中于偏振像差在光学系统的光瞳处的分布规律,很少关注视场。但对偏振像差的测量和补偿,需要在整个视场上进行。一般的方法是选择多个离散视场点来近似整个视场,精度由视场点个数决定。因此,揭示偏振像差在光学系统视场上的分布规律,对偏振像差的测量和补偿研究具有重要价值。/pp  该研究将方向泽尼克多项式与条纹泽尼克多项式相结合,依据光学系统的旋转对称性,推导出一系列正交多项式,并将其命名为视场-方向泽尼克多项式(Field-orientation Zernike polynomials,FOZP)。FOZP将偏振像差的分布规律从光瞳扩展到了视场,更完整地表述了光学系统的偏振像差。/pp  该工作得到了国家重大专项子课题基金的支持。/ppimg src="http://img1.17img.cn/17img/images/201512/insimg/636c3cea-ce6b-40d7-8aab-5c3a5b476b93.jpg" style="width: 600px height: 429px " title="W020151217536871222917.jpg" width="600" height="429" border="0" hspace="0" vspace="0"//ppimg src="http://img1.17img.cn/17img/images/201512/insimg/7db4bd1d-c6c6-4517-9b33-346fa05251e2.jpg" style="width: 600px height: 465px " title="W020151217536871237159.jpg" width="600" height="465" border="0" hspace="0" vspace="0"//pp style="text-align: center "span style="font-size: 16px "视场-方向泽尼克多项式的视场分布图/spanbr//ppbr//p
  • 考虑探测器非理想性的红外偏振成像系统作用距离分析
    在背景与目标红外辐射量差距不大或背景较为复杂等情况下,传统红外成像技术对目标进行探测与识别的难度较大。而红外偏振探测在采集目标与背景辐射强度的基础上,还获取了多一维度的偏振信息,因此在探测隐藏、伪装和暗弱目标和复杂自然环境中人造目标的探测和识别等领域,有着传统红外探测不可比拟的优势。但同时,偏振装置的加入也增加了成像系统的复杂度与制作成本,且对于远距离成像,在红外成像系统前加入偏振装置对成像系统的探测距离有多大的影响,也有待进一步的研究论证。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所、中国科学院红外探测与成像技术重点实验室和中国科学院大学的科研团队在《红外与毫米波学报》期刊上发表了以“考虑探测器非理想性的红外偏振成像系统作用距离分析”为主题的文章。该文章第一作者为谭畅,主要从事红外偏振成像仿真方面的研究工作;通讯作者为王世勇研究员,主要从事红外光电系统技术、红外图像信号处理方面的研究工作。本文将从分析成像系统最远探测距离的角度出发,对成像系统的探测能力进行评估。综合考虑影响成像系统探测能力的各个因素,参考传统红外成像系统作用距离模型,基于系统的偏振探测能力,建立了红外偏振成像系统的作用距离模型,讨论了偏振装置非理想性对系统探测能力的影响,并设计实验验证了建立模型的可靠性。红外成像系统作用距离建模目前较为公认的对扩展源目标探测距离进行估算的方法是MRTD法。该方法规定,对于空间频率为f的目标,人眼通过红外成像系统能够观察到该目标需要满足两个条件:①目标经过大气衰减到达红外成像系统时,其与背景的实际表观温差应大于或等于该频率下的成像系统最小可分辨温差MRTD(f)。②目标对系统的张角θT应大于或等于相应观察要求所需要的最小视角。只需明确红外成像系统的各项基本参数与观测需求,我们就可以计算出系统的噪声等效温差与最小可分辨温差,进而求解出它的最远探测距离。红外偏振成像系统作用距离建模偏振成像根据成像设备的结构特性可分为分振幅探测、分时探测、分焦平面探测和分孔径探测。其中分时探测具有设计简单容易计算等优点,但只适用于静态场景;分振幅探测可同时探测不同偏振方向的辐射,但存在体积庞大、结构复杂,计算偏振信息对配准要求高等问题;分孔径探测也是同时探测的一种方式,且光学系统相对稳定,但会带来空间分辨率降低的问题;分焦平面偏振探测器具有体积小、结构紧凑、系统集成度高等优势,可同时获取到不同偏振方向的偏振图像,是目前偏振成像领域的研究热点,也是本文的主要研究对象。图1为分焦平面探测系统示意图。图1 分焦平面探测器系统示意图本文仿真的分焦平面偏振探测器,是在红外焦平面上集成了一组按一定规律排列的微偏振片,一个像元对应着一个微偏振片,其角度分别为 0°、45°、90°和135°,相邻的2×2个微像元组成一个超像元,可同时获取到四种不同的偏振态。图1为分焦平面探测系统结构示意图。传统方法认为在红外成像系统前加入偏振装置后,会对系统的噪声等效温差与调制传递函数MTF(f)产生影响,改变系统的最小可分辨温差,进而改变系统的最远探测距离。本文将从偏振装置的偏振探测能力出发,分析成像系统的最小可分辨偏振度差,建立红外偏振成像系统的探测距离模型。我们首先建立一个探测器偏振响应模型,该模型将探测器视为一个光子计数器,光子被转换为电子并在电容电路中累积,综合考虑探测器井的大小、偏振片消光比、信号电子与背景电子的比率以及入射辐射的偏振特性,通过应用误差传播方法对结果进行处理。从噪声等效偏振度(NeDoLP)的定义出发,NeDoLP是衡量偏振探测器探测能力的指标,即探测器对均匀极化场景成像时产生的标准差。对其进行数学建模,进而分析得到红外偏振成像系统的最远探测距离。图2 DoLP随光学厚度变化曲线对于探测器来说,积分时间越长,累积的电荷越多,探测器的信噪比(SNR)就越高,但这种增加是有限度的。随着积分时间的增加,光生载流子有更多的时间被收集,增加信号。然而,同时,暗电流及其相关噪声也会增加。对于给定的探测器,最佳积分时间是在最大化信噪比和最小化暗电流及噪声的不利影响之间取得平衡,为方便分析,我们假设探测器工作在“半井”状态下。通过以下步骤计算红外偏振成像系统最远作用距离:a. 根据已知的目标和背景偏振特性以及环境条件,计算在给定距离下,目标与背景之间的偏振度差在传输路径上的衰减。b. 结合系统的探测器性能参数,确定目标在给定距离下是否可被观察到。如果不能则减小设定的距离。目标被观察到需同时满足衰减后的偏振度差大于或等于系统对应于该频率的最小可分辨偏振度差MRPD,目标对系统的张角θT大于或等于相应观察要求所需要的最小视场角。c. 逐步增加距离,直到目标与背景之间的偏振度差不再满足观察要求。这个距离即为成像系统最远作用距离。τp (R)为大气对目标偏振度随探测距离的衰减函数,可根据不同的天气条件,根据已有的测量数据进行插值,计算出不同探测距离下大气对目标偏振度的衰减,图4. 5给出了根据文献中测量数据得到的偏振度随光学厚度增加衰减关系图。这里给出的横坐标是光学厚度,不同天气条件下,光学厚度对应的实际传播距离与介质的散射和吸收系数有关。综上,我们建立了传统红外成像系统和考虑了偏振片非理想性的红外偏振成像系统的作用距离模型,下面我们将对模型的可靠性进行验证,分析讨论探测器各参数对成像系统探测能力的影响。验证与讨论由噪声等效偏振度的定义可知,其数值越小,代表偏振探测器的性能越优秀。下面我们对影响红外偏振成像系统探测性能的各因素进行讨论,并设计实验验证本文建立模型的正确性。偏振片消光比消光比是衡量偏振片性能的重要参数,市售的大面积偏振片的消光比可以超过200甚至更多。对其他参数按经验进行赋值,从图3可以看到,对于给定设计参数的探测器,偏振片消光比超过20后,随着偏振片消光比的增加,探测器性能上的提升微乎其微。对于分焦平面探测器,为实现更高的消光比,不可避免地要牺牲探测器整体辐射通量。由于辐射通量降低而导致的信噪比损失可能远远超过消光比增加所获得的收益。这一结果同样可以对科研人员研制偏振片提供启发,对需要追求高消光比的偏振片来说,增大透光轴方向的最大透射率要比降低最小透射率更有益于成像系统的性能。图3 偏振片消光比与探测器噪声等效偏振度关系图探测器井容量红外探测器的井容量是指探测器像素在饱和之前能够累积的电荷数量的最大值。井容量是衡量红外探测器性能的一个关键参数,井容量通常以电子数(e-)表示。较大的井容量意味着探测器可以在饱和之前存储更多的电荷,从而能够在更大的亮度范围内准确检测信号。这对于在具有广泛亮度变化的场景中捕获清晰图像至关重要。从图4可以看出,增大探测器井的容量,同样能很好的提高成像系统的偏振探测能力。图4 探测器井容量与探测器噪声等效偏振度关系图然而,井容量的增加可能会导致像素尺寸增大或探测器面积减小,这可能对系统的整体性能产生负面影响。因此,在设计红外探测器时,需要权衡井容量、像素尺寸和其他性能参数,以实现最佳性能。目标偏振度虽然推导出的噪声等效偏振度公式包含目标偏振度这一参量,但目标的偏振度本身对探测器的噪声等效偏振度没有直接影响。NeDolp 是一个衡量探测器性能的参数,它主要受探测器内部噪声、电子学和其他系统组件的影响。然而,目标的偏振度会影响探测器接收到的信号强度,从而影响信噪比(SNR)。从图5也可以看出,探测器的NeDolp受目标的偏振度影响不大。图5 目标偏振度与探测器噪声等效偏振度关系图读取噪声与产生复合噪声比值读取噪声主要来自于探测器的读出电路、放大器和其他电子元件。它通常在整个光强范围内保持相对恒定。产生复合噪声是由光子的随机到达和电荷生成引起的,与光子数成正比。在低光强下,产生复合噪声通常较小;而在高光强下,它会逐渐变大。通过计算读取噪声和产生复合噪声的比值,可以确定系统的性能瓶颈。如果读取噪声远大于产生复合噪声,这意味着系统在低光强下受到读取噪声的限制。在这种情况下,优化读出电路和放大器等元件可能会带来性能提升。如果产生复合噪声远大于读取噪声,这意味着系统在高光强下受到产生复合噪声的限制。在这种情况下,提高信号处理和光子探测效率可能有助于改善性能。从图6可以看出,降低读取噪声与产生复合噪声比值可以有效提升系统偏振探测能力。图6 δ与探测器噪声等效偏振度关系图信号电子比例综合图4~6可以看出,提升β的数值可有效提高探测器的偏振探测能力,由β的定义可知,对于确定井容量的探测器,β的取值主要取决于探测器的各种噪声与积分时间,降低探测器的工作温度、优化探测器结构、减少表面和界面缺陷等途径都可以降低探测器的噪声,调节合适的积分时间也有助于探测系统的性能提升。实验验证根据噪声等效偏振度的定义,利用面源黑体与红外可控部分偏振透射式辐射源创建一组均匀极化场景。如下图7所示,黑体发出的红外辐射,经过两块硅片,发生四次折射,产生了偏振效应,通过调节硅片的角度,即可产生不同线偏振度的红外辐射。以5°为间隔,将面源黑体平面与硅片间的夹角调为10°~40°共七组。每组将面源黑体设置为40℃和70℃两个温度,用国产自主研制的红外分焦平面偏振探测器采取不少于128帧图像并取平均,然后将每组两个温度下相同角度获得的图像作差,以减少实验装置自发辐射和反射辐射对测量结果的干扰,差值图像就是透射部分的红外偏振辐射。对差值图像进行校正和去噪后,即可按公式计算出探测器对均匀极化场景产生的偏振度图像。计算出红外辐射的线偏振度,为减小测量误差,仅取图像中心区域的像元进行分析。该区域像元的标准差就是该成像系统的噪声等效偏振度(NeDoLP)。探测器具体参数如表1所示。图7 实验示意图表1 偏振探测器参数利用本文建立的探测器仿真模型计算出硅片的线偏振度仿真值,公式19计算出硅片线偏振度的理论值,与实验的测量值进行对比,图8展示了三组数据的变化曲线,从图中可以看出,三组数据存在一定偏差,这可能与硅片调节角度误差、面源黑体稳定性、干涉效应、硅片摆放是否平行等因素有关,但在误差允许的范围内,实验验证了偏振探测系统的性能,也证明了本文建立仿真模型的可靠性。NeDoLP测量结果如表2所示。图8 线偏振度理论值、测量值与本文模型仿真值曲线图表2 实验结果从上表可以看到NeDoLP的测量值与仿真值的差值基本能控制在5%以内,实验结果再次印证了本文设计的模型的可靠性。实例计算应用建立的模型对高2.3m,宽2.7m,温度47℃,发射率为1的目标的最远探测距离进行预测,目标差分温度6℃;背景温度27℃;发射率1;目标偏振度30%,背景偏振度1%,使用3.2节中样机的探测器参数,最后,采用文献中介绍的“等效衰减系数-距离”关系的快速逼近法对红外探测系统最远作用距离R进行求解,得到表3的结果。表3 红外成像系统的最远作用距离根据红外探测系统最远探测距离,利用本文第二节提出的方法,得到不同探测概率下红外偏振成像系统最远作用距离结果如表4所示。表4 红外偏振成像系统的最远作用距离所选例子为目标与背景偏振度差异大于其温差,所以在这种探测场景下红外偏振成像系统的探测能力要优于红外成像系统。探测器的参数不同,探测场景与目标的变化都会对模型的结果产生影响,但本文提供的成像系统作用距离模型可为实际探测中不同应用场景下的成像系统选择提供参考。结论针对不同的探测场景,红外成像系统与红外偏振成像系统在最远探测距离方面哪个更有优势并没有定论,探测目标的大小,背景与目标的温差与偏振度差,大气透过率,具体探测器的参数等因素都会对成像系统的最远探测距离产生影响。经实验验证,本文所建立的非理想红外偏振成像系统的响应模型是可靠的,可以用于估算成像系统的最远作用距离,针对不同的探测场景,读者可通过实验确定探测器的具体性能参数,利用仿真软件或实验测量的方式获取探测目标的温度与偏振信息,明确探测环境的具体大气参数,利用模型对红外成像系统与偏振成像系统的最远作用距离进行预估,选择更具优势的成像系统。这项研究获得上海市现场物证重点实验室基金(No. 2017xcwzk08)和上海技术物理研究所创新基金(No. CX-267)的资助和支持。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023041
  • Molecular Devices 网络讲座:开始荧光偏振实验--应用和检测系统介绍
    What网络应用讲座:开始荧光偏振实验&mdash &mdash 应用和检测系统介绍主讲人:Cathy Olsen 和 Yvonne Fitzgerald探究如何用荧光偏振技术加快您的实验和筛选工作。不管您是在设计您自己的荧光偏振实验,还是将要把荧光偏振加入到您的实验和筛选工具中,或是想要了解更多关于荧光偏振的技术和应用,这个网络讲座都会为您讲解!WhenSep 26 2012 11:00 PM - Sep 27 2012 12:00 AM (CST)荧光偏振技术是一种可以检测分子相互作用的技术。荧光偏正技术可以检测生物分子相互作用时分子的移动和方向的变化,例如,蛋白质之间或受体与配体之间的相互作用。荧光偏振技术的其他应用还包括:DNA与蛋白质之间的相互作用、竞争性免疫分析和激酶检测。还经常被应用于确认hERG通道的阻断化合物、鉴定家畜的病原体和监测食品中的酶活性等。讲座内容包括:荧光偏振技术原理介绍荧光偏振实验设计技巧荧光偏振技术的常见应用荧光偏振实验的检测和分析的仪器与软件介绍SpectraMax® Paradigm® 和M5多功能读板机SoftMax® Pro 软件错过了前面的活动?点击阅读!二十五周年活动记录 庆典还在继续!持续支持您的研究:Molecular Devices University

偏振测量系统相关的方案

偏振测量系统相关的资料

偏振测量系统相关的论坛

  • 【求助】请教偏振荧光光谱的测量

    假设我的物质没有各项异性,那么 垂直偏振和水平偏振测出来就是0?我看了一下文献,类似的东西即使是膜,各向异性也有0.12,我的做出来象一系列的噪声背景。请问这样正常吗?还是我有什么地方设置得不对。请大家指教。我的一个想法,假如物质有荧光,但是没有各向异性,那么偏振荧光做出来,垂直和水平方向应该至少有一条曲线类似自然光下的荧光光谱。不知道对不对。

  • 【资料】偏振光分离法测试光信噪比

    Tellabs实验室的试验证明基于偏振归零法的偏振光分束的改进的OSNR测量技术可以有效改善光信噪比的测量误差。光信噪比(OSNR)预测系统的误码率是光网络的关键性能参数,它的测量和校准可以通过插值法来进行。通常情况下,可以借助测量信道通带内的总信号功率和光信道之间的自激发特性(ASE)噪声差(规格为0.1nm带宽)得到相关参量,这种方法被定义为线性内插法。灵活光网络(AON)是动态可重配置密集波分复用(DWDM)网络,使用可重配置光分插复用器(ROADMs),提供光层的分插功能。在AON网络中,每个信道都可以穿过不同的路线、光放大器以及分插过滤器。甚至临近的信道可能具有不同的噪声功率,使用传统的线性内插技术不能在这样的网络中得到“真正”的OSNR测量值。

  • 【讨论】偏振光强度差技术求助

    偏振光强度差技术是库尔特仪器中的一项专利技术,对这一技术有如下疑问,请专家解答。1、从其结构图上看,样品中先以传统傅立透镜光路测量后,再经过偏振光强度差测量单元,然后再将这两部分测量信息合成处理?2、在傅立叶光路中,没有背向检测器,也说是说小颗粒的信息完全是由偏振光强度差检测单元来获得?3、这一仪器是干湿两用吗?

偏振测量系统相关的耗材

  • 台式偏振消光比测量仪
    台式偏振消光比测量仪特征:?测量高达50 dB的偏振消光比(针对特定波长范围)?非常宽的波长范围:可见波长范围为450至900 nm 对于IR波长范围,850至1650nm或1800至2400nm?±0.15 dB ER精度,zui高30 dB?±0.5°角度精度?0.01 dB ER分辨率和0.3°角度分辨率?功率测量高达2瓦?可互换的连接器适配器?记录模式,用于连续测量?USB通信接口?触摸屏显示?内置存储器,用于存储和调用功能订购信息:(1)56052ER-1000-IRFiber Optic Polarization Extinction Ratio Benchtop Meter for wavelengths from 850 nm to 1650 nm. ER = 30dB for wavelengths from 850 nm to 1290 nm and ER=35dB for wavelengths longer than 1290 nm. Receptacle is not included. Input power is up to 1 mW.(2)56055ER-1000-VISFiber Optic Polarization Extinction Ratio Benchtop Meter for wavelengths from 450 nm to 900 nm. ER 30dB over the wavelength range. Receptacle is not included. Input power is up to 1 mW.(3)56053ER-1000-1800/2400-ER=30Fiber Optic Polarization Extinction Ratio Benchtop Meter for wavelengths from 1800 nm to 2400 nm. ER = 30dB. Receptacle is not included. Input power is up to 1 mW.
  • 偏振附件
    偏振附件用于测量紫外、可见区发射光的偏振角度
  • 手动偏振附件
    适用于HITACHI(日立)、Horiba JY 荧光光谱仪用于荧光偏振的测量,配置激发侧和发射侧偏振片,波长范围可选择,230-850nm或380-750nm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制