质谱计算器

仪器信息网质谱计算器专题为您提供2024年最新质谱计算器价格报价、厂家品牌的相关信息, 包括质谱计算器参数、型号等,不管是国产,还是进口品牌的质谱计算器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱计算器相关的耗材配件、试剂标物,还有质谱计算器相关的最新资讯、资料,以及质谱计算器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

质谱计算器相关的厂商

  • 400-860-5168转4496
    衡昇质谱专注无机质谱等分析仪器的研发和制造。公司业务聚焦在质谱领域的自主研发,既定战略是:只专注发展有自主知识产权的质谱仪器。 以“衡昇”命名,是将“张衡”“毕昇”两位我国古代科技创新的杰出代表作为榜样,希望继承先贤之创新精神,立足科学研究,促进创新发明,为我国科学仪器事业做贡献。
    留言咨询
  • 400-860-5168转6112
    质谱佳科技是国内专业从事分析仪器维修等技术服务、进口二手分析仪器销售和租赁的领先企业,原厂工程师团队为客户在色谱、光谱、质谱仪的维护保养、维修、仪器认证、技术升级、仪器搬迁,软硬件操作培训等多方面提供完善的技术支持和整体解决方案。 质谱佳科技在美国、欧洲、日本有着良好的合作伙伴,凭借优质的进货渠道和专业的选品团队为客户提供优质的二手仪器。主营品牌有:Thermo(赛默飞)、AB Sciex(爱博才思) 、Agilent (安捷伦)、Waters(沃特世)、Shimadzu(岛津)等,另外质谱佳科技还提供分析仪器配件、耗材的销售。 质谱佳科技总部位于长沙,通过设在上海、海口等地的分公司,形成服务全国的网络。为制药、食品、环保、三方检测、新能源等多个行业以及高校、科研院所、政府实验室等客户提供方便快捷的本地化服务。
    留言咨询
  • 合肥迪泰质谱检漏仪专业生产厂家。氦质谱检漏仪用于真空检漏、如电厂汽轮机组,镀膜机,高压真空柜,真空炉,如有需要请联系 15056044460 王小姐合肥迪泰真空技术有限公司是专业氦质谱检漏设备供应商。主要产品有:氦质谱检漏仪,充氦回收系统,真空箱检漏系统,高真空设备,真空零配件等。公司拥有专业化的研发团队和科技人才队伍。所生产的新一代全自动高灵敏度氦质谱检漏仪采用多项国际先进技术。真空箱氦检漏系统设计科学,产品性能稳定。氦质谱检漏广泛应用于航天航空,汽车制造,真空应用等领域。
    留言咨询

质谱计算器相关的仪器

  • TDM3000-MS是天瑞仪器自主研发的二维液相质谱联用仪,各项性能指标均达到国家检定规程要求。仪器采用液相色谱法的分析方法,通过二维液相色谱分离出待检测物,质谱法检测其含量进而算出被检测物含量。TDM3000-MS在临床上用于对来源于人体血液样本中的有机小分子可以进行定性或定量检测,包括诊断指示物(内源性物质:氨基酸、维生素、激素)和治疗监控化合物(外源性物质:治疗/毒性药物)。TDM3000-MS二维液相质谱联用仪是专门针对TDM特殊医用领域设计的产品,突破了临床应用中量值溯源与标准化缺乏的瓶颈,解决了传统液质联用产品自动化低、仪器复杂、投资较大等问题。只需要简单的样品前处理,可处理样品多达150个/天。样品放入自动进样器通过萃取柱和阀切换的技术,可以自动化地除去样品里的蛋白,盐,磷脂等干扰物质,其中萃取柱可以连续使用,寿命长达2000次,解决了TDM检测前处理自动化程度低,耗时长,消耗大的问题。去掉了磷脂的干扰,质谱ESI源的基质效应大大减轻,回收率接近100%。性能特点:1、自动萃取简单快捷只需简单蛋白沉淀后,即可自动完成在线萃取,去除血清中磷脂,蛋白,盐等成分,操作检测简单快捷(5-10min)2、质谱离子源稳定性高色谱柱,质谱离子源稳定性高,基质效应低,可使用外标法定量,血清中药物回收率高,无需同位素内标3、同时检测多个药物成分使用一个方法可以利用质谱的特异性,同时检测多个药物成分,效率高,对于低紫外吸收样品无需衍生,检测浓度范围可以覆盖1ppb到10ppm4、重复检测运行稳定可靠第三代色谱技术、技术领先、重复检测运行稳定可靠,系统采用精密丝杆传动技术,性能更好、稳定可靠耐用,自动进样器可以制冷控温5、重复检测精度高检测准确度高,检测精度高,重复检测精度高6、检测灵敏度高与传统二维液相紫外检测器相比,检测灵敏度高,进样量低(2ul到100uL),不易产生溶剂效应,基质效应低7、专属性强 不易干扰与FPIA法和EMIT法相比专属性强,不易受代谢物,结构类似物干扰8、临床药品药检方法多机载配套的临床药品药检方法多软件优势:软件可与医院信息系统(HIS)对接,极大节省了人工操作,杜绝了人工统计引起的报告整理失误的可能性 软件含权限管理、审计追踪功能,满足检测要求,满足医药行业要求 使用的方法文件能对色谱仪的分析参数、谱图数据、分析报告进行长久存储与统一管理 全中文操作菜单,直观方便的人性化操作界面 工作站具有多形式的谱图比较功能,有利于色谱研究 控制方式:具有电脑反控功能,符合GLP要求 工作方式:前后台实现数据采集、计算、整理、储存和打印 软件能对系统进行全反控操作控制、自动数据采集、谱图处理等 使用了具有完全自主知识产权的液相色谱仪控制与数据采样系统软件。可针对用户的实际情况,能更加满足其具体要求。
    留言咨询
  • Separating Beyond Question——为您带来全新的质谱检测理念 确证水平无可匹敌—最大程度降低意外共流出物或成分所带来的风险,通过可靠的质谱检测分析确认痕量成分,提升每次分析的质量和效率。 直观的操作 ACQUITY QDa直观易用,堪比光学检测器,并且能够稳定处理所有分析。它可以与您的色谱分析完美兼容,且经过预先优化,适用于任何样品分析。与传统质谱仪的不同之处在于,它不需要用户对特殊样品进行任何调整。从现在开始,所有分析人员无需任何特殊培训或专业知识,都能在常规分析中获得具有一致性的高质量质谱数据,并且不必再将分析工作外包给专业分析服务实验室,节省了漫长的等待时间。每份样品可获得更多信息 借助ACQUITY QDa质谱检测器,可以最大程度降低由意外共流出物或成分所带来的风险,而质谱检测的分析可靠性能帮助您确认痕量成分,提升每次分析的质量和效率,不必再运行各种额外检测或其它耗时技术。 与光学检测配合使用,可以显著降低无法检出某种样品成分的可能性。 ACQUITY QDa质谱检测器是汇集了沃特世30年质谱创新经验的巅峰之作,拥有37项新专利,解决了我们的客户一直以来关注的易用性、体积和成本问题。完美结合 ACQUITY QDa质谱检测器兼容所有沃特世ACQUITY UPLC、ACQUITY UPC2、Alliance HPLC以及纯化LC和SFC系统,可作为您现有沃特世光学检测器的完美补充,包括ACQUITY UPLC PDA、TUV、FLR或ACQUITY UPC2 PDA光学检测器。 获得的质谱信息可以无缝地结合到相同的工作流程中,为您的常规分析带来更加完整的分离定性。 处理、解读、查看和比较复杂数据,并且快速轻松地将其转换为有意义的信息。ACQUITY QDa质谱检测器能与行业领先的色谱数据软件平台——Empower软件完全兼容。 利用集成的光学和质谱检测器数据处理工作流程,您还可以通过与处理PDA数据相同的方式和工作流程查询质谱数据。ACQUITY QDa质谱检测器还可以与MassLynx软件及其配套应用管理器完全兼容。提高效率 唯一一款可与您的现有仪器组合的的质谱检测器,甚至可直接放置在现有仪器最上方。与传统质谱仪相比,它占用的实验台空间和地面空间更少,能耗也更低,可以作为常规工作流程的一部分,轻松整合到已有实验室配置中。它无需过多的常规维护,使正常运行时间最大化。解决复杂问题 无论您关注的焦点是推动医疗进步、保护环境、保护我们的食物和水源,还是发明新型材料,ACQUITY QDa质谱检测器都能帮助您大大提升现有分析或纯化系统的性能,是最简单的质谱检测途径,并且可靠而通用。注意:本页面内容仅供参考,所有资料请以沃特世官方网站()为准。
    留言咨询
  • 仪器原理 大气中的挥发性有机物样品,具有组成复杂、含量低、活性强、浓度和化学活性差异大等特点,系统通过与Exp-200深冷预处理装置配合使用,结合氢火焰离子化检测器(FID)技术和质谱检测器技术(MSD)进行大气中VOC样品的在线分析监测。 样品经Pre-3000深冷预处理装置除水、富集浓缩后,通过直热式高温热脱附,被快速送入至毛细管色谱柱进行分离,分离后的样品,低碳(C2-C5)类VOC样品使用氢火焰离子化检测器(FID)进行检测;高碳(C6-C12)和含氧类VOC样品使用质谱检测器(MSD)进行检测,得到各单一组分准确的定性定量分析结果。 在线色谱-质谱分析仪充分利用了气相色谱的分离技术和质谱检测器的定性检测技术,可有效用于环境大气中复杂多组分VOC样品监测。一次采样可检测100多种各类VOC(碳氢化合物、卤代烃、含氧挥发性有机物)样品。仪器特点 工业标准系统设计,系统可靠性高;断电开机后,系统自动循环运行,维护量低; 低温电制冷技术,仪器体积小,整机采用19”标准机柜设计,安装维护方便; 质谱检测数据自动分析处理,结果直接输出,并传送至分析平台,无需人工计算; GC-FID、GC-MS双系统进行VOC检测,一次可检测100多种各类VOC(碳氢化合物、卤代烃、含氧挥发性有机物); GC-FID系统使用预分离和阀切换反吹技术,避免高沸点组分进入分析系统,提高色谱柱的使用寿命; 对样品深度除水,解决水汽对色谱柱性能的影响;深冷富集可提高样品富集效率,解决含氧类VOC常温富集效率低、差异大的问题,提高检测灵敏度。应用领域  环境空气组分分析监测  环境空气痕量样品监测  石化化工园区厂界挥发性溶剂及未知物组分分析  科学研究
    留言咨询

质谱计算器相关的资讯

  • Sigma-Aldrich推出HPLC方法计算器
    您希望用一根色谱柱解决多种应用吗?您想优化当前不尽人意的HPLC条件吗?您正在为HPLC方法的转移而苦恼吗? 那么,推荐您尝试Sigma-Aldrich最新推出的HPLC方法计算器。 Sigmaaldrich首款官方Android、itunes、iPad应用软件近日上线啦。高效液相色谱(HPLC)方法转移计算器能实现如下功能:计算出某HPLC柱上方法转移到另一色谱柱上的分析条件支持等度和梯度两种方法便于方法优化,推荐分析流速以色谱柱变量(柱长、柱内径、粒径)和现有方法(流速、进样量、压力、运行时间、平衡时间)为基础,可提供从分析柱放大到制备柱的色谱分析方法如果需要,可计算出节省的时间和溶剂支持Ascentis Express快速柱和其他通用粒径色谱柱梯度方法转移时,输入死体积可预测梯度滞后 欢迎关注我司新浪官方微博SigmaAldrich。HPLC方法计算器,本地下载、手机下载均可提供Google play https://play.google.com/store/apps/details?id=sial.andriod.calc安卓 http://static.apk.hiapk.com/html/2012/06/639145.html微盘 http://vdisk.weibo.com/s/6_GY3 当然,您也可以不用下载软件,直接在线计算操作http://www.sigmaaldrich.com/analytical-chromatography/hplc/method-transfer-calculator.html 软件截图如下: 等度计算梯度计算技术支持
  • 质谱分析|Native MS中计算质量、误差和不确定性的方法
    大家好,本周为大家介绍的是一篇发表在Journal of the American Society for Mass Spectrometry上的文章Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry1,文章通讯作者是来自美国亚利桑那大学化学与生物化学系的Michael T. Marty教授。  非变性电喷雾离子化质谱(native ESI mass spectrometry)已经发展为一种成熟的、表征生物分子相互作用和结合化学计量的技术,通过将生物分子的缓冲体系换成质谱可兼容的挥发性盐溶液,来保护样品的结构和非共价相互作用在离子化过程中不被破坏。随着该技术的发展,一些计算概念的标准化是有必要讨论的。本文介绍了native MS中质量的定义、计算、误差和不确定性。  对于一个质谱峰,有三个位置可以描述它的质荷比:平均值(mean)、中位数(median)和顶点(apex)。平均值又称为质心,即每根峰的质荷比加权其强度得到的平均值 中位数很少被用来描述峰值 顶点是指峰强度最高处的质荷比。在理想的情况下,质谱峰应该是完全对称形状的,质心和顶点的质荷比应该相同(图1A),但这种情况在native MS中比较少见,因为经常会有盐离子等小分子加合到峰上,导致质心和顶点分离以及峰型不对称(图1B),在这种情况下,顶点作为计算真实质量的参数更为合理。Native MS峰也可能与噪音(图1C)和基线(图1D)叠加,相比之下,噪音对顶点的影响大于基线,很可能干扰顶点的识别,这种情况下,选择超过一定阈值的质心计算质量更为合适。由于待测物会产生一系列电荷分布,建议在每个电荷态单独计算出质量后,再按电荷态的相对强度进行加权,获得最终的检测质量。  图1. 几种可能的谱峰形状:理想(A)、有加合(B)、有噪音(C)、基线高(D)。  在比较实测质量和理论质量时,误差指的是实测质量减理论质量,在谱峰鉴别时通常需要计算误差,而不确定程度是指在测量过程中不可避免的值的离散,为了评估误差和不确定程度,作者考虑了三个指标:①从不同电荷态计算出的质量的加权标准差(图2A),这反映了通过所有电荷态计算出的质量的平均值的准确程度,标准差越小,平均值就越准确,这种计算标准差的衡量不确定程度的方式,适合手动计算质量时使用。②峰宽(图2B),如果将质谱峰视为高斯分布,峰宽也是体现不确定程度的参数,在native MS中通常使用半峰宽来衡量峰之间的差异,由于重叠的峰难以手动区分但可以被软件识别,这种衡量方式更适合软件。③重复性(图2C),相比于前两种方式,重复性是更好的确定不确定程度的方式,不确定程度可以定义为多次重复测量出的质量的标准差,但重复实验也需要考虑实验重复性因素(喷针口径,样品制备方法,样品批次,仪器校准等)。  图2. 三种测量峰不确定程度的方法:不同电荷态计算出的质量的加权标准差(A),峰宽(B),重复性(C)。  总结:本文讨论了native MS谱峰的质量、误差和不确定程度的定义,推荐从native MS谱图中不同电荷态的峰计算质量后,加权平均以获得精确质量,并通过重复实验考察不确定程度。  1. Marty, M. T., Fundamentals: How Do We Calculate Mass, Error, and Uncertainty in Native Mass Spectrometry? Journal of the American Society for Mass Spectrometry 2022, 33 (10), 1807-1812.
  • 2023年度江苏省重点研发计划:支持色谱、质谱、电镜等高端仪器研发
    近日,江苏省科学技术厅、江苏省财政厅发布关于印发《2023年度省科技计划专项资金(重点研发计划产业前瞻与关键核心技术)项目指南》及组织申报项目的通知。2023年度江苏省重点研发计划(产业前瞻与关键核心技术)分为重点项目和竞争项目两类组织实施。其中,重点项目只面向指南揭榜挂帅项目和产业前瞻技术研发项目,每个揭榜挂帅项目省资助经费不超过1500万元,其他重点项目课题省资助经费一般不超过300万元;竞争项目省资助经费一般不超过200万元。2023年度江苏省科技计划专项资金(重点研发计划产业前瞻与关键核心技术)项目指南支持方向提到核心电子元器件研发,即围绕先进制造和信息产业对核心电子元器件、精密计量仪器等关键技术和产品需要,重点开展(1)智能传感器、微型射频滤波器、高精度频率元器件、工业级插件和连接器、嵌入式电阻等关键电子元器件研发;(2)高端数字测量、 图像识别测量、复杂几何量测量等精密测量技术与仪器、色谱仪、质谱仪、扫描电子显微镜、在线分析仪表等高端通用仪器关键技术研发。2023年度江苏省科技计划专项资金(重点研发计划产业前瞻与关键核心技术)项目指南支持方向汇总表支持方向/领域需求目标/研发内容一、数字技术专题(一)揭榜挂帅项目1011 面向增强现实(AR)的 Micro-LED微型显示芯片关键技术研发研究低缺陷密度和高波长均匀性的Micro-LED外延生长技术;研究大尺寸晶圆键合技术,实现单片集成和高键合良率;开发垂直型Micro-LED阵列结构;开发满足高色域显示、高蓝光吸收和高耐光性的量子点光刻胶配方,实现全彩像素阵列;开发支持单色与彩色的Micro-LED像素驱动电路及算法;开发全彩色Micro-LED微显示器件。1012 超大规模网络流量态势感知关键技术研发针对从网络流量数据中挖掘复杂网络威胁行为面临的诸多挑战,研究Tbps级超大规模全流量处理技术,解决网络流量日益递增导致的全流量实时采集难问题;研究海量流量大数据异常行为检测技术,解决海量流量隐藏的高聚集可疑行为发现研判难的问题;研究基于人工智能的加密流量分析技术,解决互联网加密流量中隐蔽的威胁行为识别困难问题;研究融合时空数据与知识图谱态势感知技术,深度挖掘隐蔽关系,解决网络威胁高效关联分析、追踪溯源、态势感知等难题。(二)产业前瞻技术研发1021人工智能针对新一代人工智能发展需要,加强模型算法、系统平台、专用硬件、高端应用等协同创新,加快构筑人工智能先发优势,重点开展(1)深度学习、强化学习等核心算法研发;(2)计算机视觉、自然语言处理、自主无人系统等应用技术研发;(3)高能效神经网络处理器(NPU)芯片、AI 训练推理芯片等专用硬件技术研发;(4)智能脑机接口、人机协同增强、智能可穿戴设备等智能终端关键技术研发。1022 昇腾人工智能生态围绕构建自主可控人工智能产业创新生态,重点开展(1)基于昇腾全栈技术的基础模型和通用人工智能平台关键技术研发;(2)面向智能制造、集成电路、智能电网等领域研发基于昇腾全栈技术的人工智能创新解决方案;(3)面向自动驾驶、人机交互、自主无人系统等未来产业研发基于昇腾全栈技术的人工智能应用方案;(4)基于昇腾 AI 处理器训练推理芯片及Atlas 系列硬件的 AI 专用硬件、模组和一体机研发。1023 区块链围绕打造区块链自主创新核心能力,重点开展(1)智能合约、共识算法、非对称加密、分布式系统等底层算法技术研发;(2)高性能跨链互通与数据协同、非同质化资产凭证(NFT)及编组等区块链应用技术研发;(3)多方安全计算、可信数据网络、零知识证明、跨CA互通机制等区块链身份认证及隐私保护技术研发;(4)区块链可信碳交易、区块链金融、区块链政务、区块链交通物流等溯源共享关键技术研发。1024 量子科技紧跟国内外量子科技发展趋势,重点开展(1)量子密钥分发、量子隐形传态、量子信道共纤复用、量子物联网融合等量子通信技术研发及量子网络构建;(2)实用化量子模拟器、量子计算原型机、量子芯片等量子计算关键技术研发;(3)微波量子计量、量子传感器、量子系统人工精准调控等量子精密测量关键技术研发;(4)量子随机数发生器、单光子探测器、超低损耗光纤、极低温微波链路等核心器件关键技术研发。1025 大数据与云计算针对经济社会发展对大数据安全管理和先进计算的创新需求,重点开展(1)高性能数据采集、超低功耗海量容错存储、跨网数据交换、异构数据融合、数据可视化等大数据平台技术研发;(2)云操作系统和软件、大规模分布式存储、弹性计算、数据虚拟隔离等云计算关键技术研发;(3)新一代E级超算、类脑计算、存算一体、图计算、拟态计算等新型计算技术研发;(4)多方安全计算、可信执行环境、差分隐私、数据脱敏等数据安全技术研发。1026 未来网络与通信围绕打造未来网络与通信产业的核心竞争力,重点开展(1)确定性网络、新型算力网络、6G移动通信、太赫兹无线通信、卫星互联网等前沿网络通信技术研发;(2)IPv6+、网络切片、高精度定位、工业互联网标识解析等网络应用技术研发;(3)全光交换、高速全光网络、可见光通信、智能光通信、薄膜铌酸锂器件等光通信技术与器件研发;(4)主动防御、内生安全、态势感知、加密流量监测、零信任等网络安全技术与设备研发。(三)关键核心技术攻关1031 高端软件聚焦基础软件、工业软件、新一代工业软件平台领域,重点开展(1)与国产CPU、存储、整机等硬件高度适配的高性能操作系统、数据库、中间件、办公软件等基础软件研发;(2)产品研发设计、制造运营管理、产品生命周期管理等核心工业软件研发;(3)工业互联网操作系统、嵌入式工控系统、智能工厂系统等新一代工业软件平台技术研发。1032 核心电子元器件围绕先进制造和信息产业对核心电子元器件、精密计量仪器等关键技术和产品需要,重点开展(1)智能传感器、微型射频滤波器、高精度频率元器件、工业级插件和连接器、嵌入式电阻等关键电子元器件研发;(2)高端数字测量、图像识别测量、复杂几何量测量等精密测量技术与仪器、色谱仪、质谱仪、扫描电子显微镜、在线分析仪表等高端通用仪器关键技术研发。1033 数字文化科技面向文化科技发展新趋势、服务消费升级新需求和服务场景创新新特征,重点开展虚拟现实、增强现实、混合现实、数字融媒体、Web3.0、元宇宙等先进数字文化科技关键技术研发。二、集成电路专题(一)揭榜挂帅项目2011集成电路超精密光刻工艺的套刻误差测量关键技术研发面向28nm工艺节点集成电路制造中套刻误差测量需求,研发宽光谱微光斑散射测量系统和智能成像系统,解决低信噪比弱光电信号散射测量问题和亚波长尺度套刻误差成像测量问题,实现套刻标记的超高精度测量;开展套刻误差测量信号的智能分析,解决非理想条件下套刻误差的高可信度提取与多模式测量融合问题,实现散射/成像融合量测;开展纳米光学建模与设计优化,提高测量系统鲁棒性,实现套刻标记的快速逆向设计与测量系统的在线配置优化。2012 高精度工业测量与控制芯片组关键技术研发面向高精度工业测量与控制应用,研发微信号检测数模混合电路新架构及芯片组,集成高性能的运算放大器、ADC转换器、高精度电流源和电压基准、模拟开关和模拟比较器、微处理器、存储器、通信接口等,实现对电流、电压、电阻、电容、温度等物理量的高精度测量,支持复杂工业环境下的各类温度、压力、流量等多类型传感器信号的感知处理。2013 面向边缘侧的高算力存内计算AI芯片关键技术研发基于自主工艺开展存内计算器件设计与工艺协同优化、高能效存内计算IP设计、可重构AI加速器架构设计与实现、高算力存内计算AI芯片系统集成等方面研究,突破存内计算单元结构设计与高精度权重编程、低功耗存算一体AD转换、神经网络模型压缩与量化、存算一体架构特征感知的模型映射算法、存内计算编译工具链等关键技术,实现面向边缘侧的高算力存内计算AI芯片研发及应用验证。2014面向人工智能的高性能光电混合计算芯片关键技术研发研发用于数据中心的高性能光电混合计算芯片;开展先进三维光电混合芯片封装技术研究,完成大尺寸光电异构芯片集成;开展大规模硅光芯片设计,以及与III-V 族激光器芯片的设计优化与集成,实现大规模光计算阵列器件与链路的分析与迭代;研究噪声、器件指标与非线性效应对光芯片信号完整性与计算精度的影响;研发适配的软件栈,实现板卡和服务器的适配;完成高带宽低延迟低功耗的光计算系统的研发,并在数据中心高性能计算等领域实现典型应用示范。(二)产业前瞻技术研发2021 高端芯片面向我省集成电路创新发展需要,重点开展(1)基于 RISC-V 等开源自主架构的处理器芯片,高性能 FPGA、DSP 芯片等通用处理器芯片关键技术研发;(2)高性能图形处理器(GPU)、数据处理器(DPU)芯片、光电混合、存内计算等新型算力芯片关键技术研发;(3)新型存储芯片、极低功耗 SoC 芯片、高性能模拟芯片等高性能芯片关键技术研发。2022 集成电路设计自动化(EDA)软件针对后摩尔时代新型应用及工艺需要,重点开展智能化数字电路布局布线、时序分析、功耗分析、良率仿真及分析、数字仿真验证、工艺器件仿真、逻辑综合、可测性设计和测试向量生成等 EDA工具软件关键技术研发。2023 先进封测与制造巩固提升我省集成电路制造工艺能力,重点开展(1)环绕栅极场效应晶体管(GAAFET)、多桥通道场效应电晶体(MBCFET)先进工艺、绝缘栅双极型晶体管(IGBT)等特色工艺研发;(2)多芯粒(Chiplet)集成封装、多芯片系统集成(SiP)封装、多维异构封装、光电合封、光芯合封等先进封装及可靠性测试关键技术研发。2024 集成电路材料围绕提升集成电路关键材料自主保障能力,重点开展大尺寸低缺陷单晶硅片、电子级多晶硅、高端光刻胶、高纯度化学试剂、高精度掩模版、前驱体材料、抛光液、高纯靶材等集成电路关键材料制备关键技术研发。2025 集成电路装备着眼集成电路装备自主创新和迭代升级,重点开展 光刻机、刻蚀机、离子扩散及注入设备、真空蒸镀机、化学气相沉 积(CVD)、工艺检测设备、组装与封测设备等集成电路专用装备 及部件关键技术研发。三、前沿新材料专题(一)揭榜挂帅项目3011 第三代半导体紫外光电子材料与器件关键技术研究大尺寸、高质量 AlN 单晶衬底和模板材料制备及同质外延技术;研究宽禁带深紫外光电材料外延生长的缺陷抑制、应力控制、高电导率 p 型掺杂和高光效量子阱生长技术;研究高出光效率、大功率深紫外 LED 芯片关键制备技术;研究高探测效率日盲紫外探测器、极紫外探测器及紫外雪崩光3012 超高韧碳纤维复合材料及短程自动铺放关键技术面向新一代国产航空发动机叶片结构轻量化需求,开发超高韧碳纤维复合材料,材料性能与国外同类材料相当;开发适用于复杂结构件的自动铺放工艺及装备;突破复杂结构的固化变形仿真与控制、大厚度变截面原位高精度快速成像检测等关键技术;完成全尺寸典型件结构件的制造与疲劳、抗鸟撞和强度等综合性能试验验证,建立材料标准与工艺规范。(二)产业前瞻技术研发3021 纳米新材料面向信息电子、能源转换与存储等重点应用方向,开展纳米发光材料、大尺寸柔性纳米触控膜、纳米探测与传感器、高转化率纳米催化材料、纳米改性金属、纳米微球等新型纳米材料制备与应用关键技术研发。3022 第三代半导体抢抓第三代半导体材料技术加速兴起的重要机遇,重点开展氮化镓、碳化硅、氮化铝等宽禁带半导体,金刚石、氧化镓、砷化硼等超宽禁带半导体材料制备、典型器件应用和生产装备关键技术研发。3023 先进碳材料面向航空航天、轨道交通、能源装备、电子信息等高端应用场景,重点开展(1)高强高模高韧碳纤维制备、高通量碳纤维制备、碳纤维复合材料成型等关键技术和工艺开发;(2)石墨烯电子材料、石墨烯集流体、碳纳米管、碳碳复合材料、富勒烯等新型碳材料制备与应用关键技术研发。3024 先进材料及应用以提升材料研发效率,满足重大工程和装备需要为目标,重点开展(1)轻质耐热高温结构材料、特种与前沿功能材料制备等先进材料应用关键技术研发;(2)基于高通量材料计算、高通量制备与表征评价等材料基因工程的新材料研发关键技术。(三)关键核心技术攻关3031 金属材料面向高端装备和重大工程需要,重点开展基础零部件用钢、高性能海工钢、新型高强韧汽车钢、特种设备用超高强度不锈钢、轻质高强金属、高温合金与特种合金等先进金属材料关键技术研发。3032 无机非金属材料聚焦材料高性能化、多功能化、绿色化发展趋势,重点开展特种高分子材料、新型结构陶瓷、高性能稀土材料、高性能膜材料、金属有机框架(MOF)等无机非金属材料和高端功能材料关键技术研发。四、智能制造专题(一)产业前瞻技术研发4021 智能机器人面向产业转型和消费升级需求,以高端化智能化发展为导向,重点开展(1)多模态人机自然交互、机器人操作系统、多机器人协同作业等关键技术研发;(2)超小型电液伺服驱动系统、三维视觉传感器、智能末端执行器、高功率密度一体化关节、高精度编码器等关键部件研发;(3)多臂协同高精度手术机器人、软体机器人、康复训练机器人、电液足式行走机器人等高端机器人研发;(4)电液驱动仿人机器人、深水自航行、深海矿产资源开发等特种作业机器人技术研发。4022 增材制造围绕提升增材制造全产业链创新能力,重点开展(1)功能合金、金属间化合物、低缺陷金属粉末、高性能聚合物、陶瓷材料等关键材料研发;(2)高可靠大功率激光器、高精度阵列式打印头、新型 3D 数据采集系统等核心功能部件研发;(3)4D 激光投影、复合打印、液态金属打印、固相增材制造等先进工艺及装备研发;(4)面向高技术领域的高效率、 高精度、低成本、批量化增减材制造技术与软件系统研发。4023 智能网联汽车顺应未来交通智能化、一体化发展趋势,坚持网联赋能与单车智能协同,重点开展(1)车载操作系统、智慧座舱、域控制器、车规级芯片、车物互联(V2X)底层通信等汽车智能化技术研发;(2)激光雷达、毫米波雷达、雷达视频融合、高精度组合导航、视觉深度认知、车路协同等自动驾驶关键技术研发;(3)线控制动、线控转向、线控底盘、高比转速驱动电机等汽车执行与控制技术研发;(4)汽车整车集成及轻量化设计、新型电子电气架构、汽车网络安全、智能网联测试工具与平台等关键技术研发。(二)关键核心技术攻关4031 基础零部件和先进工艺聚焦制造业创新发展对基础零部件配套能力,先进制造工艺的紧迫需求,重点开展(1)磁悬浮轴承、高压高速轴向柱塞泵、高强度紧固件、高性能密封件、微小型液压件、高性能减速器、高性能伺服驱动系统等高端精密基础件关键技术研发;(2)机密及超精密加工、高速高精切削磨削、微纳跨尺度制造、多工艺复合加工、高精度光学器件加工、增压燃烧(PGC)等先进制造工艺及装备关键技术研发。4032 高端装备制造围绕提升高端制造装备供给能力,构建自主可控智能制造系统和装备创新体系,重点开展(1)高端数控机床、大吨位智能化工程机械、大型海工装备及高技术船舶、轨道交通装备、航空发动机等大型整机装备设计、控制及系统集成技术研发;(2)网络协同制造、智能运维、数字孪生及虚拟制造、柔性生产与制造等智能制造关键技术研发。五、其他领域(本领域仅支持申报竞争项目)5031 纺织服装围绕推动我省纺织服装产业高质量发展,重点开展生物基化学纤维、聚酯纤维、超高分子量聚乙烯纤维、芳纶纤维、聚酰亚胺纤维等新型纤维制备、无水印染、高速数码印花、数字化高速无梭织机等纺织品清洁生产关键技术研发。5032 安全生产围绕提升本质安全生产水平,重点开展(1)安全生产信息化、灾害事故监测预警、危险气体泄漏检测及精准定位、太赫兹探测等灾害预警侦测关键技术研发;(2)危险环境作业机器人、安全巡检机器人、应急救援消防机器人、高机动救援成套化装备等安全生产智能装备关键技术研发。5033 应急处置围绕提升安全生产应急处置能力,重点开展(1)便携式自组网通信、先进遥感、远距离透地通信及人员精准定位、水下通信等应急救援通信关键技术研发;(2)危化品贮槽应急堵漏、危险气体泄漏安全环保处置、险恶环境灭火救援等灾害应急处置关键技术研发。5034 非规划创新项目除上述所列技术方向外,落实省委省政府有关重点工作部署(含对口支援),以及其他满足我省经济社会重大需求且技术创新性高、突破性强、带动性大的非规划创新关键核心技术。附件:江苏省科学技术厅 江苏省财政厅关于印发《2023年度省科技计划专项资金(重点研发计划产业前瞻与关键核心技术)项目指南》及组织申报项目的通知.pdf

质谱计算器相关的方案

  • 油品计算器可针对(原油、石油产品和润滑油三种油品)温度15度可以换算,视密度换算成标准密度可以到温度20度
    产品说明:PLD-1885B石油多功能计算器属于油品计算器,该计算器根据国标GB/T1884和GB/T1885-1998【石油计量表】,分别对原油、石油产品-和润滑油三种油品,通过计算程序,快速、准确的计算出各种罐(船)内或通过流量计的某种油品的标准密度ρ20、体积修正系数VCF、温度使用范围可延伸到-55℃,体积压缩系数cpi并根据不同的温度、压力条件下的油品体积VT,自动计算出油品的标准体积V20和重量(质量)m,对原油还可以算出含水量ms和纯油量mc。
  • 抗体药物偶联物 (ADC) 的药物/抗体比率 (DAR) 计算——利用自动化样品前处理和新型 DAR 计算器软件
    抗体药物偶联物 (ADC) 是制药公司药物开发途径中快速发展的一类新型生物治疗药物。ADC的制备方法是通过化学方法将具有生物活性的小分子药物与单克隆抗体相连。ADC 通过结合高效细胞毒性药物与靶标特异性抗体将细胞毒性药物直接送达病变组织,同时限制药物在非目标组织中的毒性。药物/抗体比率 (DAR) 是抗体所连接药物数量的平均值,它是 ADC 的重要属性。由于低载药量会降低效力,而高载药量则会对药代动力学 (PK) 和毒性产生负面影响,因此 DAR 值能够对药效产生影响。目前的偶联化学方法有赖氨酸侧链酰胺化或半胱氨酸链间二硫键还原,载药量通常为 0 ~ 8 个药物分子 (D0 ~ D8)/抗体。LC/MS 是测定 ADC 的 DAR 和载药量分布的常用分析方法, 也是鉴定不同种类载药 ADC 的关键方法。多数情况下可直接使用 LC/MS 分析完整 ADC 从而确定 DAR 值。而在需要有关轻链和重链的具体 DAR 信息时,则可能要在 LC/MS 分析前对 ADC 进行还原。此外,还可能需要在 LC/MS 分析前对 ADC 进行去糖基化以进一步降低谱图复杂性。LC/MS 分析前的 ADC 样品前处理通常由手动完成,因此可能引入变异性并对通量产生限制。Agilent AssayMAP Bravo 是一款简单易用的自动化样品前处理系统,能够提高可重现性、通过减少手动操作时间节省人力、具有可扩展性(可同时运行 8 – 96 个样品)、简化人员间和站点间的方法转移,并能最大限度减少人为误差。AssayMAP Bravo 是一款适用于上述反应的强大自动化样品前处理平台。AssayMAP Bravo 自动化样品前处理平台与安捷伦 LC/MS 和 MassHunter/BioConfirm/ DAR 计算器软件相结合,能够针对 ADC DAR 计算提供可重现的便捷解决方案。本应用简报中采用 Agilent AssayMAP Bravo 平台对经/未经去糖基化的完整和还原态 ADC 进行了平行处理,并采用安捷伦 LC/MS 对其进行分析,随后通过安捷伦 DAR 计算器确定 DAR。
  • 采用天然质谱法对半胱氨酸连接的抗体药物偶联物及其药物/抗体比率进行测定
    本文以半胱氨酸连接的抗体药物偶联物 (Antibody-Drug Conjugate, ADC) 为研究对象,使用天然质谱法通过 Agilent6530 Q-TOF LC/MS 检测 ADC 的完整分子量,并使用安捷伦DAR计算器软件(Agilent DAR Calculator)计算ADC的加权平均药物/抗体比率(Drug to Antibody Ratio, DAR)。

质谱计算器相关的资料

质谱计算器相关的论坛

  • 【讨论】色谱柱载气计算器

    clarus500 GC 触屏上tools ------utility----column gas calculator 这个色谱柱载气计算器 是怎么用的,看了说明书,没明白,上面有些数据是默认的,根据公式的可以计算出未知的,但没见到公式,怎么计算???

  • 计算器确认

    有没有哪位同行实验室里使用的计算器或者科学计算器做过确认啊?公司里面的计算机和软件都没有做验证,计算的时候不能体现用Excel表,所以想到计算器做一下确认有同行做过的话,能不能介绍一下该怎么做呢?或者发一个模板参考一下,谢谢

  • 【讨论】你的计算器有问题吗?

    这种事情从来没有想过会发生,但是确确实实就发生了。用两个计算器计算出来的数据不一致,算了几遍两个计算器得出的数据都不一样。再拿第三个计算器来计算,与其中的一个计算器计算出来的数据一样?

质谱计算器相关的耗材

  • 石油多功能计算器
    型 号:PLD-1885B 订货号:86x1885b 产品介绍: PLD-1885B 石油多功能计算器属于油品计算器,该计算器根据国标 GB/T1884 和 GB/T1885-1998【石油计量表】,分别对原油、石油产品和润滑油三种油品,通过 计算程序,快速、准确的计算出各种罐(船)内或通过流量计的某种油品的标准 密度ρ20、体积修正系数 VCF、温度使用范围可延伸到-55℃,体积压缩系数 cpi 并根据不同的温度、压力条件下的油品体积 VT,自动计算出油品的标准体积 V20 和重量(质量)m,对原油还可以算出含水量 ms 和纯油量 mc。 该仪器同时可以满足 GB/T11139【馏分燃料十六烷值指数计算法】标准的要求。 可以快速准确的完成对十六烷值指数的计算。性能阐述: 计算程序采用积木式结构,操作顺序无严格要求,计算器在运算时也可终止其计 算,去计算新的内容。同时取消了温度使用范围-55℃--150℃的限制,本计算器 的温度没有限制,可以任意输入,但超出自然界物理特性输入算出的数据可能没 意义。为保证计算器计算结果准确无误,本计算器设有检查键,按此键,显示屏 会逐个将输入参数显示出来。计算器的设计能方便增补计算内容或容积表。为便 于操作、直观、键盘上的符号、显示符号与石油计量表一致,面板采用触摸开关, 美观大方,易清洁。计算速度快(按一下计算结果键立即显示计算结果)、体积 小、重量轻,便于携带,还可兼做加、减、乘、除运算。计算器耗电小,可采用 电池或专用交流电源(220V)两种供电方式。 技术参数: 执行标准:GB/T1885 ,GB/T11139 输入电压:AC220V 50Hz(或四节 7#电 池 1.5V) 接口方式:USB2.0 精 确 度:0.0005g/ml 尺寸大小:L×W×H=195mm*100mm*45mm 测量温度:室温或其他任意温度 适用范围:原油、产品和润滑油三大数 据库集成及馏分燃料油十六烷值指数 技术支持:西安石油工程技术中心支持,售后服务: 本产品自购买之日起,非人为责任事故我厂免费保修一年(中国大陆),长年维 修(不提供中国大陆以外的任何免费维修)。
  • 细胞集落计算笔
    细胞集落计算笔【产品规格】&bull 轻身及人体工学设计的细胞集落计算笔容易操控,可作迅速及准确的计算。&bull 多功能电子计算器及可标记Petri培养皿的笔的组合,避免漏数或重复计算细胞集落。&bull 适合计数/倒数功能,计数容量达32板。&bull 触控潠选择多功能计算、加总、计数或倒数,每次计算都会自动响起 &ldquo 哔&rdquo 的声音 &ndash 或可选择LED闪烁模式,每次计算都有可见的提醒。&bull 笔可在塑料及玻璃碟上作高度可见的标记。按下锁定键则可在不计数时用作笔。目录号码:081.13.001配以插座一固定细胞集落计算笔
  • 流路芯片,Intuvo,进样口分流器芯片
    Intuvo 流路芯片是模块化的微流控组件,无需密封垫圈即可实现进样口、色谱柱和检测器间的连接,可在几分钟之内轻松完成更换。Intuvo 流路芯片包括经过第三代 Intuvo 超高惰性脱活处理的高纯硅流路通道,可确保形成惰性流路。所有流路芯片均配有智能钥匙,可通过数字通讯自动实现系统配置,从而使 Intuvo 根据其即时配置设置方法参数。Intuvo 已掌握了整个流路的尺寸、流速和温度,因此无需复杂的流量计算器。 进样口流路芯片可实现从芯片式保护柱到色谱柱的直接连接。D1、D2 和 D2-MS 流路芯片分别实现从色谱柱到检测器 1、检测器 2 或质谱仪的连接。其余流路芯片将反吹和/或双色谱柱/检测器的分流等所有采用微板流路控制技术的复杂连接结合在一台设备中。检测器尾部流路芯片将色谱柱直接连接到特定检测器上。 产品仅适用于 Agilent Intuvo 9000 系统 高惰性熔融石英流路芯片能够快速实现您所需的连接 几分钟内即可轻松安装 消除臆测 — 通过智能钥匙实现自动系统配置 简化微板流路控制技术,如反吹或双检测器分流
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制