程序冷冻仪

仪器信息网程序冷冻仪专题为您提供2024年最新程序冷冻仪价格报价、厂家品牌的相关信息, 包括程序冷冻仪参数、型号等,不管是国产,还是进口品牌的程序冷冻仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合程序冷冻仪相关的耗材配件、试剂标物,还有程序冷冻仪相关的最新资讯、资料,以及程序冷冻仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

程序冷冻仪相关的厂商

  • 昆山市良旭冷暖设备有限公司是专业生产圆形冷却塔,苏州冷却塔,高温冷却塔,上海冷却塔,工业冷却塔的专业生产厂家。公司具有二十多年冷暖工程实际经验,广泛于日本,美国等冷却塔公司进行交流,引进世界最先进的日本冷却塔技术合作,专业生产各种冷却设备。主要产品:方形冷却塔,昆山冷水塔,低音冷却塔,杭州冷却塔,嘉兴水冷却塔。良研冷却塔凭着精湛的设计,严格的生产监管,保证品质优良,性能卓越,恒久耐用。LCT系列广泛适用于空调冷冻系统,塑胶,电镀,电力,化工等各类工业机械。专业打造全系列逆流式和横流式之圆形、方形、超低噪、高温型等冷却塔;储水箱,管道式和离心式循环水泵等。本着“良好的产品,来自科学的研究”,执着不懈地对本行业进行大量技术投入,并取得了不俗的成绩,以求将更好的设备带给制冷业界。产品凭着精湛的设计,严格的生产监管,保证品质优良,性能卓越,恒久耐用。总之我们所设计的每个系统都是为了满足您最重要的需求。 公司引进国际高水准的设计和品质要求立足中国,放眼世界,致力打造出一流的温度控制设备和保姆式的服务标准。产品在空调冷冻系统,塑胶,电镀,电力,化工等各类工业机械得到广泛的应用,产品远销印度、马来西亚、越南、泰国等东南亚国家,我们严格执行ISO国际质量体系标准,以先进的生产技术和优化的人力资源,打造一流的温度控制设备,并以进口机的品质、国产机的价格为客户创造价值。 良旭公司坚持“创新、品质、诚信、专注”的企业理念,以科技求创新,以质量求发展,以诚信创品牌,以专注立基石,真诚希望和各界朋友携手合作,共同发展。
    留言咨询
  • 留言咨询
  • 广州倍玛特仪器设备有限公司,是一家国内先进实验室仪器的供应商。公司总部设在中国广州。    公司以国内知名品牌的仪器生产厂家为坚强后盾,与社会各仪器需求罐体紧密合作为根基,面向国内外大专院校、科研院所、工矿企业及各社会团体,提供先进仪器、设备及科技产品等。    专业、创新、诚信、高效、敬业是公司的经营宗旨,公司以雄厚的技术力量,高素质的营销队伍,优质的售后服务,服务于国内外的客户,欢迎各界朋友客户来电来信洽谈。 广州倍玛特仪器设备有限公司Guangzhou Biomedical Instrument Co.Ltd 地址: 广州市番禺区洛浦沿沙东路40号鑫三鼎商务中心A栋2F-5.7室电话: 020-39186865传真: 020-84215062-805 手机:13580513504QQ:796979487 电邮:sales2@bmtgz.cn Http://www.bmtgz.cn 倍玛特为创造明天更美好的科技而服务!服务科技,源自社会,感恩社会!    液氮罐,液位报警器,恒温板,恒温平台,恒温试管架,程序降温仪,培养箱,酶标仪,洗板机,冻存耗材,冰箱,离心机。    广州倍玛特仪器设备有限公司,是一家国内先进实验室仪器的供应商。公司总部设在中国广州。    公司主要经营液氮罐(进口/国产)、液位报警器、程序降温仪/胚胎冷冻仪、培养箱、恒温试管架、恒温板、酶标仪、洗板机、离心机、超低温冰箱、负压吸引器、渗透压仪、标准品等,专业供应生殖中心实验室仪器及耗材。   专业、创新、诚信、高效、敬业是公司的经营宗旨,公司以雄厚的技术力量,高素质的营销队伍,优质的售后服务,服务于国内外的客户,欢迎各界朋友客户来电来信洽谈。
    留言咨询

程序冷冻仪相关的仪器

  • 程序冷冻仪是一种程序控制冷冻装置。上海田枫实业有限公司开发研制成功的智能型冷冻仪。该仪器采用微机控制技术,专用软件,能较准确地控制液氮的施放量,从而保证被冻存的生物制品以适宜的冷冻速率降温冷冻。该仪器具有操作简便、人机界面清楚。 我国临床低温医学工作发展迅速,促进了移植医学的发展,特别是在骨髓、造 血干细胞、皮肤、角膜、内分泌腺体、以及血管和瓣膜等的冷冻保存和移植应用取 得了显著成绩。成功的造血干细胞移植依赖于造血干细胞活力的保存。生物样品在 降温冷冻过程中,当由液态向固态变化的相变期内会释放一定热量,使其温度回升, 不控制降温速率的冷冻过程将会导致组织细胞死亡。准确地测定生物样品的相变点, 用微机编制降温程序,以便在样品相变时加大液氮输入量,克服相变样品温度的回升,使细胞安全而迅速地度过相变期,这是提高被冻样品成活率的关键环节。 主要技术指标温度控制范围:40℃~-180℃.温度精度: 误差0.5℃降温速度: 0.1℃/分~30℃/分范围内可选升温速度: 0.1℃/分~30℃/分范围内可选仪器结构 (标准配置): 微机系统:内置冷冻控制插卡,冷冻时只要运行有关软件即可. 冷冻箱:内外全不锈刚结构,冷冻容机不小于200*200*200毫米.可同时容纳冷冻管160个或血袋8个. 液氮罐 液氮罐及液氮加压器:液氮加压器安装在30立升的液氮罐上,使罐内自增压调节阀保持压力稳定. 型号技术参数TF-PRL-PA-I型温度控制范围:40℃~-90℃ 降温速度: 0.1℃/分~30℃/分范围内可选TF-PRL-PA型温度控制范围:40℃~-110℃ 降温速度: 0.1℃/分~40℃/分范围内可选TF-PRL-PA-II型温度控制范围:40℃~-150℃ 降温速度: 0.1℃/分~40℃/分范围内可选TF-PRL-PA-III型温度控制范围:40℃~-180℃ 降温速度: 0.1℃/分~50℃/分范围内可选 软件功能: 1 显示功能: 运行显示每步操作,每个功能都有屏幕显示.实时显示仪器工作状态﹑三路温度数据和曲线. 2 编程功能: 可编制任意段数的用户程序.计算机按照用户程序控制冷冻过程.用户程序可方便地编制﹑修改﹑存储﹑调出.开机自动调出当前用户程序. 3 运行控制功能: 随机恒温功能: 可随时进入,随时解除恒温. 手控功能: 程控时手控可参与控制.也可完全手控. 键控功能: 可随时用键盘庙宇和修改降温速度.使温控具有极大的灵活性. 座标转换功能: 横竖座标可按需要互相转换. 段进功能: 随时可跳过当前程序段进入下一段. 报警功能: 带温度自动报警功能. 4 数据处理功能: 每次冷冻的全部数据和有关信息,都能自动形成一个数据文件存储下来 温度数据和速度可按指定时间间隔列表或显示温度曲线. 可迅速方便地双向检索已存入的数据文件 温度曲线可局部放大,便于研究关键段的细微变化 数据文件可打印,形成书面文件. 还有一些功能恕不一一列出,这些功能如能配合使用,将为您的冷冻带来极大的方便. 5 软件升级 随着公司软件不断的更新,用户可享受免费升级服务.
    留言咨询
  • 冻精生产程序冷冻仪 应用于动物人工授精:马、牛、羊、犬、狐狸、熊猫、珍稀动物、国家一级保护动物等育种保种,冻精生产制作;冻精程序化冷冻仪,替代液氮熏蒸,提升冻精效果。温度范围:4 ~ -140℃温度精度:0.02℃降温速度:0.01~ 60℃ /min升温速度:0.01~ 13℃ /min细管托架50支0.25ml/18个;细管托架33支0.5ml/18个;处理量:900支/0.25ml,594支/0.5ml;外观:长38.2cm*宽44.2cm*高47cm;程序曲线:自由设定;自增压罐:客户自定义;探头:两只铂温度探头,一只是箱温探头,另一只是样品温度探头;开盖保护:在工作过程中,开盖就自动停止一切操作;安全阀:液氮系统有安全泄压阀;材质:不锈钢内胆;系统:计算机软件编辑程序,控制冷冻箱运行。
    留言咨询
  • 细胞程序降温仪,液氮程序冷冻仪一、主要技术指标: 型号:TF-PA-I 温度控制范围:40℃~-90℃ 温度精度: 误差0.5℃ 降温速度: 0.1℃/分~30℃/分范围内可选 升温速度: 0.1℃/分~30℃/分范围内可选☆仪器结构☆:本仪器由以下四部分构成(标准配置): 微机系统: 内置冷冻控制插卡,冷冻时只要运行有关软件即可 冷冻箱: 内外全不锈刚结构.冷冻容机不小于200*200*200毫米.可同时容纳冷冻管160个或血袋8个. 液氮罐及液氮加压器: 液氮加压器安装在30立升的液氮罐上,使罐内自增压,调节阀保持压力稳定.三、软件功能:1 显示功能:运行显示每步操作,每个功能都有屏幕显示.实时显示仪器工作状态﹑三路温度数据和曲线.2 编程功能:可编制任意段数的用户程序.计算机按照用户程序控制冷冻过程.用户程序可方便地编制﹑修改﹑存储﹑调出.开机自动调出当前用户程序.3 运行控制功能:随机恒温功能: 可随时进入,随时解除恒温.手控功能: 程控时手控可参与控制.也可完全手控.键控功能: 可随时用键盘庙宇和修改降温速度.使温控具有极大的灵活性.座标转换功能: 横竖座标可按需要互相转换.段进功能: 随时可跳过当前程序段进入下一段.报警功能: 带温度自动报警功能.4 数据处理功能:每次冷冻的全部数据和有关信息,都能自动形成一个数据文件存储下来 温度数据和速度可按指定时间间隔列表或显示温度曲线.可迅速方便地双向检索已存入的数据文件 温度曲线可局部放大,便于研究关键段的细微变化 数据文件可打印,形成书面文件.还有一些功能恕不一一列出,这些功能如能配合使用,将为您的冷冻带来极大的方便.5 软件升级随着公司软件不断的更新,用户可享受免费升级服务.
    留言咨询

程序冷冻仪相关的资讯

  • 冷冻电镜的分辨率革命
    p  精确认识细胞当中的大分子结构对于理解它们的功能至关重要。Amunts等人利用冷冻电镜获得线粒体核糖体大亚基3.2埃的分辨率结构,还有最近利用冷冻电镜获取的其他一些高分辨率结构,这些成就预示着分子生物学研究的新时代,获取近原子分辨率的大分子结构将不再是X射线晶体学和核磁共振的特权。/pp style="text-align: center "img alt="" src="http://img1.17img.cn/17img/old/NewsImags/images/2014912171159.jpg" style="width: 600px height: 350px "//pp  图:利用冷冻电镜获得的近原子分辨率结构:(A)酵母线粒体核糖体大亚基,分辨率3.2 埃。(B) TRPV1离子通道,分辨率3.4 埃。(C)Fsub420/sub-还原[NiFe]氢化酶,分辨率3.36埃。注:该图并不是按比例绘制的。/pp  核糖体是古老的,大规模的蛋白RNA复合物,它将线性遗传密码翻译成三维蛋白质。线粒体——半自主细胞器,为细胞提供能量,拥有它们自己的核糖体,这一点和细菌非常类似。许多抗生素,如红霉素,通过阻止细菌的核糖体翻译机器来抑制细菌的生长。当设计新的抗生素,不能让他们同时阻断线粒体核糖体很重要。因此,认识这两种核糖体的详细结构是很有价值的。其他核糖体的结构已经通过X射线晶体学确定。Amunts等利用冷冻电镜确定了线粒体核糖体的高分辨率结构,这在不到一年前,很少有人会想到可能实现。/pp  不用晶体而能够做到这一点无异于是一场革命。主要是因为采用了新的探测器——具有前所未有的速度和灵敏度的直接电子探测器。直接电子探测器能够直接检测电子,而不是需要先将它们转换成光子,然后再转化为光电子探测进行,目前广泛使用的CCD(电荷耦合器件)相机就是这样,但它们的分辨率不是很好。照相胶片从工作原理上来说,高分辨率成像效果应该更好,但它很难和越来越重要的快速读出电子速度及高数据吞吐量相兼容。/pp  大约10年前,Henderson和Faruqi意识到,应该有可能设计出一种结合了CCD相机和胶片优点的直接探测电子的传感器。他们和两个竞争团队研发的探测器,采用了和大多数手机中的摄像头芯片基本相同的有源像素传感器技术。然而,手机的芯片不能用于电子显微镜,因为强烈的电子束会瞬间破坏它们。因此,首先探测器必须能够抗辐射。第二,探测器所需的像素要大很多,以防止富含能量的电子一次激发多个像素。第三,摄像头采用的芯片必须非常薄,完成每次读出电子160万像素,否则电子散射将会使图像模糊并降低分辨率。目前传感器的厚度大约是一张纸厚度的一半。/pp  冷冻电镜只需要少量的样品,因此那些无法分离得到大量样品,利用X射线晶体学方法进行分析的物质,现在可以利用冷冻电镜得到高分辨率结构。这同样适用于不容易结晶的非均相样品或柔性复合物,因为不同颗粒或构象的物质的冷冻电镜图像在图像处理阶段很容易分离开。/pp  新的检测器提供了另一种决定性的优势:当电子束撞击薄的、不支持冷冻的样品时,它们的快速读出能够补偿小的不可避免地移动。在新的相机问世前,由于电子束诱导移动引起的模糊是一个看似不可逾越的问题。现在,通过快速连续拍摄,可以得到一个区域的数十张图像,并且电子束诱导移动被检测到并反转在电脑上。这种去除模糊的影响戏剧性的和天文学哈勃望远镜相类似,尽管在这两种情况下引起模糊的原因是不同的。/pp  新的相机也促使了低温电子断层扫描成像的重大突破,低温电子断层扫描能够得到全细胞、细胞片、或细胞区室的三维图像,如线粒体。利用断层成像识别分子特征,采用标准CCD相机甚至已达到亚纳米细节,新的探测器问世也必然给断层成像研究带来巨大的变化。/pp  在新相机问世的同时,强大的极大似然图像处理程序也被开发出来。这些程序定义可靠客观的标准,来对几万或几十万个的单粒子图像进行平均处理,为的是要实现高分辨率。先进的检测器和软件相结合,获取的冷冻电镜结构,在相同的标称分辨率下,其清晰度和map definition比采用X射线晶体学解析的结构要好,因为在冷冻电镜图像中包含着高质量的相位信息。/pp  冷冻电镜的分辨率革命是否意味着X射线蛋白质晶体学时代即将结束?当然不是。在可预见的将来,分子量小于100kD的小蛋白,分辨率达到2 Å 或更好将依然是X射线晶体学的领域。但是对于大的,易碎的,或者柔性结构蛋白(如膜蛋白复合物),它们很难形成晶体,但却在生物医学中起着关键的作用,新技术将对此带来重大突破。在未来,对分子量大、已知的蛋白复合物,如核糖体,进行结晶将可能不再是必要的。相反,它们的结构可以从容并迅速的通过冷冻电镜来确定。这真是激动人心的时刻。(编译:秦丽娟)/pp 原文检索:a href="http://www.sciencemag.org/content/343/6178/1443.short"http://www.sciencemag.org/content/343/6178/1443.short/a/p
  • RETSCH推出新型全自动冷冻研磨仪cryomill
    骨头、塑料、生物、植物,这些商检、质检、高校等检测机构最常见样品您处理好了吗?处理后您的样品变性了吗?前处理的结果满足后续检测的需要了吗?您想让处理过程更简单吗? 您希望一款仪器能一次解决以上所有问题,并能让样品前处理的过程更简单更安全吗? 答案就是2009年RETSCH推出的新型研磨仪——全自动冷冻研磨仪cyomill。 她能轻易为您处理各类软性及中硬性材料的样品,特别对于塑料等热敏性材料,与cryomill更是绝佳的搭档。因为cryomill有专为冷冻研磨设置的一套智能系统! 全自动冷冻研磨仪cryomill 现代化的设计外形让人眼前一亮:一个研磨平台,一个平衡平台;特殊接口与液氮罐相连;透明保护盖,可视研磨过程;图形显示菜单,令操作更简单,研磨程序尽在掌握之中。 利用高速撞击的球磨原理对样品进行粉碎,振动频率最大可达25HZ,能量大,可在极短的时间得到极高细度的样品,结果还可用于光谱分析样品制备。并且研磨过程始终处在-196℃液氮中,保证样品绝不变性。 突破样品前处理史上最先进的技术,cryomill可以设置程序,控制整个研磨过程,根据样品的性质及数量你可以设置预冷却时间、研磨频率和研磨时间、冷冻研磨循环次数等。仪器运行时,您只通过图形显示的面板就可以知道研磨所处的阶段,所以在整个研磨过程中你都无需与液氮接触,避免了手动操作的繁琐和危险。 每一个细节,cryomill都为您设想周全:智能系统可以储存9组参数,简化了您的实验室工作;配套液氮罐autofill自动进气功能;多种研磨配件可供选择,根据您的实际需要可以选择25ml、35ml、50ml研磨罐,选用适配器使用4个5ml 的研磨罐。 以韧性的多糖为例,使用全自动冷冻研磨仪cryomill将多糖冷冻2分钟,研磨1分钟,设置3个循环,研磨结果小于100um。 研磨前后的多糖对比 除了低温冷冻研磨之外,cryomill依然可以进行常温的干磨和湿磨,例如对纺织品、PCB板、土壤、矿石等软性、中硬性和硬性样品都能达到要求的粉碎细度。 金属矿样用cryomill常温研磨5分钟,出样尺寸小于150um。 研磨前后的矿石对比 如此智能又方便的仪器您怎能错过,记住RETSCH,记住全自动冷冻研磨仪cryomill——低温粉碎技术的新里程碑。 为让RETSCH的产品帮助到更多的实验室人员,RETSCH在推出的新品的同时举办全球客户回馈活动——”WE R PREPARED”, 登录www.retsch.cn 参与答题您就有机会参加RETSCH全球旅行,选择拉斯维加斯冒险之旅或者瑞典冰雕旅馆的非凡体验,或者直接赢取现金5000.00欧元! 关注RETSCH, 关注2009!
  • 半路出家的程亦凡是如何取得冷冻电镜的突破性成果的?
    程亦凡,美国加州大学旧金山分校(UCSF)教授、霍华德休斯医学研究所研究员。早年学习物理。1996年,在获得物理博士学位5年后,他转行进入结构生物学领域。2013年,他和合作者第一个用单颗粒冷冻电镜方法,将膜蛋白结构解到了近原子分辨率(3.4埃)的水平。迄今为止,程亦凡已在生命医学顶尖期刊上发表论文及综述文章达100多篇,近20篇在Nature、Cell、Science上发表。  然而相比绝大多数成功的科学家来说,程亦凡是人到中年才获得普遍认可。2006年,已40多岁的程亦凡才刚刚做到助理教授,也许是加州大学旧金山分校年纪最大的助理教授。  近期,赛先生就他的学术经历、研究课题、对结构生物学的贡献以及冷冻电镜(cryo-EM)发展趋势等问题专访了程亦凡博士。  程亦凡  赛先生:可不可以回顾一下你的研究历程?  程亦凡:我情况和经历可能比较特殊。我本科学的是物理。1987年刚开始在武汉大学物理系读硕士研究生时,看到当时第一篇关于准晶体发现的文章,非常激动。因为当时电镜是研究准晶体结构最有效的手段,于是决定加入王仁卉老师课题组学习电子光学理论和电镜实验技术。博士研究生的研究工作是在中科院物理所李方华老师指导下进行的,也是从事电子光学,成象理论和高分辨电镜的理论和实验技术的学习、研究和应用。博士毕业之后,我先后在挪威和德国做博士后,继续从事材料科学方面的电镜研究。  1996年,我转行到生物学领域。之后分别在美国和日本继续做博士后,分别在Ken Taylor和藤吉好则实验室学习冷冻电镜,研究二维晶体和膜蛋白结构。1999年底到哈佛医学院,加入Thomas Walz实验室。2003年参与解一个水通道的膜蛋白(AQP0)的结构时,获得了1.9埃的分辨率。直到2015年为止,这也还是冷冻电镜解的分辨率最高的一个结构。 2006年,我到加州大学旧金山分校(UCSF) 做助理教授,开始了自己独立的实验室工作。2010年前后开始和David Julius 实验室合作研究TRPV1(一种在疼痛和热知觉中起中心作用的蛋白质)的膜蛋白结构。  自从1996年进入冷冻电镜和结构生物学领域以来,我就一直对冷冻电镜技术非常感兴趣。UCSF其它几位教授,包括John Sedat和David Agard,也都是这个领域的先驱者。David Agard教授在上世纪90年代初期就参与了第一代CCD相机的研制。他在很多年前就预见到相机开发对电镜技术的重要性,也一直从事这方面的研究。在直接电子探测器(Direct ElectronDetector,一种直接电子探测器件,能够直接检测电子,而不需要像传统CCD相机那样先将电子转换成光子,然后再由CCD记录光子信号)研发的早期,就预见到了单电子计数的重要性。2009年,我们得到美国国家自然科学基金(NSF)的资助,跟Lawrence Berkeley国家实验室和 Gatan公司一起合作开发单电子计数相机。David Agard是PI,我是co-PI。我主要负责相机的后期检测和应用开发。  经过几年的努力,在2013年初,我们将TRPV1通道的结构解析到8埃的分辨率。随着我们在电镜技术上的突破,特别是单电子计数相机和我们自己开发的图象飘移校正技术的应用,我们很快将它的分辨率提高到了3.3-3.4埃。获得TRP通道的高分辨率结构实际上花了四年多的功夫,不是几个月时间一蹴而就的。这也是天时地利人和的结果。  赛先生:从你刚才叙述的研究经历来看,你更多参与的是相机方面的工作么?  程亦凡:也不是。我对膜蛋白一直很感兴趣,但因为我不擅长膜蛋白的二维结晶法,而当时单颗粒方法还无法用来研究较小的膜蛋白,所以有几年中断了膜蛋白研究。在我的实验室的初步建设走上轨道后,就又开始研究新的单颗粒方法,用来研究较小的膜蛋白结构。实际上,2009年时,我的实验室已把很大一部分精力转到膜蛋白领域。  在电镜领域,我们自己有多年的技术积累,在很多领域一直都很领先。2003年,我做过的转铁蛋白复合物在当时是最小的,分辨率也是最高的。2008年时,我们解一个700kD的蛋白酶体的结构到5埃的分辨率,观察到一个10个氨基酸大小的多肽与蛋白酶的结合。这些在当时都是领域里领先的成果。  赛先生:有资料显示,你是最早成功将冷冻电镜应用于解析蛋白结构的。可以这么理解么?  程亦凡:冷冻电镜有三四十年的历史。最早用冷冻电镜做膜蛋白是Richard Henderson等人。1975年时,二维晶体膜蛋白结构分辨率已达到了7-8埃左右。Joachim Frank不仅是单颗粒电镜的开创者,可能也是最早用这种方法解析膜蛋白结构的先行者。第一个用单颗粒冷冻电镜方法做到原子分辨率并解出未知蛋白结构的人是周正红,他在2010年用单颗粒冷冻电镜方法解出了一个以前结构未知的二十面体病毒结构。更严格地说,我实验室是第一个用单颗粒的方法,而不是结晶的方法,将膜蛋白结构解到了近原子分辨率。  赛先生:2013年你的成果出来之后,结构生物学家集体转向了冷冻电镜,在此之前主要是用X射线衍射法和核磁共振来研究小分子结构。为什么很多人会意识到冷冻电镜是一个更好的方法?  程亦凡:它的确整个改变了结构生物学的前景。结构生物学的三大技术包括X光晶体学、冷冻电镜以及核磁共振。长期以来,冷冻电镜是这三项技术里最弱的一项。因为它的分辨率一直无法提升。这跟相机是有密切关系的。电子直接探测相机出现以后,分辨率一下子就提高了,但是当时还是没有引起很多人的重视,尤其是做晶体学研究的人,因为在他们看来,核糖体可以结晶,蛋白酶体也可以结晶。  而TRP通道整个蛋白家族里还没有任何蛋白的晶体结构得到解析。十几年来,世界上很多晶体学实验室都在这个上面花费了大量的精力,却没有结果。TRPV1单颗粒电镜结构的获得给人们带来了很大的冲击,用X光晶体衍射法无法得到的晶体结构,冷冻电镜不需要结晶却做出来了。很多人开始重新重视起这个领域,包括施一公和颜宁,据说他们实验室的大部分人现在都在做冷冻电镜。  赛先生:你2009年的工作中,是哪一部分产生了重大突破使得冷冻电镜整体上有了质的飞跃呢?  程亦凡:从技术上说,有两个方面。其一是相机的突破。当时除了Gatan公司,还有另外两家公司(FEI和Direct Electron)也推出了直接电子探测相机。但是我们用到了独特的单电子计数技术。这个技术可以大大提高低分辨率的信噪比。这就使得相机图像的衬度能够提高很多。这是以前没有意识到的。那么这样一来,这个相机真正的优势在于做很小的蛋白。我当时第一个想到的就是做难度最大的膜蛋白。  其二是计算方法上的改进。美国耶鲁大学的Fred Sigworth 最早在1999年提出将最大似然法(maximumlikelihood)用于处理单颗粒电镜图象。之后经过多个实验室的改进,到Sjors Scheres将这一方法,特别是将最大似然法用于三维构相分类,在他的新程序RELION中进一步完善,使单颗粒电镜图象处理能够将冷冻电镜的图像转变为精细的分子结构,让生物学家们更简单更清晰地看到分子机器。  很多事情其实也是机缘巧合。 Sjors的程序刚出来的时候并没有很轰动。因为当数据质量不好的时候,Sjors程序的用途是有限的。而我们用的K2相机将图像的质量大大提高了。此时此刻正好遇到Sjors的新程序。这两样东西结合在一起,就变得异常强大了。如果说Sjors程序在三年以前出现,它不会产生那么大的影响。  很多人说Sjors的程序改变了结构生物学。Sjors Scheres被Nature评为2014年十大科学人物。但他的成功也得益于相机技术的突破。同样,反过来也是一样的,相机的开发让冷冻电镜有一个革命性的飞跃,但是如果光有这个,而没有计算方法上的改进,相机的功能也不会完全展现出来。  最后,用传统的方法,需要用生物化学的手段将样品提纯到一定纯度,有了用最大可能法进行三维构相分类之后,蛋白晶体即便没有提纯到那个纯度,我们也能解析到很好的程度。  赛先生:回顾当初,你觉得您最大的贡献是什么?  程亦凡:我觉得我很幸运。TRPV1文章的的第一作者廖茂富(现为哈佛医学院助理教授)有病毒学的背景。刚来我实验室的时候,他从来没有做过电镜,也从来没有做过计算。他的一个主要的课题,由于各种原因,一直没有大的进展。面对困难,他从来没有放弃过。在长期艰苦的工作中,他积累了很多的经验。也是因为他这种长期的积累,等到了某一个点上,一下子水到渠成。如果当时是另外一个人做这件事情的话,最终可能也能做成,但是不会有那么顺利。  另一位第一作者,曹二虎(现为犹他大学助理教授),有非常扎实的结构生物学基础和经验,也有多年的TRPV1研究经验。他花了很多年优化TRPV1的表达和提纯。图象飘移校正技术文章的的第一作者是现在清华大学的李雪民教授。他也是中科院物理所李方华老师的学生,有非常扎实的电镜理论和实验基础。他的兴趣一直在开发方法方面,从头到尾参与了相机的鉴定应用程序开发。他是非常聪明的科学家。  另外,我们在生物化学方面也一直用各种各样的办法来尝试做膜蛋白。如果我们从来没做过膜蛋白,上来直接做TRP通道,我相信也很难做到这种程度。我们也有最好的合作伙伴,UCSF的David Julius 和David Agard, 以及UCSF独特的研究环境。这些都是不可或缺的成功条件。  我认可自己的一点是,我做的东西,很多都是别人说做不了的。David Agard对我的评价是,这么多年来一直不被教条所束缚,总是去挑战各种极限。这也是我一贯的工作的态度。  赛先生:当时为什么想到去学电镜?  程亦凡:我是学物理出身。物理学最令人激动的时候可能是上世纪二三十年代,我们这一代人学物理时就感觉有点生不逢时。1982年,Shechtman第一次发现准晶。当时郭可信先生和张泽、王大能发表了国际上第二篇关于准晶工作的文章。当时我们就觉得一下子跟着进入了一个领域的最前沿,令人非常激动,所以很多人都开始做准晶。我也是因为受此感染,想研究准晶,而去学电镜。但是做了十年以后,就感觉有点枯燥,但不断追求的心态还在。我这时选择转行做生物,也是历史的机缘。苏联解体后,美国停掉了“星球大战”计划,全世界的物理陷入了一种空前的危机之中。很多学物理的人都找不到工作,在那个时候,很多人转去做材料,而我对材料科学兴趣不大,感觉生物对我更有挑战一些,更有吸引力。  赛先生:因为缺少生物学背景,有没有想到会遇到困难?  程亦凡:这是肯定的。但是年轻的时候很多想法还是很幼稚的,也不怕难。直到现在我都觉得什么东西都学得会。比如我经常跟学生说:“you can learn anything you want, the only questionis how much you want to learn it.”  我们对电子显微学的理解要远远超过很多以生物背景做冷冻电镜的人。在当时,我觉得这是我们的优势。我们的弱点是在刚转行时完全不懂生物,更不懂生物化学。但我觉得这些东西都可以学,如果你真想学,一定可以学会。所以也没有什么克服不了的困难。  赛先生:问一个比较现实的问题,你一直在坚持做自己喜欢的事情,但是很晚才得到认可。你是如何看待这个问题的?  程亦凡:我1991年博士毕业,做了5年的材料物理博士后。转行做生物时,我对自己说,我最多相当于重新读一个Ph.d,花五年十年学一个东西不算很长时间。那时候的人跟现在不太一样,少了很多浮躁。  重要的是,我自己很喜欢,没有想过要放弃。我家人也很支持我,跟着我在全世界跑,从来没有过怨言。很多人选择放弃,很大一部分是家庭原因。希望稳定下来,找一份稳定的工作,那么不得不做出选择。  我从来没有觉得自己比别人晚了很多。我一直觉得自己很幸运。  赛先生:UCSF对教员的压力是不是没有那么大?  程亦凡:UCSF的环境非常独特。我2006年才做助理教授。我当时的年纪在国内恐怕是找不到类似的工作的。另外,UCSF很赞赏我这种背景。我当时在美国其他地方找工作,经常碰到的评价是,你是物理学家,不懂生物学。我到UCSF面试的时候,我说我是一个物理学家,当时的系主任接的第一句话是:That’s great, you know things we don’t know。  这也是我当时选择UCSF的一个主要原因,它给你的支持,不是说给了你多少资源,而是它对待你的宽容。我拿到终身教职的时候,我的这些文章都没有,这个时候他会看个人的潜力。给了我这种环境,却始终没有给过我任何压力。  赛先生:冷冻电镜突破之后,目前的工作主要在哪一块?今后有哪些让你觉得兴奋的工作?  程亦凡:当然有。我们实验室主要的工作还是专注在膜蛋白上。我感觉自己越来越像一个生物学家。我并不满足于只解析出结构,还希望能够理解它。所以TRP channel一直是我们实验室的一个主要方向。另外一方面,我也希望方法上能有所提高。比如提高分辨率。我也希望能够把蛋白做到更小,比如到100kDa以下。  赛先生:有人把你和张益唐老师做了一个对比。因为你们都是1978级的毕业生。这一代人身上有三个特点:坚韧、有榜样的力量来鼓舞、不屈不挠必须把事情做成的心态。  程亦凡:我看到过这种比较,某种程度上讲也许有一定道理,但也并不完全是。有道理是说,因为我们这代人经历的东西太多,我们经历过文化大革命,也见证了整个国家由改革开放带来的变迁,以及经济和科研上的由弱变强。也许是这些经历造成了我们这一代人身上的这些相似的特点。我想不同的是,我自己觉得我还是比较顺利的,一直都在做我喜欢做的科学,从来没有想过要放弃,所以也没觉得有多难。  另外,每个人对成功的理解不一样。我觉得自己一直都挺成功的,并不是直到解了TRPV1结构才是成功了。对我来说,2003年发第一篇Cell文章,2006年拿到助理教授的位置,建立自己的实验室,2008年解蛋白酶体到5埃分辩率,到2012年拿到终身教职,和2015年当上霍华德休斯医学研究所研究员,还有我拿到的每一个grant,发的每一篇文章,每一步都是成功。当然也有很多想做而没做成的事,想拿而没拿到的grant,想发而没发了的文章,也有很多想做而没法做或没做成功的实验,等等,等等。这些成功与不成功都不会停在某一个点上,而是还会不停地继续下去。

程序冷冻仪相关的方案

程序冷冻仪相关的资料

程序冷冻仪相关的试剂

程序冷冻仪相关的论坛

  • 澳大利亚CRYOLOGIC公司 胚胎冷冻仪 程序降温仪 CL-8800

    澳大利亚CRYOLOGIC公司 胚胎冷冻仪 程序降温仪 CL-8800胚胎冷冻仪 程序降温仪 程序控温仪 程序冷冻仪Tel : 010-87875910 87875015 13371681771 Email:bioresource@163.com CL-8800型程序降温仪是具有高性能、高可靠性以及高安全性的温变速率可控的便携式液氮冷冻系统,由澳大利亚CRYOLOGIC公司运用其专有的国际专利技术设计制造。它采用模块化设计,每套系统主要包括一个用户可编程的温控器与一个冷冻罐。用户可从实际需求出发选择最适合的组件进行配置。CL-8800型程序降温仪现已广泛应用于各个领域之中。无论是兽医、饲养员,还是医疗诊所、大学各实验室,甚至是企业、政府部门的研究机构都选用此系统从事实验室或者野外的工作。CL-8800型程序降温仪具有以下特点:1. 精确: 温度能够被精确设定并在工作过程中精确保持.个样品管内部及不同样品管之间的温度也都精确地保持一致性。2. 灵活: 无论是冷却还是升温,其速率都可根据用户的不同要求而变化。冷却速率可高达8℃/分钟。度能够保持在可控温范围内的任一点上。3. 智能: 所有温度控制都可预先编程,也可临时设定(连接计算机时),随心所欲。当冷冻罐的温度超过或低于指定温度时1.5℃时,系统会自动发出一个听觉的或视觉的报警信号。4. 安全: 系统仅需要少量的液氮。无需使用液氮钢瓶,也完全不涉及酒精等其他易挥发或可燃的液体。5. 经济: 系统每小时消耗的液氮量小于1升,电量的消耗少于60瓦。6. 可靠: 操作使用简单,设置后几乎不需要监控。7. 便携: 紧凑结构设计,体积小,重量轻,便于野外使用。8. 安静: 系统的整体设计使得完全不产生振动或噪音。CL-8800型程序降温仪(胚胎冷冻仪)配置及技术参数标准冷冻容器(CC23S型):容积: 细管23x0.5ml 或者46x0.25ml最高冷冻速率: ~8℃/分钟(在20℃时)最高升温速率: ~15℃/分钟(在-43℃时)尺寸(带盖): 直径55mm,高150mm重量: 350g测温探头: 铂CL-8800标准套包括控制器、标准冷冻容器、冷冻罐、软件及提箱,系统总重9公斤CL-8800温度控制器温度控制器参数:控温范围: +40 ℃ ~ -120℃之间温度显示: 数字式液晶显示,分辨率0.04℃重量: 1.9kg尺寸: 90 x 195 x 225mm程序: 预存储16个,可编程报警温度: ~±1.5℃偏离北京时代新光生物技术有限公司 Tel : 010-87875910 87875015 13371681771Email: bioresource@163.com Web : www.bio-life.cn

  • 高速冷冻离心机使用维护技巧

    [font=微软雅黑](1)为确保高速冷冻离心机安全和离心效果,高速冷冻离心机必须放置在坚固水平的台面上,塑料盖门上不得放置任何物品,样品必须对称放置,并在高速冷冻离心机开机前确保已拧紧螺母。[/font][font=微软雅黑](2)高速冷冻离心机应经常检查转头及试验用的离心管是否有裂纹,老化等现象,如有须及时更换[/font][font=微软雅黑]。[/font][font=微软雅黑](3)高速冷冻离心机试验完毕后,需将高速冷冻离心机擦拭干净,以防高速冷冻离心机腐蚀[/font][font=微软雅黑]。[/font][font=微软雅黑](4)[/font][font=微软雅黑] 严格按照高速冷冻离心机的开关机程序关机。[/font][font=微软雅黑](5)当高速冷冻离心机的电机碳刷长度小于6mm时,必须及时更换[/font][font=微软雅黑]。[/font][font=微软雅黑](6)在高速冷冻离心机离心机未停稳时不得开盖[/font][font=微软雅黑]。[/font][font=微软雅黑](7)高速冷冻离心机必须有可靠接地[/font][font=微软雅黑]。[/font][font=微软雅黑](8)实验结束后,请关闭高速冷冻离心机后面的电源开关,拨掉高速冷冻离心机电源插头时,请不要忘了打开高速冷冻离心机后面的电源开关[/font][font=微软雅黑]。[/font][font=微软雅黑](9)高速冷冻离心机在日常使用中请注意符合“5.6,5.7”要求。[/font]

  • 高速冷冻离心机维护技巧

    [font=微软雅黑](1)为确保高速冷冻离心机安全和离心效果,高速冷冻离心机必须放置在坚固水平的台面上,塑料盖门上不得放置任何物品,样品必须对称放置,并在高速冷冻离心机开机前确保已拧紧螺母。[/font][font=微软雅黑](2)高速冷冻离心机应经常检查转头及试验用的离心管是否有裂纹,老化等现象,如有须及时更换[/font][font=微软雅黑]。[/font][font=微软雅黑](3)高速冷冻离心机试验完毕后,需将高速冷冻离心机擦拭干净,以防高速冷冻离心机腐蚀[/font][font=微软雅黑]。[/font][font=微软雅黑](4)[/font][font=微软雅黑] 严格按照高速冷冻离心机的开关机程序关机。[/font][font=微软雅黑](5)当高速冷冻离心机的电机碳刷长度小于6mm时,必须及时更换[/font][font=微软雅黑]。[/font][font=微软雅黑](6)在高速冷冻离心机离心机未停稳时不得开盖[/font][font=微软雅黑]。[/font][font=微软雅黑](7)高速冷冻离心机必须有可靠接地[/font][font=微软雅黑]。[/font][font=微软雅黑](8)实验结束后,请关闭高速冷冻离心机后面的电源开关,拨掉高速冷冻离心机电源插头时,请不要忘了打开高速冷冻离心机后面的电源开关[/font][font=微软雅黑]。[/font][font=微软雅黑](9)高速冷冻离心机在日常使用中请注意符合“5.6,5.7”要求。[/font]

程序冷冻仪相关的耗材

  • 冷却液检测程序
    油料光谱仪Q100和MC的选配程序,用于防冻液/冷去液的元素分析(添加剂元素、污染元素、腐蚀元素)
  • 冷却液检测程序
    油料光谱仪Q100和MC的选配程序,用于防冻液/冷去液的元素分析(添加剂元素、污染元素、腐蚀元素)
  • 冷冻保护箱
    冷冻保护盒Cryo-Preserver用于盛放试管样品放置于冷冻环境,适合液氮,干冰或丙酮,乙醇之类的制冷环境,是理想而冷冻样品盒或样品冷冻盒。把试管样品放入到冷冻保护盒中放置于上述冷冻环境可有效隔离制冷物质对于样品的污染,并且放置样品非常方便。把冷冻保护盒PappaCooler存放于您的冷冻环境中,准备样品时可以去除冷冻保护盒放置于工作台上,取出样品。存放样品时,直接试管插入即可。冷冻样品盒该设计经过优化,能够高效率大规模冷冻各种样品,在低温时保细胞原核和真核细胞并给予很高的存活率。使用样品冷冻盒PappaCooler省时省钱,不用需大量的能量产生溶剂和气体,节能环保。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制