纳米光电子

仪器信息网纳米光电子专题为您整合纳米光电子相关的最新文章,在纳米光电子专题,您不仅可以免费浏览纳米光电子的资讯, 同时您还可以浏览纳米光电子的相关资料、解决方案,参与社区纳米光电子话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

纳米光电子相关的资讯

  • 国内首台纳米角分辨光电子能谱实验站建成启用
    近日,张江大科学装置集群再添科研利器。由上海科技大学负责设计研发和建设的上海同步辐射光源纳米角分辨光电子能谱(NanoARPES)实验站顺利通过了中国科学院组织的工艺测试验收。该实验站是上海同步辐射光源二期工程中纳米自旋与磁学线站的重要组成部分。这是我国首台NanoARPES装置,实验站的建成填补了国内相关研究设施的空白,总体参数性能达到国际顶尖水平。  NanoARPES技术通过将同步辐射光斑尺寸聚焦到百纳米量级(传统的ARPES光斑的1/100)获得具有空间分辨能力的角分辨光电子能谱,极大地拓展了ARPES的研究体系和范畴。NanoARPES既可高效率地探测极小尺寸的样品或具有相分离的多晶畴材料电子结构,又可开创性地研究样品边缘/畴界等局域空间的电子特性;对于低维材料人工异质结(如Moire体系)电子结构、拓扑量子材料边缘态等前沿科学问题探索更具有独特的优势。目前NanoARPES实验站仅在发达国家同步辐射光束线上部署运行,如美国ALS BL7、英国DIAMOND I05、法国SOLEIL ANTARE、意大利ELETTRA Spectromicroscopy。  国家“十二五”重大科技基础设施项目“上海光源线站工程”部署规划建设“纳米自旋与磁学线站”,其中NanoARPES实验站是国内首套同类装置,由上海科技大学负责建设。从初步设计,建设测试实验站(上海光源BL03U支线)到最终装置搭建历时近6年时间。在整个过程中项目团队自主创新,团结协作,克服了旋转真空腔设计、光路定位与诊断、样品位置精密操纵及稳定性、低温性能等多重技术难关,顺利按时完成项目的建设。  由来自中国科学技术大学、上海交通大学、中国科学院高能物理研究所和复旦大学的5名专家组成项目工艺测试专家组,详细审核了测试内容、测试方法和测试大纲,听取了项目研制报告和自测报告,并进行了现场测试。测试结果表明:NanoARPES实验站的实测光斑、能量分辨率、光通量等各项指标均达到或优于设计指标。其中,实验站水平/竖直方向的空间分辨率均优于200nm,能量分辨率优于10meV@91eV/30K。总体性能达到国际顶尖水平。  NanoARPES实验站的顺利建成及工艺验收意味着我国在此项光子科学先进测量手段上打破了国际垄断,为国内科学家开展相关研究提供了一流的研究平台。目前,该实验站已开始进行系统优化调试并开展了初步科学实验测试,将在不久的将来向全世界的科研用户开放。NanoARPES实验站200nm空间分辨率实测结果 NanoARPES实验站的设计与建设由上海科技大学物质学院陈宇林-柳仲楷项目团队完成。其中副研究员王美晓具体负责实验站的整体设计、搭建和工程项目推进;工程师王峰完成多自由度压电陶瓷样品台的研发、改进和液氦温度低温冷头的设计;机械加工中心主任、物质学院副研究员刘芳和大科学中心高级工程师刘鹏为项目的难点攻关和技术改进进行技术支持;特聘教授陈宇林,助理教授柳仲楷负责项目整体的规划、设计和协调管理。课题组内的博士后、研究生、本科生同学为实验站的搭建投入了大量的工作。上科大物质学院及拓扑物理实验室、大科学中心、机械加工中心为项目建设提供了有力的支持。上海光源二期工程团队提供了束线建设及技术支持。
  • 网络讲座预告——有机电子学中纳米材料的光谱型椭偏表征
    HORIBA Scientific将于9月11日上午1:30举办&ldquo 有机电子学中纳米材料的光谱型椭偏表征&rdquo 免费网络讲座,欢迎大家届时参加。 有机电子学是一门新兴技术,正广泛应用于有机光伏(OPVs)、有机发光二管(OLEDs)、有机晶体管(OTFTs-传感器)和生物传感器等产品。 HORIBA Scientific邀请了希腊亚历士多德大学有机电子研究组组长Argiris Laskarakis博士作为本次讲座的主讲者。讲座将围绕柔性有机电子器件中的纳米材料的光学表征展开讨论,例如柔性OPVs。此外,还会讨论在Roll-to-Roll(R2R)系统上实现在线椭偏系统、实时分析柔性PET衬底上印刷的纳米薄膜的光学常数和和厚度形貌等内容。 作为拥有有近200年发展历史的光学光谱专家,HORIBA Scientific的椭圆偏振光谱仪可广泛应用于显示(TFT/OLED等)、光学镀膜、半导体、光电子、太阳能、纳米及生物技术等领域。与此同时,HORIBA Scientific也通过此类技术交流会不断与各领域的研究者进行深度合作,始终为科研及工业用户提供先进的检测和分析工具及解决方案。 您可以通过新浪官方微博来关注HORIBA Scientific新的动态,也可以通过以下邮箱与工程师进行技术交流:info-sci.cn@horiba.com
  • 红外物理国家重点实验室在纳米结构中电子非平衡特性检测方面取得突破
    p   电子被发现一个多世纪以来,人类社会对它的依赖程度越来越大,如今,它已成为微电子和光电子技术的物理基石。随着微电子器件尺度按摩尔定律不断向纳米尺度减小,对于电子运动规律的认识将面临着从平衡态理论向非平衡态理论的发展。正如美国基础能源科学顾问委员会报告中指出,当前科学上面临的5大挑战之一就是对非平衡态尤其是远离平衡态的表征和操控。 /p p   按平衡态理论,人们预测在微电子器件中电流最大的位置往往会是电子温度最高的地方。中国科学院上海技术物理研究所红外物理国家重点实验室陆卫研究员和复旦大学安正华研究员的科研团队共同合作,利用非平衡输运热电子的实验检测在技术,通过散粒噪声对非局域热电子能量耗散进行空间成像研究,发现在纳米尺度结构中,电子温度最高之处并非局域在电流最大位置,而是明显地向电流的流动方向偏离了,而且电子的温度高于晶格温度很多倍。从理论和实验两方面证实了这种奇异特性就来自热电子的非平衡态特征。 /p p   该研究工作的最大挑战来自于非平衡输运热电子的实验检测技术上。实验室采用了自主研发的超高灵敏甚长波量子阱红外探测器的扫描噪声显微镜(SNoiM)技术,称为扫描噪声显微镜技术。其基本机理是非平衡态电子的电流强烈涨落形成的散粒噪声会直接导致近场甚长波红外辐射,通过高灵敏的红外近场检测可实现仅测量到非平衡态电子特性,从而为直接观察在纳米结构中电子的非平衡态乃至远离平衡态的特性提供了独特的方法。 /p p   相关研究成果“Imaging of nonlocal hot-electron energy dissipation via shot noise”(DOI: 10.1126/science.aam9991)已于2018年3月29日获得《Science》杂志在线发表,将对认识和操控非平衡热电子进而增强器件功能发挥重要作用。 /p p   这项研究工作得到了科技部国家重点研发计划、国家自然科学基金委、上海市科委重大项目、中国科学院海外科学家计划等资助。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/a4df0693-4a72-453f-81b5-9f6fe7165ff9.jpg" title=" 1.jpg" / /p p br/ /p p   应用扫描噪声显微镜(SNoiM)进行的超高频率(~21.3THz)噪声的纳尺度成像,(A)扫描噪声显微镜的实验装置示意图。(B) GaAs/AlGaAs量子阱纳米器件的电子受限区域的SEM图。(C和D)相反偏置电压(6V)下二维实空间的近场噪声强度信号成像,近场信号由针尖高度调制模式获得,其中彩色表达了电子的等效温度。(E) 近场信号与针尖高度关系,近场信号是由电压调制模式获得。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/8edf4c2f-af08-4a76-9da3-10ee26f8f1fb.jpg" title=" W020180506601359218862.jpg" / /p p br/ /p p   噪声强度随偏置电压增大的演变。(A-F)由针尖高度调制模式获得的二维成像图。(G)y方向(平行于[100])一维近场信号随位置变化图。(H)近场(圆和三角形点表达)和远场(方形点表达)探测到的噪声强度随着偏置电压的变化规律。 /p p br/ /p

纳米光电子相关的方案

纳米光电子相关的论坛

  • 【姚文清专家系列讲座】 2015年6月2日 第一讲:电子能谱技术与纳米材料表征

    【专家讲座】:电子能谱技术与纳米材料表征【讲座时间】:2015年06月02日 10:00【主讲人】:姚文清 (高级工程师。国家大型科学仪器中心—北京电子能谱中心副主任,清华大学分析中心表面分析室主任。先后获得北京理工大学工学学士和清华大学工程硕士,并做为高级访问学者到访香港理工大学访问研究。。)【会议简介】 电子能谱(photoelectron spectroscopy),利用光电效应的原理测量单色辐射从样品上打出来的光电子的动能(并由此测定其结合能)、光电子强度和这些电子的角分布,并应用这些信息来研究原子、分子、凝聚相,尤其是固体表面的电子结构的技术。对固体而言,光电子能谱是一项表面灵敏的技术。 电子能谱技术主要用于表征纳米材料表面的化学组分、原子排列以及电子状态等信息。利用X射线光电子能谱(XPS)和俄歇电子能谱(AES)对表面元素做出一次性的定性和定量分析,并通过离子束溅射获得元素深度的化学成分分布信息,利用高空间分辨率进行微区选点分析、线扫描分析以及元素面分布分析。电子能谱技术是应用于微电子器件、催化剂、材料保护、表面改性以及功能薄膜材料等方面表面分析和价态分析的重要分析方法。 本讲座主要介绍XPS和AES在纳米材料研究中的应用,并结合本课题组的研究工作进一步揭示利用电子能谱技术对器件表面失效的评价方法。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名参加。2、报名截止时间:2015年06月02日 9:303、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/14784、报名及参会咨询:QQ群—379196738

  • 关于纳米区域电子衍射(NAED)和纳米束电子衍射的区别?

    这个纠结我很久了!哪位高手给点指点文献中提到的NAED是通过用很小的C2光阑来减小束斑(比如10um),同时保持电子束平行入射,因此可以得到几十纳米区域的锐利的衍射斑。但是我们的FEI电镜C2的最小尺寸都是50um,没法实现那种情形。于是我尝试用纳米束衍射来做。我在Spot Size7, Gun lens3的情形下做纳米衍射,我通过调整C2(Intensity),可以改变衍射斑的直径大小,并且在一定的束斑大小下也可以得到衍射斑而不是衍射盘。我想问的是:这两种情形下得到的锐利的衍射斑有什么区别,因为感觉第一种肯定是平行束入射,第二种却是在会聚束情形下得到的(但也有可能改变C2的过程中能得到近平行的电子束)。

纳米光电子相关的资料

纳米光电子相关的仪器

  • Thermo Scientific ESCALAB QXi X 射线光电子能谱仪(XPS)是ESCALAB 系列的最新产品。作为可扩展的多技术表面分析平台,ESCALAB QXi有着空前的灵活性和完备的专业配置选项。汇聚前沿技术,打造出高效便捷的软件系统和高性能的硬件配置,带来世界一流的测试体验和高效的生产力。强大的Thermo Scientific&trade AvantageTM 软件系统集系统控制、设备状态实时监控与调节、数据采集、数据处理、报告生成等多功能于一身,操作便捷,快速高效。世界领先的分析性能●定量光谱成像 世界一流的能量分析器设计和双晶微聚焦单色化X射线源结合,实现了卓越的能量分辨率●快速高分辨平行成像 化学成像: 空间分辨率优于1um 回溯成谱: 回溯区域优于6um●无需背底修正探测器 电子倍增器和电阻阳极探测器的双探测器设计,可实现高性能的XPS采谱和高空间分辨的XPS成 像的需求 空间连续的电阻阳极探测器创新技术,使得XPI成像分辨率达1um,所得数据无探测器背底特征,无需背底校正 直接得到微米尺度分辨的定量元素分布成像结果●微聚焦单色源 分析尺寸在20μm~900μm之间连续可调 卓越的灵敏度和能量分辨率 提供不少于20个靶材工作点,确保仪器终身使用过程中阳极靶无需更换●自动化高效离子剖析源 新型Ar离子团簇与传统单粒子离子源相结合,用于各类材料的深度剖析研究●高精确度角分辨XPS 软件控制分析位置和角度,确保数据的精确性和重复性 全套的ARXPS数据处理工具,可对纳米尺度的多层结构器件进行层厚计算●一键式荷电补偿 配有双束电荷中和系统,可以根据实际样品的需要独立控制开启。 适用于所有不导电样品及粗糙表面的精准荷电中和●强大的Avantage分析软件 全数字化仪器控制 系统软件可视化操作 全套XPS标准数据图库以及化合物结构鉴定数据库 自定义数据采集到报告生成模式操作简便●高度自动化 分析区域和角度分辨可选 自动化气体调节和真空控制●随时校准 能量标尺和仪器功函数的校准 离子枪定位和离子束聚焦●鼠标点击式样品导航 实时显示分析位置 高照明强度、强度可调设计灵活●ISS、ARXPS与REELS为标准配置●多功能进样室为标准配置●UPS和EDS/AES/SEM/SAM/可选●可选的样品预处理附件,包括: 样品制备台、晶体清洁器、样品刮片器 样品加热/冷却装置 溅射清洁离子枪 蒸发器 高压反应室如您想了解更多关于EscaLab QXi X射线光电子能谱仪报价、型号、参数等信息,欢迎来电或留言咨询。
    留言咨询
  • Imina公司的miBotTM是世界上最紧凑的机器人,具有4个自由度及纳米定位分辨率,专为FIB/SEM电性测量及分析开发。与传统纳米机械手不同,miBotTM是一种自由移动机械手,几乎不受限制,能够在载台表面自由移动。由于采用非固定安装,miBotTM可以定位任意位置同时能够测量各种外形样品。miBotTM采用压电陶瓷驱动,运动范围达厘米级,定位分辨率从微米到纳米不等,步进模式能够快速移动探针指感兴趣区域,而扫描模式能够快速落针。miBotTM具备高刚度手臂使其抗震性好,其无与伦比的稳定性确保了即使在最小的样品上也能长时间保持稳定接触。miBots移动均在本身方向进行,无需传统旋转和平移耦合控制,因而操控非常直观。用户很快可掌握,大大减小损坏样品的风险,用户也更为直观实现各类电学测量分析。功能丰富且容易满足各类样品需求优化的操作设计确保操作简单、测量安全可靠、数据传输快兼容低加速电压和短工作距离分析,同时支持磁性镜筒的高分辨率成像55°倾斜角度下依然能长时间稳定定位和电学接触,满足FIB原位分析厘米级移动范围,高达15μm范围高精度纳米级精细运动控制适配小工作距离适配磁性镜筒平台适配FIB大倾转分析标准纳米钨针光纤机械手配置灵活方便可选配置:1. 变温载台温度范围:-30℃~+150℃,可连续精准控温温度稳定性:0.05℃可折叠散热器满足小腔体SEM安装Peltier半导体制冷无震动 2. EFA电性失效分析专为EBIC、EBAC/RCI和EBIRCh的高效精确缺陷定位设计实时成像,缩短数据传输时间自动路径规划简化操作流程各种故障案例进行高性能分析 3. XYZ子样品台在电镜载台运动外增加样品独立XYZ调节降低探针落针时间及满足批量测量行程范围:5mm(X/Y),330μm(Z)分辨率:2nm(X/Y),7nm(Z) 4. 软件模块化纳米分析工作流程预设分步式流程,降低学习曲线并减少数据处理时间快速设置工作流程,轻松完成落针配备预定义的测量配方管理测量数据库,轻松进行曲线对比及结果导出 5. 大样品载台双层架空设计最大支持2英寸晶圆以及先进封装和横截面样品测试不同高度支架选择满足各种高度样品分析 6. 标准失效分析设备设计可选标准19寸机柜,可容纳各类控制器及标准可参数分析仪标准工具和配件工具箱预装软件工作站及配套显示器应用场景:1. 纳米分析失效分析和可靠性分析集成电路安全评估芯片设计及逆向工程 2. EBAC/RCI分析开路、电阻或短路缺陷定位分析制造和长期问题诊断低电阻梯度分析 3. 半导体器件分析单个晶体管/二极管的I-V曲线测量SRAM位单元特性分析通孔电阻率测量 4. 电性测量MEMS和传感器驱动和分析光电子器件测试:MicroLED、太阳能电池材料表征:纳米线、石墨烯、薄膜、纳米颗粒 5. EBIC分析PN结区可视化及缺陷定位偏压下样品电荷成像分析掺杂可视化及分析 6. 纳米操纵纳米颗粒分离和定位TEM样品制备微纳组装
    留言咨询
  • NX-B100/B200整片基板纳米压印系统经过了大量的实时实地验证,质量可 靠,性能优越稳定。具备全部压印模式:热固化、紫外固化和压印。基于独 特保护的Nanonex气垫软压技术(ACP),不论模版或基板背面粗糙程 度如何,或是模版或基板表面波浪和弧形结构,NX-B100/B200均可对其校 正补偿从而获得无与伦比的压印均匀性, ACP消除了基板与模版之间侧向偏 移,有效地延长了模版使用寿命。通过微小热容设计可获得快速的热压印周 期,zui终得到快速的工艺循环。主要特点:所有形式的纳米压印热塑化紫外固化 (NX-B200)热压与紫外压印同时进行(NX-B200)热固化 气垫软压技术(ACP)Nanonex技术完美的整片基板纳米压印均匀性高通量低于10nm分辨率 快速工艺循环时间(小于60秒) 灵活性最大75毫米直径压印面积各种尺寸及不规则形状模板与基板均可压印方便用户操作基于超过12年、15代产品开发 经验的自动化压印操作Nanonex压印系统经过大量实 时实地验证,质量可靠,性 能优越稳定全自动纳米压印系统参数:热塑压印模块(NX-B100/B200) 温度范围0~250℃加热速度200℃/分钟制冷速度60℃/分钟压力范围0 ~ 3.45 MPa(500 psi)紫外固化模块(NX-B200)58mW/cm2紫外LED光源365纳米或395纳米波长可选全自动化控制模版装载功能最大3英寸模板可用于标配纳米压印系统基板装载标配纳米压印系统可装载3英寸基 板 各种尺寸及不规则形状模板与 基板均可压印 独特保护ACP技术可最大限度保护模板和基板,特别对于象磷化铟(InP)等极易碎模 板和基板给予最大限度。其他参数:配有微软Windows的电脑控制系统 用户友好的控制软件 程序化控制压印温度、压力和时间 真空和压缩空气操作由电脑控制 手动装载/拆卸基板 自动化压印操作 设备占地面积:32 × 34 英寸(810 mm × 860 mm) 应用领域:纳米电子和光电子、显示器、数据存储介质、先进材料、生物科技、纳米流道等。
    留言咨询

纳米光电子相关的耗材

  • 电镜纳米螺旋标尺
    产品特点:金纳米螺旋标尺(L,R)是手性的纳米标记物,尤其适合于3D断层扫描,电子显微镜(EM)或冷冻电镜。我们的手性标记物显示纯手性(L或R),由于高对比度和金纳米颗粒的精准排列,可以很容易地被电镜检测到。金纳米螺旋标尺(L,R)是用DNA折纸技术制备,金纳米颗粒(10nm)被排列成纳米螺旋(螺距57nm 长110nm 直径34nm)。纳米标尺,AFM纳米标尺,原子力显微镜纳米标尺,共聚焦显微镜纳米标尺,超高分辨显微镜纳米标尺,SIM纳米标尺,STED纳米标尺,STORM纳米标尺,电镜纳米螺旋标尺,金纳米螺旋标尺,显微镜亮度灵敏度标尺,显微镜纳米标尺技术参数:在透射电镜载网中:样品放在干燥的透射电镜载网上使用,以提高由银增强放大了的螺旋效果。样本存储在石蜡膜覆盖的塑料孔中进行运输。保质期是6个月。在缓冲液中:该纳米螺旋储存在缓冲液(1X TE,11mM MgCl2)中运输。样本量约为30μL,这个量足以用于10个以上的TEM。样品保存于低温的保温盒中进行运输。适当的储存条件下(避光,4℃),保质期为3个月。
  • Kleindiek纳米操纵仪配件
    Kleindiek纳米操纵仪配件是为外部电子显微学制备样品而设计的超精密样品拾取装卸系统,它在纳米尺度灵活微操纵样品。Kleindiek纳米操纵仪配件安装安装有一根微夹钳,一个四轴辅台,在表面有一个允许快速接近的小型CCD摄像头。Kleindiek纳米操纵仪是由安装在一个超小型平台上的一个四轴辅台构成。在辅台上安装了一个微夹钳,促进提取。操作该辅台将预切样品放置在微夹钳下。在这之后,微夹钳夹住样品并轻轻地固定住样品,固定要足够牢固,只要使辅台向旁边下落,就可以将样品从大量材料提取出。一旦分离,在TEM网格上,将样品与SEM兼容胶水接触,并且用离子束固化。Kleindiek纳米操纵仪配件规格:取样室兼容平台上的辅台最大样品尺寸:30mm行程:X和Y =10mm行程:Z轴为3mm行程:R =360°(无限)速度:可达1mm/秒分辨率:0.5nm笛卡尔运动没有反弹或翻转是大多数SEM和FIB工具的简单取样室装置几乎不受震动影响微夹钳运输和组装微型物体的高分辨率夹持器抓握区域:(5至10 μm)分辨率:20nm夹持力:5至5000μN(变量)最大跨度范围:20?40 μmSemCam样品表层的小相机允许快速接近包括显示器和LED照明
  • 吉致电子JEEZ陶瓷抛光液 CMP纳米级抛光液
    产品名称:陶瓷抛光液/氧化锆抛光液/氧化铝抛光液/氮化硅抛光液/氮化铝抛光液陶瓷抛光液作用: 吉致电子陶瓷类抛光液适用于碳化物、氮化物、氧化物和硼化物各精密陶瓷件的镜面抛光,通过CMP抛光工序可得到理想镜面效果,表面光滑平整具有易清洗、无残留等特点。产品特点:吉致可提供各陶瓷类的镜面抛光液1、纳米级抛光液,抛光后具有较优的粗糙度2、抛光液绿色环保、不含卤素及重金属元素3、抛光液可循环使用,根据工艺要求可添加去离子水稀释可定制化:可以依客户不同工艺要求,提供定制化服务 包裝方式:25KG/桶(也可依客户需求)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制