叶片式管道流量传感器

仪器信息网叶片式管道流量传感器专题为您提供2024年最新叶片式管道流量传感器价格报价、厂家品牌的相关信息, 包括叶片式管道流量传感器参数、型号等,不管是国产,还是进口品牌的叶片式管道流量传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合叶片式管道流量传感器相关的耗材配件、试剂标物,还有叶片式管道流量传感器相关的最新资讯、资料,以及叶片式管道流量传感器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

叶片式管道流量传感器相关的厂商

  • 安徽天光传感器有限公司创建于1991年,占地面积22000平方米。主要研发、生产、销售:称重传感器,电力覆冰检测传感器,扭矩传感器,拉力传感器,轴销传感器,压力传感器,拉压力传感器以及相配套测控仪表等产品。二十多年来天光不断吸取国内外的先进技术,引进国外领先的设备与工艺,学习与吸收现代企业管理理念,先后研发、生产了百余种测力传感器及配套仪器仪表,产品广泛应用于军工、航空航天、油田、交通、医药、冶金建材、教学等行业的计量与自动化过程中的检测等方面,其半导体应变计的生产工艺、设备及产量为国内领先,已申报发明专利。2008年我公司荣幸为北京奥运会主体育场鸟巢提供专用传感器,并获得好评。 陈圆圆180 5523 0933
    留言咨询
  • 湖北五岳传感器有限公司是中国第一支高温熔体压力传感器的诞生公司,成立20多年来,一直专注于PT111系列、PT124系列、PT131、PY1366B、PT167B系列传感器,压力传感器,压力变送器,高温压力传感器,熔体压力传感器,流体压力传感器,高温熔体压力传感器,高温熔体压力变送器,挤出机熔体压力传感器,化纤挤出机压力传感器,橡胶挤出机压力传感器,塑料机械熔体压力传感器,工业熔体压力传感器,和PY909、PY208、PY508、PY600、PY708系列高温熔体压力传感器智能数字显示压力仪表的开发,研制,销售及工程配套。是国内替代同类进口高温熔体压力传感器产品的最大生产商。五岳牌高温熔体压力传感器,变送器系列及高温熔体压力传感器智能数显仪表等产品在塑料,化纤,橡胶,石化等诸多工业门类的应用始终居于领导地位。五岳系列高温熔体压力传感器、高温熔体压力变送器、智能数字显示压力仪表还出口到东南亚、港澳台、韩国、中东及世界其它地区。同时维修美国DYNISCO意大利GEFRAN的同类高温熔体压力传感器产,提供关于各类高温熔体压力传感器的技术支持、使用维护!湖北五岳传感器有限公司荣誉榜:在中国制造出:第一支高温熔体压力传感器;第一支超高温熔体压力传感变送器;第一支**高温熔体压力传感器;第一台**高温熔体压力表;第一支高温熔体压力变送器;第一家与国际著名挤出业龙头企业合作的公司。
    留言咨询
  • 福建省莆田市衡力传感器有限公司是一家集专业高精度传感器研发、设计、生产、销售为一体的传感器制造厂家。 公司位于中国海峡西岸经济中心地,素有东方“夏威夷”之称,海上女神妈祖故乡——福建莆田。公司主要以生产称重、非标等数字传感器为主,目前产品已销往全国各省市地区,在河南、河北、山东等地设有办事处,打开东南亚、南亚等国际市场,为进一步实现以技术创市场的目标,公司与国内著名院校结成研发队伍,实现了“销售一代、试制一代、研发一代”的技术成建设,为衡力发展国内市场,走向国际市场,成为数字化传感器专家型企业,奠定了雄厚的技术基础。 十年来福建省莆田市衡力传感器有限公司严格依照国际计量组织(OIML)相关建议组织生产,在生产上建立起以ISO为标准的基础质量体系,并积极引进CE认证、5S管理,不但保证了产品品种全,性能好,还具有防腐、防水、防震等持久耐用特点,产品近年来在机械、衡器、化工、钢铁、科研等行业广受好评,在市场上获得了衡力“以优质创市场,技术创品牌”的良好口碑。 规范化、数字化、专业化、国际化、服务化是衡力走向国际化一流传感器企业的五大战略标准,当公司初步达成专业化、数字化、规范化三大目标时,下一个目标就是向国际化、服务化迈进,为向客户提供一个具有专业技术、一流服务、高附加值专业数字化传感器品牌进军.....
    留言咨询

叶片式管道流量传感器相关的仪器

  • 小型叶片式拌合机 400-860-5168转4727
    产品介绍: 叶片式拌合机采用不锈钢螺旋叶片,做拌合室内部补偿。拌合室可以拌合最低4.5kg(10磅),最多20kg(44磅)的混合料,可以几乎完全仿真工厂拌合过程准备混合料样本。例如,一次拌合可以准备两个APA梁型试样。拌合室的旋转叶片设计保证能将混合料从拌合室侧壁推向中央。这个特性保证集料颗粒在一分钟内达到沥青的完全覆盖。叶片式拌合机加热拌合室,可以维持拌合温度最高为400°F。 技术参数: 高度49”(125 cm)宽度47”(120 cm)深度25”(64 cm)重量1100 lbs. (500 kg)拌合室拌合室以及混合料配料口盖由3/8英寸钢板制成。 拌合室可以拌合4.5kg(10磅)到20kg(44磅)混合料。 拌合室有一个滑动门、气缸操作,将混合料放入到接收盘。 拌合机配有一个可容纳0.7立方英尺接收盘。接收盘由14号工具钢制成。 拌合室有2个旋转叶片,容易拆卸、清洁。端板用4个内六角螺钉连接到拌合室端板。旋转叶片可以松开其轴端的7/16”螺钉拆下控制拌合室温度(8)-500 瓦的加热丝安装在拌合室外边。 拌合室设置数字温度控制器。温度控制器可以设置用户选定的拌合室温度。 加热拌合室侧壁,防止混合料累积控制面板控制面板上的主电源开关用于紧急停机。 拌合时拌合启动和停止带黄色指示灯。 控制面板上有拌合室温度设定。 在控制面板上显示拌合室温度数字。 拌合室加热丝开关。 电流表观察消耗电流。 控制面板在机体前方。 拌合室上方设置一个推拉按钮,用于打开/关闭拌合室气动滑动门电源3相电机,单相交流230 V, 60 HZ, 20 A –- 4 线NEMA#L14-20压缩空气流量3 立方英尺/分 @ 827 Kpa (最小120 psi)机柜机柜由引人注目的亮灰色钢材制造,控制面板设置于机柜前方方便操作。
    留言咨询
  • 小型叶片式拌合机 400-860-5168转4727
    小型叶片式拌合机(双拌合舱)采用不锈钢螺旋叶片,做拌合室内部补偿。每个拌合室可以拌合最低4.5kg(10磅),最多20kg(44磅)的混合料,可以几乎完全仿真工厂拌合过程准备混合料样本。例如,一次拌合可以准备四个APA梁型试样。拌合室的旋转叶片设计保证能将混合料从拌合室侧壁推向中央。这个特性保证集料颗粒在一分钟内达到沥青的完全覆盖。叶片式拌合机加热拌合室,可以维持拌合温度最高为400°F。 技术参数: 高度49”(125 cm)宽度64”(163 cm)深度25”(64 cm)重量1480 lbs. (672 kg)拌合室两个拌合室以及混合料配料口盖由3/8英寸钢板制成。 每个拌合室可以拌合4.5kg(10磅)到20kg(44磅)混合料。 两个拌合室可以同时进行拌合。 每个拌合室有一个滑动门、气缸操作,将混合料放入到接收盘。 拌合机配有两个可容纳0.7立方英尺接收盘。接收盘由14号工具钢制成。 每个拌合室有2个旋转叶片,容易拆卸、清洁。端板用4个内六角螺钉连接到拌合室端板。旋转叶片可以松开其轴端的7/16”螺钉拆下。控制拌合室温度(16)-500 瓦的加热丝安装在拌合室外边。 每个拌合室设置数字温度控制器。温度控制器可以设置用户选定的拌合室温度。 加热拌合室侧壁,防止混合料累积控制面板控制面板上的主电源开关用于紧急停机。 拌合时拌合启动和停止带黄色指示灯。 控制面板上有拌合室温度设定。 在控制面板上显示拌合室温度数字。 拌合室加热丝开关。 电流表观察消耗电流。 控制面板在机体前方。 拌合室上方设置一个推拉按钮,用于打开/关闭拌合室气动滑动门电源3相电机,单相交流230 V, 60 HZ, 20 A –- 4 线NEMA#L14-20压缩空气流量3 立方英尺/分 @ 827 Kpa (最小120 psi)机柜
    留言咨询
  • LT-1T叶片温度传感器 400-860-5168转4662
    LT-1T叶片温度传感器LT-1T叶片温度传感器是种超微型触摸探头,用于测量叶片的绝对温度,微型探头及其特殊设计对叶片温度的干扰几乎可以忽略不计。不锈钢线夹装有高精度热敏电阻,热敏电阻通常位于叶片的下侧,与叶片的温度达到平衡。热敏电阻通过 0.15 mm 的细导线连接到夹子上,最大限度地减少热传导和响应时间。所有导线都经过防潮处理,避免在潮湿条件下发生腐蚀。主要特点低成本、易于安装;只需将传感器夹在叶片上即可进行长期、低维护的现场测量;科学研究或灌溉监测的理想选择;SDI-12 输出和低功耗,适用于远程现场监控和物联网设备(LoRaWAN、NB-IoT)。 技术参数测量范围:-5 - 50℃测量精度:0.15℃误差:±0.08℃传感器重量:1.6g热敏电阻传感器接触面积:1mm2 电源电压:5-24VDC激发时间:0.15s传感器尺寸:50*20*10mm保护等级:IP64线缆长度:4m
    留言咨询

叶片式管道流量传感器相关的资讯

  • 超声波气体流量传感器国产化助力燃气计量行业转型升级
    一、燃气表行业背景分析近年来,我国加快推进“煤改气”工程建设,天然气已经成为我国现代清洁能源体系的主体能源之一。到2020年,天然气在一次能源消费结构中的占比力争达到10%左右,到 2030 年,占比提高到15%左右。在这些燃气迅速发展的利好消息促进下,燃气计量行业将迎来巨大的发展契机。膜式燃气表因其技术成熟、质量稳定和价格低廉等优点,在我国城市燃气发展中得到广泛应用,随着计算机和微电子技术的发展,膜式表也逐步实现了智能化,目前在燃气计量行业仍然占据着主导地位。但膜式燃气表结构复杂、易磨损、易受管道介质温度压力等客观因素的影响,导致测量精度降低。热式(MEMS)燃气表是利用热传递原理测量燃气标准状况下流量的一种新型燃气计量器具,采用全电子结构,无机械运转部件,体积小、精度高。虽然可以针对特定天然气组分进行修正,但是从原理上还是易受多种不同气体组分影响,温度的影响修正也相对复杂,同时长期的污染物沉积使得MEMS芯片响应变慢影响精度,使得其应用受到限制。超声波燃气表以其非接触测量、无可动部件、无压力损失、极高的计量精度和可结合更多的智能化应用等优势,引起国内外的高度重视,是近年来燃气计量领域的开发热点。 二、超声波燃气表的研究与应用现状其实早在上世纪九十年代,英国、德国等国的多家燃气公司已陆续开发了超声波燃气表。受当时超声波探头、计时芯片、电子技术等的因素限制,价格还是非常高昂,无法与传统膜式燃气表竞争。进入二十世纪后,超声波燃气表的关键部件价格大大降低,迎来了超声波燃气表的快速发展。日本东京燃气公司于2003年7月开展了超声波燃气表的各种现场测试,于2005年率先安装了5000台超声波燃气表至用户家中,在2008年全面使用超声波燃气表。目前国际上的超声波燃气表技术主要来源于松下、西门子等公司,他们在超声波领域深耕多年,从流道结构、软件算法、超声波换能器及模块到整机,都有着诸多专利。虽然国内现有多家燃气表公司已开始研发超声波燃气表,但是大多数厂家还是使用松下的超声波燃气表传感器方案,也就是购买松下的电路板和超声波探测器,自己配套外壳组装成超声波燃气表。这样的模式使得国内厂家生产的超声波燃气表价格偏高,市场推广受到限制。我国燃气表产业生态已经基本建立,因此积极开展自主知识产权、可以满足燃气表规范要求的超声波气体流量传感器的技术研究,对于打破国外技术垄断、促进我国燃气表转型升级发展具有重要意义。 三、超声波燃气表用气体流量传感器核心关键(1)超声波换能器的自主研制。目前满足超声波燃气表计量要求的核心部件的超声波换能器基本都是进口,价格占总成本的40%。国产化的难点是其带宽以及高低温特性,既要保证较长的测试距离提高测试分辨率、较高灵敏度提高信噪比,还需要考虑不同温度下的测试漂移。 (2)燃气表的性能和稳定性问题。超声波燃气表由于无机械部件,理论上稳定性较传统膜式表要高很多,但膜式表在国内多年的使用中,已广泛被燃气表公司和客户接受。超声波燃气表如何在稳定性上达到燃气表公司的需求,打消燃气表公司的顾虑,是超声波燃气表迈向市场化的非常重要的一关。(3)气体污染问题。与膜式燃气表一样,由于超声波燃气表的常年运行,燃气中的粉尘或杂质会附着在超声波换能器上,影响换能器对信号的接收敏感度,从而影响燃气表测量准确度。(4)气源适应性问题。天然气密度比空气小,信号也较空气小;不同密度的气体通过超声波换能器后,其信号的波形会很不稳定。超声波信号传输会受传播介质、环境(温度、湿度、压力)以及管道内反射等各种因素影响,接收到的超声波信号通常存在着波形变化、幅值变化。因此,家用波燃气表要想进入家庭,并广泛使用,对气源的适应性是需要克服的最重要一关。 四、超声波燃气表用气体流量传感器技术特点四方光电公司自2008年开展对超声波气体传感器的研究以来,通过在超声波换能器、时间计量芯片以及时差自动计算方法、流程成分同时感知等领域取得突破,特别是在超声波氧气流量传感器、超声波沼气流量计等领域实现了规模化生产应用,具有较好的技术和产业基础。针对家用燃气表需要的超宽量程比、宽温度范围、抗污能力、脉动气流测量等特殊要求,开发成功满足超声波燃气表用的超声波气体流量传感器。(1)“L”型流道结构设计。超声波燃气表用超声波气体流量传感器采用“L”型流道设计,包括腔体、进气口、出气口及两个超声波换能器,通过将气室腔体的横截面设置为圆形,将超声波信号在第一个换能器安装孔和第二换能器安装孔之间的传播路径设置为“L”型流道,如图1所示。 图1. 燃气表用超声波气体流量传感器结构原理图传统超声波燃气表气体流量计量气室的“W”型发射流道,“V”型对射单通单流道以及“N”型对射单通单流道,都是通过超声波在流道内产生一次或多次反射而形成的路径以增加超声波声程,间接增大了换能器的有效距离,从而获得更高测量精度。但其缺点是通过反射后探测器信号较弱,信噪比降低,对换能器的要求很高。因此造成成本也较高。采用“L”型流道、圆形横截面的超声波燃气模块,克服了现有超声波燃气表气体流量计量气室管道的横截面积较大,气室体积较大,成本较高的问题,以及两个超声波换能器之间传播距离较短,降低测量结果准确性的问题。同时,还避免了被测气体中的污染物污染超声波换能器,从而影响检测结果准确性的问题。(2)用双阈值过零检测与数据选择技术。以时差法超声波气体流量计为基础,采用双阈值过零检测与数据选择算法技术,区别于超声波自动增益控制法,不对信号进行处理,通过关联幅值与飞行时间周期变化的关系,根据幅值判断飞行时间是否发生周期性变化,从实际测量得到多个结束方波脉冲对应的时间值中选择合适的结果,作为最终的飞行时间,从而精确计算气体流量。(3)自动调零算法。燃气表在温度、压力等外部因素变化条件下,对超声信号产生一定的影响,从而影响计量的时间差;此产生的时间差变化,可能只有ns级别,对高端流量几乎没影响;但对于低端流量,特别是Qmin,影响非常大,造成测量精度超过标准要求。另外,燃气表在无流量情况下的零点,可能受到超声波换能器零点的漂移影响,产生整体计量的漂移,对低端流量造成较大的影响,这是低端流量精度和稳定性超标最重要的原因。针对超声波换能器的零点漂移问题,在软件算法上,采用自动调零的处理算法,超声波燃气表采用可调整的零点,并根据超声波换能器的信号波动特点,软件上自动调整超声波燃气表的零点,保证在外部因素或内部因素作用下,超声波燃气表的零点随环境变化而适当做出调整,抵消由于零点漂移对低端流量产生的影响;同时,考虑电路整体对时间差值的影响,在软件算法上,补偿此部分对测量的影响。 五、超声波燃气表用气体流量传感器的应用基于专利的气体流量传感器硬件和软件核心技术,四方光电公司针对我国家用表以及五小工商户客户的需求,成功开发出超声波家用和商用燃气表。其核心传感器部件见图2:图2. 家用和商用超声波燃气表核心传感器部件解决核心燃气表气体流量传感器后,就可以利用以往具有的外壳、皮膜阀、电源管理等组装燃气表。图3是采用超声波核心流量传感器的G4燃气表。 图3. G4超声波燃气表(内置国产化核心流量传感器)根据燃气表的计量要求,进行了宽量程的燃气表误差特性以及耐久性实验。 图4. G4超声波燃气表典型误差曲线 图5. G4超声波燃气表耐久性误差曲线由于我国超声波燃气表的国家标准还处于征求意见稿阶段,因此借鉴了EN-14236欧洲有关“ultrasonic-domestic-gas-meters”标准进行完整的测试。除以上图示的基本试验,还进行了线性度、压损、高低温、交变湿热、耐粉尘、脉动流量等试验。试验表明基于超声波气体流量传感器核心模块的燃气表均满足燃气表的各项指标要求。作者简介熊友辉博士,教授级高工。中国科协九大代表、中国仪器仪表学会理事、分析仪器分会副理事长。主持过科技部重大科学仪器设备开发专项、工信部物联网专项、湖北省重大科技专项等多项国家和省市科技项目。现任武汉四方光电科技有限公司总经理。 公司简介武汉四方光电科技有限公司是一家专业从事气体传感器、气体分析仪器及物联网解决方案的国家高新技术企业,其全资子公司——四方仪器自控系统有限公司,以自主知识产权的核心传感器技术为依托,陆续推出了红外/紫外烟气分析仪、红外煤气分析仪、红外天然气热值仪、激光拉曼气体分析仪等气体成分分析仪器,并先后研制了超声波气体流量计、超声波燃气表核心传感器部件、智能超声波燃气表等燃气流量测量产品。四方光电通过了ISO9001、ISO14000、ISO18000、IATF16949等有关质量、环境、健康安全、汽车电子等体系认证,目前已与多家世界五百强企业建立长期配套合作关系。
  • 管道风速传感器如何测量管道风压、风速、风量
    风速是天气监测中重要因素之一,用来测量风速的传感器被称为风速传感器,如我们常见的杯式风速传感器,超声波风速传感器,但有一种风速传感器虽不常见但应用广泛,这就是管道风速变送器。以前通风管道风压、风速、风量测定方法一、测定位置和测定点(一)测定位置的选择通风管道内风速及风量的测定,是通过测量压力换算得到。测得管道中气体的真实压力值,除了正确使用测压仪器外,合理选择测量断面、减少气流扰动对测量结果的影响很大。测量断面应尽量选择在气流平稳的直管段上。测量断面设在弯头、三通等异形部件前面(相对气流流动方向)时,距这些部件的距离应大于2倍管道直径。当测量断面设在上述部件后面时,距这些部件的距离应大于4~5倍管道直径。当测试现场难于满足要求时,为减少误差可适当增加测点。但是,测量断面位置距异形部件的最小距离至少是管道直径的1.5倍。测定动压时如发现任何一个测点出现零值或负值,表明气流不稳定,该断面不宜作为测定断面。如果气流方向偏出风管中心线15°以上,该断面也不宜作测量断面(检查方法:毕托管端部正对气流方向,慢慢摆动毕托管,使动压值大,这时毕托管与风管外壁垂线的夹角即为气流方向与风管中心线的偏离角)。选择测量断面,还应考虑测定操作的方便和安全。(二)测试孔和测定点由于速度分布的不均匀性,压力分布也是不均匀的。因此,必须在同一断面上多点测量,然后求出该断面的平均值。1圆形风道在同一断面设置两个彼此垂直的测孔,并将管道断面分成一定数量的等面积同心环,对于圆形风道,测点越多,测量精度越高。2矩形风道可将风道断面划分为若干等面积的小矩形,测点布置在每个小矩形的中心,小矩形每边的长度为200mm左右,圆风管测点与管壁距离系数(以管径为基数)。二、风道内压力的测定(一)原理测量风道中气体的压力应在气流比较平稳的管段进行。测试中需测定气体的静压、动压和全压。测气体全压的孔口应迎着风道中气流的方向,测静压的孔口应垂直于气流的方向。用U形压力计测全压和静压时,另一端应与大气相通(用倾斜微压计在正压管段测压时,管的一端应与大气相通,在负压管段测压时,容器开口端应与大气相通)。因此压力计上读出的压力,实际上是风道内气体压力与大气压力之间的压差(即气体相对压力)。大气压力一般用大气压力表测定。由于全压等于动压与静压的代数和,可只测其中两个值,另一值通过计算求得。(二)测定仪器气体压力(静压、动压和全压)的测量通常是用插入风道中的测压管将压力信号取出,在与之连接的压力计上读出,常用的仪器有毕托管和压力计。1 毕托管(1)标准毕托管它是一个弯成90°的双层同心圆管,其开口端同内管相通,用来测定全压;在靠近管头的外壁上开有一圈小孔,用来测定静压,按标准尺寸加工的毕托管校正系数近似等于1。标准毕托管测孔很小,易被风道内粉尘堵塞,因此这种毕托管只适用于比较清洁的管道中测定。(2)S型毕托管它是由两根相同的金属管并联组成,测量时有方向相反的两个开口,测定时,面向气流的开口测得的相当于全压,背向气流的开口测得的相当于静压。由于测头对气流的影响,测得的压力与实际值有较大误差,特别是静压。因此,S型毕托管在使用前须用标准毕托管进行校正,S型毕托管的动压校正系数一般在0.82~0.85之间。S型毕托管测孔较大,不易被风道内粉尘堵塞,这种毕托管在含尘污染源监测中得到广泛应用。2.压力计(1)U形压力计由U形玻璃管制成,其中测压液体视被测压力范围选用水、酒精或汞,U形压力计不适于测量微小压力。压力值由液柱高差读得换算,p值按下式计算:p=ρgh (Pa) (2.8-1)式中p—压力,Pa;h—液柱差,mm;ρ—液体密度,g/cm3;g—重力加速度,m/s2。(2)倾斜式微压计测压时,将微压计容器开口与测定系统中压力较高的一端相连,斜管与系统中压力较低的一端相连,作用于两个液面上的压力差,使液柱沿斜管上升,压力p按下式计算:p=KL(Pa)(2.8-2)式中L—斜管内液柱长度,mm;K—斜管系数,由仪器斜角刻度读得。测压液体密度,常用密度为0.1g/cm3的乙醇。当采用其他密度的液体时,需进行密度修正。(三)测定方法1.试前,将仪器调整水平,检查液柱有无气泡,并将液面调至零点,然后根据测定内容用橡皮管将测压管与压力计连接。毕托管与U形压力计测量烟气全压、静压、动压的连接方法。2测压时,毕托管的管嘴要对准气流流动方向,其偏差不大于5°,每次测定反复三次,取平均值。三、管道内风速测定常用的测定管道内风速的方法分为间接式和直读式两类。(一)间接式先测得管内某点动压pd,可以计算出该点的流速v。用各点测得的动压取均方根,可以计算出该截面的平均流速vp。式中pd—动压值,pdi断面上各测点动压值,Pa;vp—平均流速是断面上各测点流速的平均值。此法虽较繁琐,由于精度高,在通风系统测试中得到广泛应用。(二)直读式常用的直读式测速仪是热球式热电风速仪,这种仪器的传感器是一球形测头,其中为镍铬丝弹簧圈,用低熔点的玻璃将其包成球状。弹簧圈内有一对镍铬—康铜热电偶,用以测量球体的温升程度。测头用电加热。由于测头的加热量集中在球部,只需较小的加热电流(约30mA)就能达到要求的温升。测头的温升会受到周围空气流速的影响,根据温升的大小,即可测出气流的速度。仪器的测量部分采用电子放大线路和运算放大器,并用数字显示测量结果。测量的范围为0.05~19.0m/s(必要时可扩大至40m/s)。仪器中还设有P-N结温度测头,可以在测量风速的同时,测定气流的温度。这种仪器适用于气流稳定输送清洁空气,流速小于4m/s的场合。管道风速传感器测量风速、风量我们可以通过风速(V)算出风量(L)的大小,如1小时内通过风量的计算公式为L=F*V*3600秒,公式中:F——风口通风面积(m2),V——测得的风口平均风速(m/s)。通过配置软件设置风更方便我们的使用,将地址及波特率设置好,将管道截面积添加好之后,软件会自动计算出风速值和风量值。广泛应用在油烟管道、通风管道、暖通空调进出风口等地方来测量风速和风量。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。

叶片式管道流量传感器相关的方案

  • 哈希PH和电导传感器在金属表面精加工方面的应用
    哈希高级耐震数字pH和电导传感器为金属表面精加工过程控制和废物处理提供重要帮助。 ● 电导传感器帮助控制冲洗流的流量恰到好处,既避免了连续溢流造成的浪费又避免了定时流的低效。 ● pH传感器的采用取代了在磷化和涂层过程中耗时且不可靠的人工测试。 ● 连续的pH和ORP(氧化还原电位)监测确保毒性氰化物和六价铬废水的正确处理。 在典型的两级氰化物和六价铬处理系统中,两套pH和电导传感器同一或两个控制器相连接。多端输入控制器可以对加药器实现开关控制和比例控制,从而用最简单的仪器确保完全且高效的处理。
  • 半导体生产中的气体流量测量
    电子元件的生产过程需要各种不同的气体,如氮气、氩气、氦气甚至是压缩空气。这些工业气体大多不是在现场生产的,而是从外部采购的,这意味着它们涉及相当大的成本。除此之外,生产压缩空气还需要消耗大量的能源,这也意味着巨大的成本。为了确定主要消费者并尝试优化生产过程的操作,首先必须测量各种体积流量。便携式 FLUXUS G601 超声波流量计成为一家半导体生产商的理想测量系统:由于采用了非侵入式的测量技术,不需要打开现有的管道来设置临时的流量测量点,因此不会中断生产。由于外夹式超声波传感器只需安装在管道外部,不与内部流动的气体接触,所以绝对没有污染高纯度介质的风险。因此,外夹式超声波系统也可以毫无顾虑地在洁净室环境中使用。此外,FLEXIM 的非侵入式测量技术也不存在泄漏的风险。FLUXUS G601 的用户特别欣赏其简单实用的可管理性、可靠性以及卓越的灵活性和多功能性。连接传感器后,测量主机会自动检测并读取存储的数据(传感器类型、序列号、校准数据)。这使得测量点的设置更加容易,并确保测量值的准确性和可追溯性。便携式 FLUXUS G601 以及永久性 FLUXUS G721 或 G704CA 超声波系统适用于各种气体以及压缩空气的非侵入式流量测量,几乎可用于所有管道材料。
  • ASTM F1249塑料薄膜-薄板水蒸气透过率测试仪(红外线传感器法)
    采用红外传感器法原理。具有一定湿度的加湿氮气在材料的一侧流动,干燥氮气在材料的另一侧以固定的流量流动;湿度梯度差的存在,导致水蒸气从高湿侧透过薄膜扩散到低湿侧;在低湿侧,透过的水蒸气被流动的干燥氮气(载气)携带至红外传感器;传感器对载气的水蒸气浓度会产生对应的电信号;精确测量传感器电信号,计算试样的水蒸气透过率等参数。

叶片式管道流量传感器相关的资料

叶片式管道流量传感器相关的试剂

叶片式管道流量传感器相关的论坛

  • 测量水位的液位传感器-管道液位传感器

    测量水位的液位传感器-管道液位传感器

    [font=宋体][color=#212121]管道液位传感器是一种常用的液位传感器,它主要用于测量管道内部的液位高度。该传感器采用了先进的液位探测技术,能够准确地检测液位高度,并将检测结果传输给控制系统。下面我们来详细介绍一下管道液位传感器的工作原理和应用场景。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]工作原理:[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]管道液位传感器主要由探头和控制器两部分组成。探头通过安装在管道内部,通过液位变化来检测液位高度。控制器则负责处理和传输检测结果。探头和控制器之间通过电缆连接,控制器可以将检测结果传输给液位显示器或其他控制系统。[/color][/font][align=center][img=,577,435]https://ng1.17img.cn/bbsfiles/images/2023/06/202306261436500450_8175_4008598_3.jpg!w577x435.jpg[/img][/align][font=宋体][color=#212121]应用场景:[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]管道液位传感器适用于各种管道液位检测场景,如水处理、化工、石油、食品等行业。它可以用于检测各种液体,如水、油、酸、碱等。管道液位传感器具有结构简单、安装方便、精度高、稳定性好等优点,被广泛应用于各种工业自动化控制系统中。[/color][/font][font=宋体][color=#212121][/color][/font][font=宋体][color=#212121]总之,管道液位传感器是一种常用的[url=https://www.eptsz.com]液位传感器[/url],它能够准确地检测管道内部的液位高度,为工业自动化控制系统提供了重要的数据支持。在实际应用中,用户可以根据不同的需求和场景选择合适的管道液位传感器,以便更好地实现液位检测和控制。[/color][/font][font=宋体][color=#212121][/color][/font]

  • 液体流量传感器有哪些

    液体流量传感器有哪些

    [font=宋体][color=#1E1F24]液体流量传感器是一种用于检测流量多少,控制流量开关一种电子元器件,常用于咖啡机、啤酒机等需要控制流量的设备等。根据不同的工作原理,液体流量传感器有多种类型,其中常见的包括霍尔流量计和光电流量计。[/color][/font][font=宋体][color=#1E1F24]霍尔流量计是一种利用霍尔效应测量液体流量的传感器。当带有两极磁铁的叶轮在垂直于磁场中旋转时,叶轮会切割磁力线并产生霍尔电压,通过测量霍尔电压可以计算出叶轮的转速,从而得出液体流量。[/color][/font][font=宋体][color=#1E1F24] [/color][/font][align=center][img=小型流量开关,439,378]https://ng1.17img.cn/bbsfiles/images/2023/11/202311101645241564_7993_4008598_3.png!w439x378.jpg[/img][/align][font=宋体][color=#1E1F24][url=https://www.eptsz.com]光电流量计[/url]则是一种利用光学原理测量液体流量的传感器。它通过在管道中安装一个叶轮,叶轮的转动会切断光通路并产生脉冲信号,通过计算转轮的转动次数,可以测量液体流量。光电流量计具有不含磁铁、纯光学感应、对水质保护更好等特点,适合透光率高的液体。[/color][/font][font=宋体][color=#1E1F24] [/color][/font][font=宋体][color=#1E1F24]霍尔流量传感器和光电流量传感器各有优势,在选择哪种流量计取决于具体应用场景。[/color][/font]

  • 检测水位的液位传感器-管道液位传感器

    检测水位的液位传感器-管道液位传感器

    [font=宋体][color=#212121]如今随着科学技术的不断进步,[/color][/font][font=宋体][color=#212121]检测水位有很多种方法[/color][/font][font=宋体][color=#212121],今天带大家了解一下管道液位传感器是如何检测水位的。[/color][/font][font=Helvetica][color=#212121][font=宋体]光电传感器管道技术是一种有效解决传统机械式低精度和卡死失效问题的新型技术。相比电容式传感器,光电传感器管道技术能够避免感度衰减导致的不可控性失效。该技术利用红外光学组件,通过设计感应线路,能够快速稳定地判断水和空气中的光折射率差异,从而做出状态判断。该技术广泛应用于扫地机器人、洗地机、拖把机、饮水机、加湿器、咖啡机、洗碗机等清水管道的缺水或满水检测。[/font][/color][/font][font=Helvetica][color=#212121][font=宋体]管道光电液位传感器是一种利用光学原理检测管道内液位高低的传感器。其原理是利用液体与空气的光折射率不同,通过测量管道内液位与空气交界处的光线反射情况来判断液位高低。[/font][/color][/font][align=center][font=Helvetica][color=#212121] [/color][/font][img=,577,435]https://ng1.17img.cn/bbsfiles/images/2023/05/202305181419338564_7765_4008598_3.jpg!w577x435.jpg[/img][img=,577,435]https://ng1.17img.cn/bbsfiles/images/2023/05/202305181419338564_7765_4008598_3.jpg!w577x435.jpg[/img][/align][font=Helvetica][color=#212121][font=宋体]具体来说,管道光电液位传感器通常由一个发光器和一个接收器组成。发光器发出一束红外光线,经过透镜聚焦后照射到管道内液位与空气交界处。当液位上升时,液体会反射一部分光线,而空气则会透过光线。接收器会接收到反射回来的光线,并将其转化为电信号。液位计算器会根据预设的管道参数和光电传感器的信号,计算出管道内的液位高度,并输出液位信号。[/font][/color][/font][font=Helvetica][color=#212121][font=宋体]管道[url=https://www.eptsz.com]光电液位传感器[/url]具有精度高、响应速度快、不易受液体性质影响等优点,适用于各种液体的液位检测。但其需要保持光路的清洁和稳定,避免光线被污染或干扰,影响检测精度。[/font][/color][/font]

叶片式管道流量传感器相关的耗材

  • CS110电场传感器
    用途:CS110电场传感器可以测量大气电场在地表处的垂直分量可应用于区域电场研究、雷电危害评估、风暴监测等领域。与传统的旋转叶片式电场计,CS110电场传感器采用新型的回旋遮蔽式叶片,具有更低的低频误差。叶片通过一根柔性不锈钢线缆进行接地保护。  CS110电场传感器工作稳定可靠。经过特殊设计的电路以及先进的制造工艺,使它可以消除由劣质绝缘材料所引起的测量误差。如果仪器表面因污染而导致绝缘材料表面产生导电性,补偿电路就会启动,以提供相同数量的反极性电流,防止电荷放大器输入端出现电子饱和现象,保证监测数据的准确性和设备运行的可靠性。  CS110电场传感器维护简便。定子可以很方便地拆卸下来进行清洁,并且正常的清洁工作不会对原标定结果产生影响,即不会影响到设备的精确性。CS110电场传感器还含有自诊断功能,能对设备内部的相对湿度、绝缘材料清洁度、供电电压以及电荷放大器和回旋叶片状态进行检测等。 CS110电场传感器内置CR1000数据采集器,可为系统提供测量控制、网络传输支持等服务,同时还可为系统提供扩展支持,使系统能够外接风速风向、温度湿度、太阳辐射、降水等多种类型的测量设备。这样,用户可以把CS110电场传感器扩展为一个包括大气电场测量在内的自动气象站。技术规格:测量范围±0~21000 V/m和±2100~212000 V/m双量程自动切换精度读数的±1%+60 V/m偏移(平行板安装),读数的±5%+8 V/m偏移(2米三角架安装)峰值电流需量750 mA采样电流7 mA(1次采样/10秒),60 mA(1次采样/1秒),120 mA(1次采样/1秒),300 mA(5次采样/1秒)通讯端口1个RS-232、1个CS I/O端口、数字控制端口1、2和3用于警报、非同步通讯或SDI-12通讯CE认证符合BS EN61326:2002防雷多级瞬态保护所有外部接口供电11~16 VDC波特率可从300~115.2k bps进行选择ASCⅡ协议1个起始位,1个停止位,8个数据位,无奇偶校验工作温度标准-25~+50℃,可延长-40~+85℃工作湿度0~100% RH安装垂直立杆直径1.91~6.35厘米尺寸15.2×15.2×43.2厘米重量4公斤产地:美国
  • 237叶面湿度传感器
    用途:237叶面湿度传感器采用仿叶片设计,用于测量植物叶表的相对湿度。它通过环境中干湿度变化所引起的传感器内部电阻的变化,来测量出周围环境的湿度情况。产品在出厂时不进行任何喷涂,而由用户根据具体使用环境决定,以最大程度模拟叶片情况。传感器所使用的电缆采用热塑性橡胶做外套,能够有效防止极端温湿度、紫外线等对测量产生的不利影响。技术规格:干/湿输出信号无涂层传感器通常在50~200 kohms,有涂层传感器通常在20~1000 kohms工作温度-40~+150℃尺寸7.1×7.6×0.64厘米重量91克(带3米电缆时)产地:美国
  • 237叶面湿度传感器
    Campbell 237型叶面湿度传感器采用仿叶片设计,用于测量植物叶表的相对湿度。它通过环境中干湿度变化所引起的传感器内部电阻的变化,来测量出周围环境的湿度情况。产品在出厂时不进行任何喷涂,而由用户根据具体使用环境决定,以最大程度模拟叶片情况。  传感器所使用的电缆采用热塑性橡胶做外套,能够有效防止极端温湿度、紫外线等对测量产生的不利影响。 技术参数:  工作温度:-40~150℃  尺寸:7.1cm×7.6cm×0.64cm  重量:91g,含3m电缆 产地:美国
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制