超灵敏差示扫描量热仪

仪器信息网超灵敏差示扫描量热仪专题为您提供2024年最新超灵敏差示扫描量热仪价格报价、厂家品牌的相关信息, 包括超灵敏差示扫描量热仪参数、型号等,不管是国产,还是进口品牌的超灵敏差示扫描量热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超灵敏差示扫描量热仪相关的耗材配件、试剂标物,还有超灵敏差示扫描量热仪相关的最新资讯、资料,以及超灵敏差示扫描量热仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

超灵敏差示扫描量热仪相关的厂商

  • 斑马鱼(北京)科技有限公司,是实验室整体解决方案的专家,专注于为生命科学、医学研究、药物研发、食品安全、环境分析等领域提供全球先进的实验室仪器设备和试剂。同时我们也有专业的实验室,提供单细胞测序、空间转录组、Olink多重细胞因子检测、外泌体表征、定制化生物信息分析等实验技术服务。 公司主要服务于国家的重点高校和医院建设,重大科学研究和试验发展项目,以及国内外企业的研发机构。主要客户包括清华大学、北京大学、南开大学、郑州大学、哈尔滨工业大学、兰州大学、西安交通大学、中科院、中国医科院、中国农科院、军科院、协和医院、阜外医院、天坛医院、301医院、北大附属医院等。 公司积极参与相关领域的学术会议,并定期举办相关仪器设备的技术讲座和培训班,在科研和检测领域产生了积极的反响,获得了良好的口碑。 公司总部设在北京市朝阳区鸟巢附近,在西安、郑州、哈尔滨等地设有办事处。拥有业内经验丰富的管理团队和高素质的销售技术队伍,能够为客户提供专业的一站式实验方案,及时解决实验和仪器使用中的疑难问题。 公司合作的部分品牌包括:美国10x Genomics:单细胞测序、空间转录组、组织空间原位多组学分析;瑞典Olink:高灵敏多重微量的细胞因子及蛋白标志物分析系统;美国TA仪器(沃特世公司):ITC等温滴定微量热仪、DSC差示扫描微量热仪;德国Merck Millipore:微流控细胞芯片分析仪、单分子免疫检测平台;美国PerkinElmer:小动物活体成像、酶标仪、高内涵成像;瑞士罗氏诊断:荧光定量PCR、数字PCR、核酸提取系统;日本基恩士:多功能超景深显微成像系统;德国Particle Metrix:NTA纳米颗粒跟踪分析仪(外泌体表征);荷兰Metris:小动物笼内精细行为检测分析系统、小动物超声波发声检测分析系统;德国Cultex:动物多功能暴露染毒系统,细胞暴露染毒系统; 以服务生命科学领域科研事业为己任,以为客户提供优质的完整的实验室解决方案为使命,以客户为中心,以专业人才为保障,为客户提供专业的长期的优良服务。更多信息欢迎和我们联系。
    留言咨询
  • 400-860-5168转4270
    LEUVEN鲁玟 专注材料实验室设备及工业超声清洗设备上海鲁玟科学仪器有限公司前身为中国纺织科技开发总公司仪器部,拥有多年的设计研发经验,长期与华东理工、东华大学等单位保持紧密的科研合作,致力于材料实验室设备以及工业超声清洗设备的研发与制造。 目前,鲁玟科学仪器的产品已经覆盖理化实验分析仪器、过滤器及清洗设备、高分子聚合在线检测设备、管道在线除垢阻垢解决方案共四大类数百个品项。其中,鲁玟研发生产的粘度仪、喷丝板清洗检测仪器。设计精密、品质卓越的特点,受到国内外客户的广泛认可,已经成功在德国、美国、韩国、印度、伊朗、巴基斯坦等多个国家实现销售。 同时,鲁玟秉持“以技术为客户创造价值”的理念,不断研发、引进高新技术,实现产品的领先更新。更以良好声誉与瑞典波通、瑞士万通等十余家国际知名品牌协力合作,为客户提供一站式解决方案以及更灵活、更优越的售后服务。公司业务项目、设备名称项目、设备概述备注高分子聚合在线检测高分子在线检测仪可安装在各种高分子材料聚合生产线上检测酸值、羟基、羧基、氨基、水分、粘度等质量参数。leuven 理化实验室分析仪器实验室整体解决方案实验室规划、设备提供、技术培训服务AVS600系列自动粘度仪用于多种条件下的PET、PBT、PP、PA、PVC、PVDF、聚氨酯、浆粕等几乎所有高分子材料的特性粘度、粘数、平均聚合度的测试自主研发生产PV60高精度恒温槽控温精度高,保证精确测量粘度所需的恒定温场自主研发生产磁驱多位加热搅拌器用于大量样品筛选、培养、样品浓缩,溶剂蒸发等自主研发生产FHG-8反应管恒温加热器适用于聚对苯二甲酸乙二醇酯(PET)的二甘醇含量测定、220度下PET样品的醇解处理等。自主研发生产DSC差示扫描量热仪用于测量材料的熔点、玻璃化温度、结晶度、固化度、纯度、比热、反应动力学、热稳定性、相转变温度等参数。德国耐驰、美国TA核磁共振仪可完成石化行业物资组分剖析和工艺参数在线检测;可实时反应到DCS体系,为炼油、石化行业供给及时在线剖析和质量卡边掌握,为原油蒸馏、催化重整、乙烯裂解装配、制品油折衷优化供给疾速、精确的成份和目标剖析成果。英国牛津、德国布鲁克色泽仪测量范围广泛,包括:固体,液体,粉末,颗粒和胶片等等,数据测定快速,简单,精度高;广泛应用于造纸、印刷、陶瓷、化工、纺织印染、建材、粮食、制盐等行业。日本电色、美国电位滴定仪应用于化工、石化、化妆品、生物技术、食品及饮料、环境、表面处理及电镀等众多领域,可进行酸碱、氧化还原、沉淀和络合等滴定。瑞士万通卡式水份仪适用于塑料、橡胶、粮食、医药、化工、特种材料等行业。重复性好、稳定性强、准确度高。气相色谱仪可用于分析热稳定且沸点不超过500°C的有机物,如挥发性有机物、有机氯、有机磷、多环芳烃、酞酸酯等。分光光度计测定被测物质在特定波长处或一定波长范围内光的吸收度,对该物质进行定性和定量分析。 工业清洗设备工业清洗、检测整体解决方案镜检仪采用先进的机器视觉技术,全自动检测喷丝板上的每个喷丝微孔,并对其关键参数进行精确的量化和评价。LEUVEN一体化HYPOX水解清洗系统更有效的清洗被聚合物污染的滤芯、喷丝板、熔体过滤器等机械部件;操作简单便捷、安全,同时节约清洗成本。 LEUVEN滤芯自动高压水洗机 清洁度高,清洗速度快,对深孔、细缝和工件隐蔽处亦可清洗干净,提高生产效率。LEUVEN泡点检测台通过检测滤芯的泡点情况,有助于确定产品的完整性。管道除垢阻垢方案在线除垢阻垢仪适用于石油、化工、冶金、钢铁、制糖、制药、供水、环保、电力等系统结垢的各种管道、热交换器、水冷设备、容器、锅炉等。LEUVEN
    留言咨询
  • 400-860-5168转0314
    爱威森科技香港有限公司是一家高科技公司,主要代理意大利ATS FAAR公司、意大利COFOMEGRA公司、加拿大Mathis公司、意大利GALDABINI公司、比利时IMCE公司等国外著名厂商的各类分析仪器,并全面负责技术维修及售后服务。意大利ATS FAAR公司是制造高分子聚合物及弹性材料质量检控及研究用分析测试仪器的著名厂商,主要的产品有:各类高分子材料检测设备,熔融指数仪,热变形/维卡软化点测试仪,摆锤冲击试验机,压片机,梯度管密度计,冲压机\切片机,薄膜片材动静态磨擦系数测定仪,电动开缺口机,临界氧指数仪,击穿电压强度测试等样品制备、机械、物理、热性能、电性能测试分析仪器。我司是其在中国的独家代理。意大利COFOMEGRA公司公司是一家著名的实验室产品公司,主要产品有:SOLARBOX全谱氙灯耐气候试验箱、盐雾箱等,我公司为其在中国的总代理。加拿大Mathis公司:导热仪,药品在线均匀性检测仪。意大利GALDABINI公司主要生产各类QUASAR系列万能材料实验机。比利时IMCE公司:比利时IMCE公司是一家专业的测试弹性模量和阻尼内耗分析仪器的生产厂家, 仪器基于共振频率动态测量方法, 应用完全非破坏性测试技术, 适用于陶瓷及金属等多种材料的生产(质量控制)及科学研究领域, IMCE公司是目前世界上唯一能在1750C高温和气氛控制条件下, 利用目前最先进的软件评估及研究, 精确测定共振频率、弹性模量、剪切模量和阻尼内耗等相关技术指标。 公司主要产品有:1、弹性模量和阻尼内耗分析仪 型号:RFDA MF System 21(公司有展示仪器) FDA MF System 23 2、高温炉: 型号:RFDA-HT1750 型号:RFDA-HTVP1750C 型号:RFDA-HTVP1600C 3、低温炉型号:RFDA-LTVP800 我司是其在中国的独家代理。在中科院沈阳金属研究所高性能陶瓷与复合材料重点实验室有该公司2套先进的高温测试系统。其它国外厂商的产品还有:德国BYK-Gardner公司的光泽度计、雾度计、色差仪,透射雾影仪. 代理专业研制和生产各类热分析仪器和Micro DSC III 医学生物高灵敏度差示扫描量热仪,SETSYS同步热分析仪的世界著名厂家,产品以温度范围高、高灵敏度著称。意大利Frigomec-canica公司,主要生产实验室工业用冷水机组、输送装置。塑料原料微量水份分析仪加拿大实验室用压模机\吹模机等。
    留言咨询

超灵敏差示扫描量热仪相关的仪器

  • 到梅特勒托利多公司官网详细了解 Flash DSC 2+闪速差示扫描量热仪Flash DSC 2+ 是完全创新型的超高速扫描量热仪(中文名称为闪速DSC),是对传统 DSC 的完美补充,是目前世界上扫描速率最快的商品化DSC扫描量热仪,升温速率达到2,400,000K/min,降温速率达到240,000K/min。该仪器能分析之前无法测量的结构重组过程。极快的降温速率可制备明确定义的结构性能的材料,例如在注塑过程中快速冷却时出现的结构;极快的升温速率可缩短测量时间从而防止结构改变。Flash DSC扫描量热仪也是研究结晶过程动力学的理想工具,不同的降温速率的应用可影响试样的结晶行为和结构。Flash DSC2+扫描量热仪的心脏是基于MEMS(Micro-Electro-Mechanical Systems微机电系统)技术的芯片传感器(UFS1)。MEMS芯片传感器安置于稳固的有电路连接端口的陶瓷基座上。全量程UFS1传感器有16对热电偶,试样面和参比面各8对。Flash DSC扫描量热仪基于功率补偿测试原理,专利注册的动态功率补偿电路可使超高升降温速率下的测试噪声最小化。传感器的试样和参比面各有热阻加热块,一起生成需要的温度程序。加热块由动态功率补偿控制。热流由排列于样品面和参比面的热电偶测量。 Flash DSC 2+扫描量热仪为快速扫描 DSC 带来了变化。 该仪器可分析以前无法测量的结构重组过程。 Flash DSC 2+ 扫描量热仪是对传统 DSC 的完美补充。 现在,升温速率范围已超过 7 个数量级。它的升温与降温速率极高,为研究热物理转变(如聚合物的结晶与结构重组)和化学过程提供全新的视角。超高降温速率 &mdash 可以制备特定结构的的材料超高升温速率 缩短测量时间、抑制重排过程温度范围宽 可在 -95 至 1000℃ 的范围内测量 扫描量热仪技术参数:温度范围: -95~1000℃升温速率:30~2,400,000℃/min降温速率:6~240,000℃/min最大热流信号: 20mW热流信号噪声: 0. 5&mu W扫描量热仪主要特点:极快的降温速率&ndash 可制备明确定义的结构性能的材料超高的升温速率&ndash 缩短测量时间、防止结构改变极速响应的传感器&ndash 可研究极快反应或结晶过程的动力学超高灵敏度&ndash 可使用低升温速率,测量范围与常规DSC交迭温度范围宽&ndash &ndash 95至450 ° C友好的人体工程学设计和功能&ndash 试样制备快速、容易扫描量热仪应用领域:聚合物等物质的结构形成过程的详细分析、测量快速结晶过程、测定快速反应的反应动力学、研究接近生产条件下的添加剂机理等。扫描量热仪主要型号:Flash DSC 2+到梅特勒托利多公司官网详细了解 Flash DSC 2+闪速差示扫描量热仪查看更多信息 咨询电话:4008-878-788
    留言咨询
  • 仪器简介:梅特勒托利多的DSC是目前世界上商品化的DSC仪器中量热灵敏度最高的(同等测试实验条件下的荷兰国际热分析协会的数据表明)。2015年5月8日热分析DSC 3同步上市,DSC 3采用独一无二的由56对或120对金/金钯热电偶以星形方式排列的DSC专利传感器(MultiSTAR? DSC Sensor),确保具有无与伦比的灵敏度及平坦基线。DSC 3的解析度、温度精度和重复性极高,信噪比很大,信号时间常数很小,分峰能力极强。由于传感器基材为陶瓷,热电偶材质为金/金钯,且在表面覆盖了极薄的氧化铝涂层,所以DSC 3具有超强的耐化学腐蚀性。由于采用了模块化设计,DSC 3作为梅特勒托利多热分析超越系列产品之一,是人工或自动操作的最佳选择,适用于从质量保证和生产到技术研发的广泛用途。DSC 3还能进行多频温度调制DSC (TOPEM)实验。DSC 3与光量热装置结合,可扩展为UV-DSC;与显微镜结合,可扩展为DSC-显微镜系统(这在热分析市场上是独一无二的)。 主要特点:● 坚固的56对热电偶MultiSTARe传感器——可测量最小和最大热效应● 持久耐用的自动进样器——高效、可靠、昼夜不停● One ClickTM一键即可开始实验——日常操作快速、简单● 简单、灵活的校准——节约时间且测量结果精准● 简便的FlexCal全方位校准——简约时间,并确保精准的测量结果● 模块化概念——满足您当前及未来的需求● 温度范围宽——单次测量温度可从-150?C到700?C● 人体工程学设计——仪器操作简单方便● 全方位服务——为日常工作提供专业支持 DSC 3配备的传感器是FRS 5+和HSS 8+,普适性传感器FRS 5+的特点:●基线十分平坦稳定–可作精确比热测定●信号时间常数极小–良好的分峰能力●极高量热灵敏度、极低噪声–微弱热效应的测定●超强抗化学腐蚀性●可单独更换,维修成本成倍降低高灵敏度传感器HSS 8+的特点:除具备FRS 5+的上述特点外,特别推荐用于μW级热流的微弱效应的测量(以前这种效应只能用微量热仪测量)。HSS8+是目前世界上最灵敏的DSC传感器,它将DSC仪器的测量水平提高到接近微量热仪的程度。技术参数:●温度范围: -150、-100、-90、-70或-35~500或700℃●温度准确性: +/-0.1℃●升温速率:0.02~300℃/min●降温速率:0.02~50℃/min●量热灵敏度: 0.04μW(FRS5+)(专业型) / 0.02μW(HSS8+)(至尊型)应用领域:聚合物(热塑性塑料、热固性树脂、弹性体、粘合剂和复合材料)、药物、食品、化学品等的质量控制和研究开发。
    留言咨询
  • 什么是差示扫描量热仪?DSC测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。差示扫描量热仪能测什么?如玻璃化转变温度。冷结晶、相转变、熔融、结晶、热稳定性、固化/交联、氧化诱导期等,都是DSC的研发领域。DZ-DSC300L差示扫描量热仪有哪些优势?1.全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性仪器主控芯片。2.仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便。3.采用的控制器运算处理速度更快,温度控制更稳定。4.采用7寸24bit色全彩LCD触摸屏,界面更友好。DZ-DSC300L差示扫描量热仪的技术参数:温度范围-170~600℃温度分辨率0.001℃温度波动±0.01℃升温速率0.1~100℃/min降温速率0.1~40℃/min恒温时间可自行设置控温方式升温,恒温,降温(全自动程序控制)扫描方式升温扫描、降温扫描DSC量程0~±600mWDSC解析度0.01uWDSC灵敏度0.001mW工作电源AC 220V/50Hz或定制气氛控制气体两路自动切换(仪器自动切换)程序控制可实现六段升温恒温控制,特殊参数可定制气体流量0-300mL/min 气体压力≤5MPa显示方式24bit色,7寸 LCD触摸屏显示数据接口标准USB接口参数标准配有标准物质(铟,锡,铅),用户可自行校正温度
    留言咨询

超灵敏差示扫描量热仪相关的资讯

  • 差示扫描量热仪原理简介
    p  差示扫描量热法是在程序控温和一定气氛下,测量流入流出试样和参比物的热流或输给试样和参比物的加热功率与温度或时间关系的一种技术,使用这种技术测量的仪器就是差示扫描量热仪(Differential scanning calorimeter-DSC)。/pp  扫描是指试样经历程序设定的温度过程。以一个在测试温度或时间范围内无任何热效应的惰性物质为参比,将试样的热流与参比比较而测定出其热行为,这就是差示的含义。测量试样与参比物的热流(或功率)差变化,比只测定试样的绝对热流变化要精确的多。/pp  差热分析法是测量试样在程序控温下与惰性参比物温差变化的技术,使用这种技术测量的仪器就是差热分析仪(Differential thermal analyzer-DTA)。DTA是将试样和参比物线性升温或降温,以试样与参比间的温差为测试信号。DTA曲线表示试样与参比的温差或热电压差与试样温度的关系。/pp  现在,DTA主要用于热重分析仪(TGA)等的同步测量,市场上已难觅单独的DTA仪器。/pp  DSC主要有两类:热通量式DSC和功率补偿式DSC。/ppspan style="color: rgb(255, 0, 0) "strong热通量式DSC/strong/span/pp  热通量式DSC是在程序控温和一定气氛下,测量与试样和参比物温差相关的热流与温度或时间关系的一种技术和仪器。热通量式DSC是通过试样与参比物的温差测量流入和流出试样的热流量。/pp  热通量式DSC的测量单元根据所采用的传感器的不同而有所区别。/pp  如下图所示为瑞士梅特勒-托利多公司采用金/金-钯热电偶堆传感器设计的DSC测量单元示意图。传感器下凹的试样面和参比面分别放置试样坩埚和参比坩埚(一般为空坩埚)。热电偶以星形方式排列,以串联方式连接,在坩埚位置下测量试样与参比的温差。试样面和参比面的热电偶分布完全对称。几十至上百对金/金-钯热电偶串联连接,可产生更高的测量灵敏度。传感器的下凹面提供必要的热阻,而坩埚下的热容量低,可获得较小的信号时间常数。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/f02e8309-d24c-4db9-9b02-ba4b239805a5.jpg" title="金_金-钯热电偶堆传感器热通量式DSC测量单元截面示意图.jpg" width="400" height="345" border="0" hspace="0" vspace="0" style="width: 400px height: 345px "//pp style="text-align: center "strong金/金-钯热电偶堆传感器热通量式DSC测量单元截面示意图/strong/pp  如下图所示为美国Waters公司采用的康铜传感器设计的DSC测量单元示意图。康铜是一种铜-镍合金(55%Cu-45%Ni)。康铜与铜、铁、镍/铬等组成热电偶时,灵敏度较高(μV/K较大)。与贵金属铂、金/金-钯等相比,康铜耐化学腐蚀性较差。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/be5eca73-9eb5-41bf-83a6-dd1c6a5325a1.jpg" title="康铜传感器热通量式DSC测试单元示意图.jpg" width="400" height="255" border="0" hspace="0" vspace="0" style="width: 400px height: 255px "//pp style="text-align: center "strong康铜传感器热通量式DSC测试单元示意图/strong/pp  传感器上凸的试样面和参比面分别放置试样坩埚和参比坩埚(一般为空坩埚)。两对热电偶分别测量试样温度和参比温度,测得温差。/pp  热通量式DSC的炉体一般都由纯银制造,加热体为电热板或电热丝。可选择不同的冷却方式(自然或空气、机械式或液氮冷却等)。/pp  热通量式DSC热流的测量/pp  以金/金-钯热电偶堆传感器设计的DSC为例,热流Φ以辐射状流过传感器的热阻 热阻以环状分布于两个坩埚位置下面。热阻间的温差由辐射状排列的热电偶测量。根据欧姆定律,可得到试样面的热流Φ1(由流到试样坩埚和试样的热流组成)为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/13d50f86-2166-44cc-93f7-4a0dfc48a0e2.jpg" title="DSC-1.jpg"//pp式中,Tsubs/sub和Tsubc/sub分别为试样温度和炉体温度 Rsubth/sub为热阻。/pp  同样可得到参比面的热流Φr(流到参比空坩埚的热流)为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/66a68742-b966-4f01-80ea-6940d21e12f9.jpg" title="DSC-2.jpg"//pp式中,Tsubr/sub为参比温度。/pp  DSC信号Φ即样品热流等于两个热流之差:/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/8b903427-9007-493f-8229-23065fe62ac7.jpg" title="DSC-3.jpg"//pp  由于温差由热电偶测量,因此仍需定义热电偶灵敏度的方程S=V/ΔT。式中,V为热电压。于是得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/54c0c2b1-c913-449b-84db-541255ac821e.jpg" title="DSC-4.jpg"//pp式中,热电压V为传感器信号 Rsubth/subS的乘积称为传感器的量热灵敏度 Rsubth/sub和S与温度有关 令Rsubth/subS为E,E与温度的关系可用数学模型描述。/pp  在DSC曲线上,热流的单位为瓦/克(W/g)=焦耳/(秒· 克)[J/(s· g)],以峰面积为例,热流对时间(s)的积分等于试样的焓变ΔH,单位为焦耳/克(J/g)。/pp  热通量式DSC试样温度的测量/pp  炉体温度Tsubc/sub用Pt100传感器测量。Pt100基本上是由铂金丝制作的电阻。/pp  DSC测试所选择的的升温速率基于参比温度而不是试样温度,因为试样可能发生升温速率无法控制的一级相变。/pp  与热阻有关的温差ΔT对于热流从炉体流到参比坩埚是必需的。该温差通常是通过升高与ΔT等值的炉体温度实现的。炉体温度Tsubc/sub与参比温度Tsubr/sub的时间差等于时间常数τsublag/sub,与升温速率无关。/pp  在动态程序段中,计算得到的温度升高ΔT加在炉体温度设定值上,因而参比温度完全遵循温度程序。/pp  严格来说,试样内的温度与测得的试样坩埚的温度存在微小差别。通过在软件中正确选择热电偶的灵敏度,可补偿该差别。/pp  采用康铜传感器设计的DSC仪器,试样坩埚温度由热电偶直接测量。也需要通过软件中正确选择热电偶的灵敏度,通过修正来获得试样内的温度。/ppspan style="color: rgb(255, 0, 0) "strong功率补偿式DSC/strong/span/pp  功率补偿式DSC是在程序控温和一定气氛下,保持试样与参比物的温差不变,测量输给试样和参比物的功率(热流)与温度或时间关系的一种技术。与热通量(热流)式DSC采用单独炉体不同,功率补偿式DSC以两个独立炉体分别对试样和参比物进行加热,并各有独立的传感装置。炉体材料一般为铂铱合金,温度传感器为铂热电偶。/pp  如下图所示为美国珀金埃尔默公司功率补偿式DSC测量单元的示意图。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/c459d34d-d427-453c-acdf-3a462e04e3e4.jpg" title="功率补偿式DSC测量单元示意图.jpg" width="400" height="263" border="0" hspace="0" vspace="0" style="width: 400px height: 263px "//pp style="text-align: center "strong功率补偿式DSC测量单元示意图/strong/pp  由于采用两个小炉体,与热通量式DSC相比,功率补偿式DSC可达到更高的升降温速率。/pp  功率补偿式DSC对两个炉体的对称性要求很高。在使用过程中,由于试样始终只放在试样炉中,两个炉体的内部环境会随时间而改变,因此容易发生DSC基线漂移。/pp  功率补偿式DSC热流的测量/pp  功率补偿式DSC仪器有两个控制电路,测量时,一个控制升降温,另一个用于补偿由于试样热效应引起的试样与参比物的温差变化。当试样发生放热或吸热效应时,电热丝将针对其中一个炉体施加功率以补偿试样中发生的能量变化,保持试样与参比物的温差不变。DSC直接测定补偿功率ΔW,即流入或流出试样的热流,无需通过热流方程式换算。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/4b2384fe-4770-4f1b-af33-e5d731956a4c.jpg" title="DSC-5.jpg"//pp式中,QsubS/sub为输给试样的热量 QsubR/sub为输给参比物的热量 dH/dt为单位时间的焓变,即热流,单位为J/s。/pp  由于试样加热器的电阻RS与参比物加热器的电阻RsubR/sub相等,即RsubS/sub=RsubR/sub,因此当试样不发生热效应时,/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/13c863c9-be1e-4808-942f-e0765844b444.jpg" title="DSC-6.jpg"//pp式中,IsubS/sub和IsubR/sub分别为试样加热器和参比加热器的电流。/pp  如果试样发生热效应,则输给试样的补偿功率为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/1fa7ba2d-3a0b-4911-a86b-801d2336f395.jpg" title="DSC-7.jpg"//pp设RsubS/sub=RsubR/sub=R,得到/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/83f06029-71c9-4e13-bf3e-d2c6b64eed1a.jpg" title="DSC-8.jpg"//pp因总电流IsubT/sub=IsubS/sub+IsubR/sub,所以/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/35825b17-b30d-4aa7-9bc8-a8a1ae877397.jpg" title="DSC-9.jpg"//pp式中,ΔV为两个炉体加热器的电压差。/pp  如果总电流IsubT/sub不变,则补偿功率即热流ΔW与ΔV成正比。/ppbr//pp style="text-align: center "span style="color: rgb(255, 0, 0) "strongDSC仪器性能评价的重要参数/strong/span/ppstrongDSC仪器的灵敏度和噪声/strong/pp  每个传感器都具有一定的灵敏度。灵敏度是指单位测量值的电信号大小,用每度热电压(V/K)表示。例如,室温时的铜-康铜热电偶的灵敏度约为42μV/K,金-金钯热电偶约为9μV/K,铂-铂铑(10%铑,S型)热电偶约为6.4μV/K。/pp  信号的噪声比灵敏度更加重要,因为现代电子装置能将极其微弱的信号放大,但同时也会将噪声放大。噪声主要有三个来源:量的实际随机波动(如温度的微小波动) 传感器产生的噪声(统计测量误差) 放大器和模-数转换器的噪声。/pp  噪声与叠加在信号上的不同频率的交流电压相一致。因此,对于交流电压,噪声可用均方根值(rms)或峰-峰值(pp)表示。rms值得计算式为/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201807/insimg/8355adf9-cd1e-46b0-9538-67ac7bd524e4.jpg" title="DSC-10.jpg"//pp式中,n为信号值个数 xsubi/sub为单个信号值 x为平均信号值。/pp  对于正弦振动,pp/rms比为2 (2.83左右) 对于随机噪声,比值为4~5。/pp  灵敏度与检测极限是不同的。检测极限(常误称为“灵敏度”)指可检出的测试信号的最小变化量。检测极限比背景噪声明显要大,如10倍与rms值(或pp值的2倍)。信号和噪声水平决定最终的检测极限。/pp  值得指出的是,通过数学光滑方法可容易地获得低噪声水平,但这样会同时“修剪”掉微弱却真实的试样效应,所以噪声水平低并不一定表示灵敏度高。/pp  TAWN灵敏度最初是由荷兰热分析学会提出的方法,用来比较不同的DSC仪器。TAWN灵敏度测试法测量一个已知弱效应的试样,用峰高除以峰至峰噪声得到的信/噪比来表征DSC仪器的灵敏度。峰高/噪声的比值越高,DSC仪器的灵敏度越好。/ppstrongDSC仪器的分辨率与时间常数/strong/pp  在很小温度区间内发生的物理转变的分辨率(分离能力)是DSC仪器的重要性能特征。分辨率好的仪器给出高而窄的熔融峰,换言之,峰宽应小而峰高应大。/pp  分辨率的表征方法有多种,常用的有铟熔融峰峰高与峰宽比、TAWN分辨率和信号时间常数等。/pp  由铟熔融峰测定的分辨率=峰高/半峰宽,数值越高表明分辨率越好。TAWN分辨率为基线至两峰之间DSC曲线的最短距离与小峰高度之比,数值越低表明分辨率越好。信号时间常数τ定义为从峰顶降到后基线的1/e,即降63.2%的时间间隔。信号时间常数τ是热阻Rsubth/sub与试样、坩埚和坩埚下传感器部分的热容之和(C)的乘积,τ=Rsubth/subC。显然,较轻的铝坩埚可得到较小的信号时间常数。信号时间常数越小,DSC分辨率越好。/p
  • 差示扫描量热仪的扩展
    p  差示扫描量热仪除常规的热通量式DSC和功率补偿式DSC外,还有数种特殊的应用形式。/ppstrong超快速差示扫描量热仪/strong/pp  超快速DSC是最新发展起来的创新型快速差示扫描量热仪,采用动态功率补偿电路,属于功率补偿式DSC的一类。/pp  瑞士梅特勒-托利多公司于2010年9月推出了世界上首款商品化超快速差示扫描量热仪Flash DSC(中文名称:闪速DSC)。升温速率可达到2400000K/min,降温速率可达到240000K/min。/pp  闪速DSC的心脏是基于微机电系统(micro electro mechanical systems-MEMS)技术的芯片传感器,传感器置于有电路连接端口的陶瓷基座上。如图所示为闪速DSC芯片传感器和测量原理示意图。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/b5b7573d-a532-4a86-95d9-b7ec0e2ba93d.jpg" title="闪速DSC芯片传感器和测量原理示意图.jpg" width="400" height="325" border="0" hspace="0" vspace="0" style="width: 400px height: 325px "//pp style="text-align: center "strong闪速DSC芯片传感器和测量原理示意图/strong/pp style="text-align: center "1.陶瓷板 2.硅支架 3.金属连线 4.电阻加热块 5.铝薄涂层 6.热电偶/pp  试样面和参比面各有电阻加热块,加热块由动态功率补偿控制。补偿功率即热流由排列于样品面和参比面的各8对热电偶测量。热电偶呈星形对称排列,可获得平坦和重复性好的基线。样品面和参比面由涂有铝薄涂层的氮化硅和二氧化硅制成,可保证传感器上的温度分布均匀。传感器面厚约2.1μm,时间常数约为1ms,可保证快速升降温速率下的高分辨率。/pp  在常规DSC中,为了保护传感器,将试样放在坩埚内测试,坩埚的热容和导热性对测量有显著影响。典型的试样质量为10mg。在闪速DSC中,试样直接放在丢弃型芯片传感器上进行测试。试样量一般为几十纳克(ng)。由于试样量极小,必须借助显微镜制备试样。/pp  闪速DSC能分析之前无法测量的结构重组过程。极快的降温速率可制备明确定义的结构性能的材料,如在注塑过程中快速冷却时出现的结构 极快的升温速率可缩短测量时间从而防止结构改变。不同的降温速率可影响试样的结晶行为和结构,因此闪速DSC是研究结晶动力学的很好工具。闪速DSC在其升、降温低速段可与常规DSC交叠,如闪速DSC的最低升温速率为30K/min、最低降温速率为6K/min。因此,闪速DSC与常规DSC可互为补充,达到极宽的扫描速率范围。/ppstrong高压差示扫描量热仪/strong/pp  将DSC炉体集成于压力容器内,可制成高压差示扫描量热仪。高压DSC一般有3个气体接口,各由一个阀门来控制:快速进气口用来增压 炉腔吹扫气体入口用于进行测试过程中的气流控制 气体出口用于进行压力控制。测试炉内的实际压力由压力表显示。通过压力和气体流量控制器,可实现静态和动态程序气氛下的精确压力控制。/pp  加压将影响试样所有伴随发生体积改变的物理变化和化学反应。在材料测试、工艺过程开发或质量控制中,经常需要在压力下进行DSC测试。高压DSC仪器扩展了热分析的应用。/pp  压力下进行DSC测试可缩短分析时间,较高压力和温度将加速反应进程 可模拟实际反应环境,在工艺条件下测试 可抑制或延迟蒸发,将蒸发效应与其他重叠的物理效应及化学反应分开,从而改进对重叠效应的分析和解释 可提高气氛的浓度,加速与气体的多相反应速率 可在特定气氛下测量,如氧化、无氧条件或含有毒或可燃气体(如氢气) 可通过不同压力下的实验,更精确地测试吸附和解吸附行为。/ppstrong光量热差示扫描量热仪/strong/pp  光量热组件与DSC结合,可生成DSC光量热仪,测量材料在不同温度下用一定波长的光照射引发固化反应所产生的焓变。主要应用于材料的光固化领域,测试光引发的反应。可用于研究各种光敏材料的光效应,如光活性固化过程、光引发反应以及紫外线稳定剂影响、加速测试或老化研究中聚合物稳定性的光强度效应。/pp  如图所示为光量热DSC仪光学部分的示意图。光源一般为紫外线,也可为其他光源,如可见光。通过遮光器的开闭来控制光照时间,光强度由光源控制。光由光纤透过石英炉片(用作炉盖)照射到试样和参比坩埚上,由DSC传感器测量固化反应焓。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/2da48264-bd5e-4dc3-8c3f-1cea1d15ca90.jpg" title="光量热DSC系统的光学设计示意图.jpg" width="400" height="421" border="0" hspace="0" vspace="0" style="width: 400px height: 421px "//pp style="text-align: center "strong光量热DSC系统的光学设计示意图/strong/ppstrong差示扫描量热仪显微镜系统/strong/pp  DSC与装备有摄像技术的显微镜的结合可生成DSC显微镜系统,在DSC加热或冷却过程中可对试样进行光学观察,得到与DSC测试同步的图像信息。这种图像信息对于DSC测试到的现象作出精确的解释往往非常有用,而且显微镜能对极少或无焓变的过程摄录信息,达到极高的测试极限。/pp  典型的应用有粘合剂或固体涂料的流延性测试,薄膜或纤维收缩的光学观察,药物或化学品从溶液结晶、热致变色、汽化、升华及安全性研究,食物脂肪和食用油的氧化稳定性、与活性气体的反应,等等。/ppstrong温度调制式差示扫描量热法/strong/pp  DSC的传统温度程序是以恒定的速率将试样升温或降温。温度调制式差示扫描量热法的升温速率以更复杂的方式变化,是在线性温度程序上叠加一个很小的调制温度。/pp  典型的温度调制式DSC方法有等温步阶扫描法、调制DSC法和随机调制DSC法3种。/pp  等温步阶扫描法的温度程序由一系列等温周期步阶组成。调制DSC方法的温度程序为在线性温度变化上叠加一个周期性变化(通常为正弦)的调制,也可叠加其他调制函数(如锯齿形)。随机调制DSC为最先进的温度调制式技术,它的温度程序是在基础线性升温速率上叠加脉冲形式的随机温度变化。/pp  温度调制技术的优势在于可将热流分离为两个分量,一个对应于试样的比热容,另一个对应于所谓的动力学过程,如化学反应、结晶过程或蒸发过程等。/p
  • DSC差示扫描量热仪在医药行业起着举足轻重的作用
    DSC差示扫描量热仪测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。  药品在研发生产过程中,必须监控其物化性质,如纯度、晶型、稳定性和安全性,以确保药物具有预期的药性,热分析是必不可少的一环。  热分析具有用量少、方法灵敏、快速的特点,在较短的时间内可获得需要复杂技术或长期研究才能得到的各种信息。自从上世纪六十年代商业DSC产品出现以来,因DSC测定药物纯度快速、准确易于操作,这项技术已被广泛接受。DSC池体的响应时间和温度测量对于纯度的准确分析至关重要。功率补偿型DSC因其炉体小(1g),响应时间极快,而且其使用铂电阻测温精度高、准确好,因而非常适合纯度的准确测量。  目前在医药领域DSC差示扫描量热仪通过测量药物热焓和温度随程序温控的变化,可以进行药物纯度,药物的多晶及亚稳态、无定形态的研究,优化冷冻干燥,进行脂质检测、蛋白质变性。所以DSC差示扫描量热仪在新药研制、中间体检测、zui佳配方的选择、药物稳定性的预测、药物质量优劣的评价等方面,起着举足转重的作用。  在食品生产体系中,食品在加工过程中经常需要经受加热或冷却,而从差示扫描量热仪得到的量热信息何以直接用于了解视频在加工或贮存过程中可能经历的热转变。比如我们可以研究油和油脂的起始温度、熔化焓、结晶、老化等,也可以观察淀粉的凝沉、糊化或食品中其他物质的玻璃化等,从而为开发新食品提供参考。那么DSC差示扫描量热仪有哪些特点呢?1、全新的炉体结构,更好的解析度和分辩率以及更好的基线稳定性。2、数字气体质量流量计自动切换两路气体流量,数据直接记录在数据库中。3、仪器可采用七寸大屏幕液晶显示,图谱、曲线一目了然。4、双温度探头,确保高精度和重复性

超灵敏差示扫描量热仪相关的方案

  • 岛津差示扫描量热仪鉴定药物的不同晶型
    DSC-60A Plus型差示扫描量热仪采用通用的热流型工作原理,独立的加热炉可以实现灵敏的温度控制,获得更稳定基线。新型检测器使DSC峰的高度提高,测定更为灵敏,响应性更高。
  • 差示扫描量热仪的实验过程
    差示扫描量热仪DSC是在程序控温下,测量物质和参比物之间的能量差随温度变化关系的一种技术。根据测量方法的不同,又分为功率补偿型DSC和热流型DSC两种类型。常用的功率补偿DSC是在程序控温下,使试样和参比物的温度相等,测量每单位时间输给两者的热能功率差与温度的关系的一种方法。DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化的关系。

超灵敏差示扫描量热仪相关的资料

超灵敏差示扫描量热仪相关的论坛

  • 【原创】差示扫描量热仪的量热灵敏度问题

    最近,我们在考察差示扫描量热仪仪器,发现各家厂商的指标很乱,有的厂商说是灵敏度达到0.04uW,有些说达到0.01uW,然后,每家的定义又不太一样,不知道关于灵敏度有没有明确的定义?如何测试验证?大家知道的每家的实际测试灵敏度的情况如何?

  • 【讨论】生物高灵敏度差示扫描量热仪

    查阅了相关资料,生物差示扫描量热仪主要厂家及品牌,美国TA公司TAM系列,法国塞塔拉姆公司Micro DSC系列,美国GE公司的VP DSC系列,用于微量生物样品热分析,真不知道哪家的产品好,价格?还有没有其他品牌,请专家指点!

  • dsc差示扫描量热仪测试原理和优势

    dsc差示扫描量热仪测试原理和优势

    你们有[b]dsc差示扫描量热仪[/b]吗?dsc测什么?这些问题常常被客户问起,作为dsc差示扫描量热仪的生产厂家,针对客户的常见问题,来详细了解一下。  dsc差示扫描量热仪测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。  dsc差示扫描量热仪选择一种对热稳定的物质作为参比物,将其与样品一起置于DSC可按设定速率升温的电炉中,分别记录参比物的温度以及样品与参比物间的温度差△T,以温差△T对温度T作图就可以得到一条差热分析曲线,这种热分析曲线称为差热谱图,从差热谱图中可分析出试样的比热容和玻璃化转变温度Tg值。[align=center][img=,690,463]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291358573976_8892_3513183_3.jpg!w690x463.jpg[/img][/align]  dsc差示扫描量热仪具备哪些优势?以DSC300差示扫描量热仪为例,介绍其具备性能优势。  1、智能控温系统。可通过软件多段温度设置,实现升温、恒温、降温等,操作方便快捷。  2、全新的炉体结构设计,保温性能好,灵敏度高。  3、仪器的灵敏度可达到0.001mW,测量的准确率大大提升。  4、双向控制系统,可通过仪器界面和软件同时操作,提高了工作效率。  5、7寸彩色触摸屏显示,显示的清晰度高,信息齐全。  6、采用进口芯片,采集电路屏蔽抗干扰处理。

超灵敏差示扫描量热仪相关的耗材

  • 微阵列芯片扫描仪配件
    微阵列芯片扫描仪配件专业为扫描基因芯片,蛋白质芯片等微阵列芯片而设计,是功能强大的高分辨率荧光扫描仪。适合所有微阵列芯片,如DNA芯片,蛋白质芯片和细胞和组织,并适用于各类型的应用研究,如基因表达,基因分型,aCGH,芯片分析片内,微RNA检测的SNP,蛋白质组学和微阵列的方式。微阵列芯片扫描仪配件是完全开放的系统,兼容任何标准的显微镜载玻片25x75mm(玻璃基板,塑料,透明和不透明),可以扫描生物芯片,有3 1.mu.m/像素的分辨率,同时保持高图像质量。能够同时扫描两个检测通道3.5分钟(10.mu.m/像素,最大扫描区域),InnoScan900是市场上最快的扫描器,扫描速率可调节,达10到35行每秒。微阵列芯片扫描仪配件共焦扫描仪配备有两个光电倍增管(PMT),非常敏感,整个工作范围(0至100%)线性完美,允许用户简单地改变PMT,调整2种颜色的荧光信号。使用这种独特的动态自动聚焦系统,提供的是不敏感的基板的变形,整个扫描表面上完美,均匀。微阵列芯片扫描仪有出色光度测定性能,特别是在灵敏度和信噪比方面。微阵列芯片扫描仪有一系列可满足您的应用程序,四扫描器(710,710 U,900 U和900)。该Innoscan® 900和900AL系列(磁带自动加载机)是专为现在和未来的高密度微阵列发展。
  • 单轴检流计光学扫描仪
    单轴检流计光学扫描仪Single Axis Galvanometer Optical Scanners±10° 的光学扫描设计用于在较快扫描速度下稳定定位紧凑的外形适合空间敏感型应用单轴检流计光学扫描仪适用于需要在一个轴上进行光束转向的应用。这些检流计设计为具有紧凑的外形和长寿命轴承,以便在空间敏感的应用中进行高速、高性能的扫描。这些检流计占用的空间很小,因此可以轻松集成到 OCT 系统等大型光学系统中。单轴检流计光学扫描仪采用镀银反射镜,以便在从可见光到红外的输入光束上获得带宽性能。它们的 ±10V 直流模拟命令输入可实现 ±10° 的光学扫描。#11-762包括 6210H 系列检流计(含 5mm 反射镜装配件)、671 系列伺服驱动器,以及从检流计到伺服系统的互连缆线。若要操作驱动板,需要使用电源(#66-911) 和电源线 (#88-170) 此两者单独出售。注意:提供安装座#11-763来安装#11-762。强烈建议操作过程中将散热器与伺服驱动器板连接。热油脂提高伺服驱动板和散热片(不包括)之间的热传导。运行驱动板需要一个正极的和负极电源(不包括)。标题产品编码6210H 5mm Mirror Single Axis Galvanometer Scanner, Protected Silver#11-762
  • 双轴向基于检流器的光电扫描仪
    双轴向基于检流器的光电扫描仪先进的光学位置检测设计移动磁体驱动器技术体积小巧,很容易整合通用规格基底:Mirror: Fused Silica工作温度 (°C):0 to +50功率要求:±24 to ±28 VCurrent - Peak (A):Maximum: 20额定漂移,转子 (°):±20保险杠停止角度,初始接触 (°):±26Damage Threshold, CW:150 - 200 W/cm2电源:2 x#14-571or 1 x#59-026和紧凑型,对成本敏感的闭环电流计相比,该双轴向电流计光学扫描仪能提供更好的定位速度和精确度.该产品具有低惯性,结构紧凑,高速和高精度的特点,这使它们比较适合生物医学系统,光学相干断层扫描,激光投影,共聚焦显微镜和分析仪器等产品上使用。双轴伺服驱动器提供了最佳的重复性,线性度,稳定性和紧凑封装的成本。模拟指令输入高达±10伏直流电,可使机械扫描器旋转±5 度。伺服回路上的误差积分器可以达到微量级水平定位精度。内置系统条件、位置和速度状态监测使一体化的驱动板简便而精确的扫描系统。其中包括两个检流计、一个双轴集成伺服驱动放大器、两条互连电缆、一个XY检流计接口以及一个3mm或5mm(在产品描述中指定)的光圈XY反射镜组。适用于6215H的调节/信号监控接线板(编号#88-156),可以访问所有检流计和伺服信号,编号为#88-170的元件可提供易于使用的BNC输入电缆和压接端子型电线/接地线。注意:强烈建议操作过程中将散热器与伺服驱动器板连接。热油脂提高伺服驱动板和散热片(不包括)之间的热传导。运行驱动板需要一个正极的和负极电源(不包括)。请选择#14-571(需要2个)或#59-026(需要1个)。产品信息标题产品编码6215H 5mm反射镜XY振镜扫描器,镀银保护膜#86-8096220H 10mm Mirrors XY Galvanometer Scanner, Protected Silver#11-761技术数据
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制