单细胞基因表达分析

仪器信息网单细胞基因表达分析专题为您提供2024年最新单细胞基因表达分析价格报价、厂家品牌的相关信息, 包括单细胞基因表达分析参数、型号等,不管是国产,还是进口品牌的单细胞基因表达分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单细胞基因表达分析相关的耗材配件、试剂标物,还有单细胞基因表达分析相关的最新资讯、资料,以及单细胞基因表达分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

单细胞基因表达分析相关的厂商

  • 400-860-5168转5915
    沃亿生物基于显微光学切片断层成像(MOST)技术的系列仪器设备,在国际上率先建立了可对厘米大小样本进行突起水平精细结构三维成像,填补了核磁共振成像和电子显微镜之间的空白。MOST系列设备不仅可以获得单细胞分辨的全脑神经连接图谱、定位神经环路、追踪单神经元长程投射、构筑血管网络三维拓扑结构;还可用于细胞空间定量分析、单细胞形态学分析,全器官蛋白质及基因表达空间定位;适用于多种模式生物的全器官或组织三维结构可视化,在基础科学研究、病理机制研究、药物筛选与评估、生物3D打印、三维解剖学数据库构建等领域发挥极大作用。
    留言咨询
  • 上海鲸舟基因科技有限公司是中科普瑞旗下子公司。本公司立足新一代测序及其衍生技术,以生物信息学为核心,提供覆盖肿瘤精准用药指导和预后评估,肿瘤早期筛查、甲基化研究和应用、单细胞研究应用、多组学科技服务等符合临床需求和转化研究的解决方案。公司在上海建立了符合美国CLIA和CAP认证标准的医学检验实验室,是基因科技领域极富竞争力的后起之秀。拥有国际一流的运营和科学家的顾问团队。是“中国十万人甲基化组计划(表观星图计划)”的项目实施方,首批合作单位包括中科院、中国医学科学院等十数家大专院所,并正在向制药等工业化企业渗透、覆盖。具有国际水平的专利和技术。建立了BD(中国)-中科普瑞单细胞研究联合实验室,完善的多组学科研服务平台。
    留言咨询
  • 400-860-5168转0264
    环球分析测试仪器有限公司(UATIL)成立于1982年,总部设在香港,是国外多家知名的高新科技仪器生产制造商在中国的独家总代理。主要产品电化学仪器:电化学工作站、光电化学测试设备 化学合成仪器:全自动反应系统、反应量热仪、超声波结晶系统、平行合成仪、高温高压釜、流动化学系统 萃取及纯化仪器:超临界萃取仪、快速制备色谱、固相萃取、溶剂蒸发仪、气体纯化系统 生命科学仪器:生物反应器、发酵罐、冷冻干燥机、移液工作站、离心浓缩仪 乳品分析仪器:乳品成分分析仪、体细胞计数器、奶牛生产性能测试仪 材料测试仪器:网格应变测试仪、杯凸试验机 惰性环境仪器:手套箱 微流控仪器:单细胞测序、细胞包裹、微流控芯片、微流泵、液滴微流控系统、3D芯片打印机
    留言咨询

单细胞基因表达分析相关的仪器

  • 单细胞RNA测序使研究人员能够通过区分异质群体中的不同细胞个体,更加深入的了解细胞功能、疾病进展和治疗效果。illumina Bio-Rad单细胞测序方案由测序技术和微滴数字PCR技术两大各自行业的领军公司共同开发,可在单次实验中对数百个至数万个细胞的转录组进行分析,并为研究人员提供强大的、可拓展性的、用户友好的工作流程。完善的单细胞测序解决方案:从样本制备到数据分析SureCell WTA 3’文库制备试剂盒提供了单细胞测序所需的所有试剂,包括ddSEQ单细胞微滴制备系统所需的分离试剂、编码试剂以及文库构建所需要的Nextera试剂;而BaseSpace Sequence Hub分析平台提供简化的、一键式生物信心数据分析流程。1. 可拓展的、灵活的单细胞分析方案- 5min可完成4个样本的微滴制备- 每个样本可包裹数百至数千个单细胞,每日可处理数万个单细胞- 微滴数字化技术制备稳定、均一的微滴,确保高效的细胞裂解和RNA编码2. 简捷的文库制备流程- Nextera 技术简化建库流程,无需预扩增- 使用特异的标签序列(Index)标识24个样本的文库- 高灵敏的检测技术确保检测更多的基因3. 一体化的测序和数据分析方案- BaseSpace 单细胞分析APP,一键式数据分析- 可视化分析流程、轻松分享数据- 基于云端的数据存储和分析,安全无忧高质量数据1. RNA测序结果无细胞大小偏好HEK 293,NIH 3T3,A20和BJ细胞经由SureCell 3' WTA 文库制备试剂盒处理。A. TC20 自动细胞计数仪测量的细胞粒直径B. 每个细胞测得的基因数中值 2. 可靠的单细胞转录本鉴别物种混合实验中对HEK 293和NIH 3T3细胞进行分析。 3. 高灵敏度和重复性NextSeq 550上分析测序重复样本。
    留言咨询
  • 细胞异质性存在于生命医学研究的各个领域,包括肿瘤学,干细胞分化发育,免疫学等。重大生命医学问题的解决,必须首先解决细胞异质性的问题。通过单细胞检测技术,对异质性细胞进行分类,是细胞异质性分析的主要手段。单细胞测序技术实在基因层面的单细胞分析,但是所有生物学效应,包括生理学效应,病理学效应,药物反应等,最后都是通过特定蛋白质来发生和调控的。Milo单细胞蛋白质表达定量分析系统,技术来源自美国著名大学加州大学伯克利分校Amy E. Herr教授实验室,该实验2014年原创性技术发表在Nature Method,题目Single cell western blot。ProteinSimple借助强大的软件及硬件研发实力,将其开发为单细胞蛋白质表达定量检测系统,用于细胞异质性及稀缺细胞样本(比如循环肿瘤细胞等)研究。检测流程Milo单细胞蛋白质定量表达分析系统,是第一款单细胞水平,蛋白质表达定量分析系统。Milo系统采用专利的微流控western blot芯片,通过单细胞微孔设计,采集单细胞,然后原位裂解细胞,释放蛋白,进行蛋白质电泳,将不同分子量蛋白进行分离,提高免疫学检测特异性。之后,采用专利技术进行蛋白质原位捕获,使用western blot验证抗体及荧光标记二抗直接杂交,扫描仪进行芯片扫描后,Scout软件对扫描结果进行深度定量分析。因为Milo对单细胞蛋白质表达分析的独特优势,在7月份上市之后,连续获得了MIT technology review 年度创新奖,美国著名杂志 The Scientist 年度创新产品第一名。 Milo具有极其强大的功能: 1. 单张芯片可进行1000-2000个单细胞western blot检测 2. 单个细胞可进行数十个靶蛋白检测 3. 仅需使用western blot验证抗体 4. 基于western blot技术,蛋白质分离后检测,提高免疫学检测特异性 5. 全程检测4-6小时 6. 适用于:细胞异质性研究及稀缺样本检测。 5. Single cell–resolution western blotting,1508 | VOL.11 NO.8 | 2016 | Nature protocols
    留言咨询
  • 细胞在组织样本中相对的位置关系对于理解疾病病理学至关重要。Visium空间基因表达解决方案不仅可以检测带有空间分辨的全转录组表达,同时还可以通过HE染色捕获相同组织切片中的组织学信息,并且可以将基因表达谱映射回组织原始的位置。此外,结合免疫荧光染色,还可以同时对蛋白组和基因表达进行可视化分析。目前该方案支持冰冻切片,石蜡切片。该解决方案为癌症,免疫学,神经科学,发育生物学等领域的研究提供组织和基因表达复杂性的新视角。10x Genomics于2019年推出了Visium空间基因表达解决方案,可以实现新鲜冰冻样本和石蜡包埋样本的空间转录组分析。接着在2022年推出了Visium CytAssist组织多组学分析物转移系统,目前可以将新鲜冰冻或者FFPE切片上的转录组分析物从普通的载玻片转移到VIsium玻片上。这样就使得我们可以对已经存到玻片上的病理样本进行空间转录组分析。或者,您可以在普通载玻片上对组织切片进行HE或者免疫荧光染色,选取感兴趣的切片,再将其转录组分析物转移到Visium玻片上。关于北京易研科技有限公司易研科技专注于为生命科学研究、基础医学研究等领域提供先进的产品及科技服务。作为10x Genomics、bioGenous等知名品牌的官方合作代理商,易研科技为客户提供Chromium单细胞平台、Visium空间平台、Xenium原位检测平台及bioGenous类器官研究相关的仪器和试剂。同时,易研科技也提供单细胞/空间转录组测序、蛋白多因子检测、多色荧光免疫组化、流式细胞分析与分选、细胞成像(激光共聚焦成像、高分辨率活细胞成像、高内涵成像以及超高分辨活细胞成像)以及组织样本病理检测等科研科技服务。电话:4009-215-415
    留言咨询

单细胞基因表达分析相关的资讯

  • 北京生科院建立单细胞环形RNA分析技术及表达图谱
    环形RNA是一类在真核细胞中广泛存在的内源性非编码RNA分子,在生物体发育过程中发挥重要作用。之前研究已在不同物种中鉴定出数百万个环形RNA分子,并产生了大量用于揭示生物体组织表达模式的环形RNA数据资源。然而,由于大多数环形RNA表达量较低,传统的转录组测序方法无法表征单个细胞环形RNA表达谱系特征及异质性。近年来,随着单细胞全长转录组测序技术的发展,已可对单个细胞中环形RNA进行捕获测定。尽管效率较低,仍可部分揭示单细胞分辨率下环形RNA的表达模式。因此,单细胞水平的环形RNA表达及功能研究已成为该领域重点关注的问题。 中国科学院北京生命科学研究院研究员赵方庆团队致力于环形RNA方面的研究。6月10日,该团队在《自然-通讯》(Nature Communications)上,发表了题为Exploring the cellular landscape of circular RNAs using full-length single-cell RNA sequencing的研究论文。该研究基于海量单细胞全长转录组测序数据集,实现了单细胞分辨率下环形RNA的高效识别及深度挖掘,基于大规模时空组学数据的整合分析,探索了环形RNA的细胞异质性,揭示了环形RNA作为细胞类型标志物的应用潜力。该研究将目前环形RNA研究从传统组织水平提升至单细胞水平,为探究不同细胞类型中环形RNA的生物学功能提供了重要的数据资源和分析技术。 科研人员收集整理了171个已发表的单细胞全长转录组数据集(图1),包含人和小鼠中58种组织和细胞类型,共计172,137个细胞。同时,研究建立了基于单细胞转录组数据的环形RNA识别和整合分析方法,在人和小鼠中共识别出40,604和131,533个高度可靠的环形RNA分子。基于以上数据所生成的单细胞环形RNA综合表达图谱,为环形RNA的研究提供了有力的数据支持,并为揭示环形RNA在不同细胞类型及发育阶段的动态变化提供了重要资源。 该研究深度剖析了单细胞数据中环形RNA的表达模式,发现它们在不同细胞类型上具有高度特异性。研究对小鼠大脑不同细胞类型中环形RNA的表达的分析表明,抑制性和兴奋性神经元的差异性表达与RNA结合蛋白的表达具有高度相关性。此外,研究观察到胚胎发育不同阶段的特征性环形RNA,阐释了环形RNA从母体来源至合子表达发生的动态转变过程。 进一步地,基于单细胞测序技术可有效的揭示肿瘤发展和转移过程中细胞水平的异质性,研究建立了20名乳腺癌患者的单细胞数据集,分析发现环形RNA在正常和肿瘤细胞的上皮间质转换过程中的表达规律和潜在功能。研究筛选出人和小鼠中细胞类型特异性环形RNA,并验证了其可作为生物标志物在解析肿瘤浸润性免疫细胞中的适用性。最后,研究构建了目前首个单细胞环形RNA数据分析和资源平台——circSC(http://circatlas.biols.ac.cn)(图2),为环形RNA研究奠定了独特而重要的数据和技术基础。 研究工作得到国家杰出青年科学基金、国家自然科学基金基金重点项目和国家重点研发计划的支持。赵方庆团队致力于建立高效的算法模型和实验技术,探索人体微生物与非编码RNA的结构组成与变化规律,解析它们与人类健康和疾病的关系。近年来,相关成果先后发表在Cell(2020)、Gut(2022/2020/2018)、Nature Biotechnology(2021)、Nature Computational Science(2022)、Nature Communications (2022a/2022b/2021/2020/2017/2016)、Genome Biology(2021/2020/2016)、Molecular Biology and Evolution(2022)、ISME J(2019)等上,这些研究丰富了科学家对人体微生物与非编码RNA多样性、结构组成与功能的认识,并为相关数据挖掘及功能机制研究提供了重要方法学工具。   论文链接 图1.基于单细胞全长转录组的环形RNA识别和整合分析 图2.环形RNA单细胞表达图谱及数据平台——circSC 精彩会议预告:点击图片免费报名参加“第五届基因测序网络大会”
  • 北京基因组所发布癌症单细胞表达图谱数据库CancerSCEM
    近日,中国科学院北京基因组研究所(国家生物信息中心)国家基因组科学数据中心开发的癌症单细胞表达图谱数据库CancerSCEM上线。该研究成果以CancerSCEM: a database of single-cell expression map across various human cancers为题在国际学术期刊Nucleic Acid Research在线发表。  单细胞分辨率的全转录组测序技术(scRNA-seq)具有研究细胞异质性的显著优势,已成为研究肿瘤微环境、癌症发病机制、转移与侵袭以及各类癌症治疗与诊断不可或缺的手段。截至2021年11月,PubMed已有超过1300个癌症相关的单细胞转录组学研究,极大提升了人们对人类癌症发生发展的理解,推动了癌症临床诊断与治疗的进程。大规模癌症scRNA-seq数据在过去十年中呈现爆炸式增长,迫切需要对这些数据进行规范化整合与处理,对各类癌症的肿瘤微环境进行深入挖掘与比较分析。为应对这一需求,该研究团队开发了CancerSCEM数据库。  CancerSCEM 1.0版本整合分析了208个癌症scRNA-seq数据集,涵盖肺腺癌(LUAD)、结肠直肠癌(CRC)、恶性胶质瘤(GBM)等在内的20种人类癌症类型。通过标准化分析流程处理,获得了精确的细胞类型注释信息。在此基础上,团队还开展了一系列附加分析,包括不同细胞类型间基因差异表达分析(可为新型标志物筛选提供参考)、细胞表面受体-配体基因对表达谱、样本内细胞互作网络构建等,可为用户提供更加丰富的肿瘤微环境相关信息,并开展了基于TCGA表达数据与临床信息的生存分析。  数据库为用户提供浏览、多重检索、在线分析及下载等服务功能,用户可采用首页快速检索、词云及精确检索等途径查询感兴趣的癌症单细胞数据集或样本。如点击词云里的基因名“HLA-A”或通过搜索框输入,均可触发数据库查询功能,并实时获得目标基因的详细信息及其在单细胞层面与细胞群体(组织)层面的表达分布信息。为方便临床相关用户的使用,团队共审编获得36个常用免疫检查点分子(如PDCD1、CTLA4、LAG3、HMGB1),并提供专门的搜索列表,以帮助各类癌症的临床免疫治疗研究寻找更优的治疗靶点。  数据库还配备了一个交互式综合在线分析平台,共集成2个分析模块与7个分析功能。通过基因分析模块,用户可开展4个方面的实时分析及可视化展示:样本内目标基因的整体表达概况;样本内基因在不同细胞类型间的表达比较;基因表达相关性计算及筛选;208个样本中单细胞或bulk层面的基因表达比较。通过样本分析模块,用户可进行样本间细胞组成比较、样本内细胞互作网络构建以及基于TCGA的生存分析。该分析平台将为用户开展个性化的癌症scRNA-seq数据挖掘提供友好的增值服务。  该研究工作得到中科院战略性先导科技专项、国家自然科学基金、国家重点研发计划等项目资助。  论文链接
  • Nature丨癌细胞中的“团伙作案”:ecDNA“犯罪中心”驱动癌基因分子间的协同表达
    DNA不仅可以按其序列编码信息,也可以按其形状编码信息。人类基因组被分割成由染色质纤维折叠成动态的层次结构组成的染色体。这种空间结构(包括许多染色质环)可以将远端元件拉近,并将转录活动组织到不同的区域,从而限制了DNA的调控和转录机制。而在癌症中,这种染色质环境则发生了深远的改变【1】。近年来,编码癌基因的环状染色体外DNA(ecDNA)被证明在癌症中广泛存在,是癌症基因组的普遍特征,也是人类癌症进展的有力驱动因素。ecDNA是共价闭合双链,不同于在健康体细胞组织中发现的千碱基大小的环状DNA,其大小从100千碱基到数兆碱基不等,且被高度扩增【1】。ecDNA缺乏着丝粒,并且在每次细胞分裂后随机分布在子细胞中,使得其可以快速积累,且可以选择具有耐药性或其他适应性优势的ecDNA变体【2】。ecDNAs可以重新整合到染色体中,因此也可能作为某些染色体扩增的前体【3】。ecDNA具有更高的染色质可及性而缺乏更高的染色质致密性,且包含内源性致癌基因增强子元件,这表明癌基因扩增子可能是通过调控依赖性来扩增转录的【1,4】。值得一提的是,ecDNA存在于正常染色体环境之外,但其在细胞核中的空间组织尚不清楚。此外,ecDNA可以在细胞分裂期间或DNA损伤后聚集,但此生物学后果也尚不清楚。2021年11月24日,来自美国斯坦福大学的Howard Y. Chang团队在Nature上在线发表题为 EcDNA hubs drive cooperative intermolecular oncogene expression 的文章,研究了致癌ecDNA的空间、表观遗传学和转录动力学,揭示了由聚集在间期细胞细胞核中的约10-100个ecDNA组成的ecDNA“中心”,可以驱动分子间增强子信号以促使癌基因表达扩增,从而作为癌基因协同转录的组合增强子平台。研究人员利用DNA荧光原位杂交(FISH)技术,使用靶向多个细胞系中的ecDNA扩增的癌基因的探针来观察间期细胞核中ecDNA的定位,包括前列腺癌细胞系PC3(MYC扩增)、结直肠癌细胞系COLO320-DM(MYC扩增)、多形性成胶质细胞瘤细胞系HK359(EGFR扩增)和胃癌细胞系SNU16(MYC和FGFR2扩增)。结果显示,在进行实验的所有ecDNA阳性癌细胞中,尽管有数十到数百个单独的ecDNA分子,这些ecDNA的DNA FISH信号在很大程度上都局限于间期细胞细胞核的特定区域,由此表明ecDNA彼此发生了强烈聚集,该特征被称为ecDNA“中心”。这些ecDNA“中心”所占据的空间比相同大小的相邻染色体片段大得多,提示它们由许多紧密聚集在该空间中的ecDNA分子组成。进一步实验发现,ecDNA的聚集可以发生在具有不同癌基因扩增的各种癌症类型和原发性肿瘤中。随后,研究人员通过联合DNA和新生RNA FISH,在PC3和COLO320-DM细胞系中观察MYC等位基因的活跃转录,并计算每个ecDNA分子的MYC转录概率。结果显示,大多数新生的MYC mRNA转录本来自ecDNA“中心”,而不是来自染色体位点。ecDNA“中心”上致癌基因的转录活性明显高于染色体位点,表明当同一细胞中有更多的ecDNA拷贝时,每个ecDNA分子转录癌基因的可能性更大,尤其是以ecDNA“中心”的形式。人类染色体8q24上的MYC癌基因是癌症中体细胞DNA重排的热点,在人类癌症中近30%的MYC扩增以ecDNA的形式存在,通常包含MYC和PVT1(浆细胞瘤变体转录本1,位于MYC 3’端55kb处,是人类癌症的常发断点)的5’端部分。MYC的两侧是超级增强子,以赖氨酸27处的组蛋白H3乙酰化(H3K27ac)和BET蛋白(如BRD4)为标记,MYC转录对抑制剂JQ1置换BET蛋白高度敏感。为了检测活细胞中的MYC ecDNA,研究人员在COLO320-DM细胞中的MYC ecDNA中插入Tet-operator (TetO)阵列,并用TetR-eGFP或TetR-eGFP(A206K)标记ecDNA,以最小化GFP二聚化。实验结果显示,JQ1能有效降低COLO320-DM细胞(含MYC ecDNA)中MYC mRNA的水平,但对COLO320-HSR细胞(染色体MYC扩增子或均匀染色区)中MYC mRNA的水平没有显著影响(注:这两种细胞来自同一患者肿瘤,除了MYC扩增的背景外,具有高度相似的遗传背景)。此外,TetO-GFP COLO320-DM细胞的活细胞成像显示ecDNA“中心”在有丝分裂期间分解成更小的颗粒,之后又重新形成大的“中心”。值得注意的是,有丝分裂后的ecDNA“中心”的组装会被JQ1阻断。这些结果表明,COLO320-DM细胞中ecDNA“中心”的形成、维持和癌基因转录对BET蛋白的溴域H3K27ac相互作用具有独特的依赖性。为了将ecDNA结构与MYC转录调控联系起来,研究人员使用五种正交方法重建了COLO320-DM ecDNA,报告了迄今为止组装的最大的ecDNA结构——一个4.328 Mb的ecDNA,包含PVT1-MYC融合、标准MYC序列和来自多个染色体起源的序列(染色体6、8、13和16)的多个拷贝,并且利用DNA FISH验证了PLUT、PCAT1和MYC基因在重建预测的ecDNA上的共定位。接下来,研究人员确定了与癌基因高表达相关的ecDNA调控元件。来自72,049个COLO320-DM和COLO320-HSR细胞的配对单细胞ATAC–seq和RNA-seq确定了47个与高MYC表达相关的ecDNA调控元件,而目前驱动ecDNA上MYC癌基因表达的PVT1启动子(PVT1p),在ecDNA“中心”内接受了广泛的组合增强子输入。进一步地实验表明,分子间增强子-启动子在ecDNA“中心”激活,同时研究人员证实PVT1p作为一种DNA元件,能够反式激活ecDNA“中心”。那么分子间增强子-基因的相互作用是否可以被精确定位和干扰呢?以SNU16细胞系(它包含两种不同的ecDNA类型:一种来自8号和11号染色体的MYC扩增子和一种来自10号染色体的FGFR2扩增子)为研究对象,实验结果表明FGFR2和MYC ecDNA是共同选择的,因此这两个扩增子上的增强子可协同激活MYC表达。然后,MYC蛋白又可以反过来激活FGFR2的表达。顺式和反式调控元件之间几乎没有重叠,这也证实分子间增强子元件是直接通过反式而非下游效应修改基因表达。而进一步评估独立癌症类型中的分子间ecDNA的相互作用显示ecDNA“中心”内的分子间增强子基因激活发生在不同的癌基因位点和多种癌症类型中。综上所述,ecDNA“中心”内ecDNA的局部聚集促进了新的分子间增强子-基因相互作用和癌基因过度表达(图1)。与偏向局部顺式调控元件并跨越100-300nm的染色体转录中心不同,ecDNA“中心”可以跨越1000 nm以上,且涉及位于不同ecDNA分子上的反式调控元件。毫无疑问,这一发现对于ecDNA如何进行选择以及ecDNA上癌基因调控的重组如何促进转录具有深远的意义。同时,对于ecDNA“中心”促进癌基因转录的认识为癌症治疗提供新的潜在机会。原文链接:https://doi.org/10.1038/s41586-021-04116-8

单细胞基因表达分析相关的方案

单细胞基因表达分析相关的资料

单细胞基因表达分析相关的论坛

  • Cell:鉴定出全基因表达分析标准方法存在重大缺陷

    来自美国麻省理工学院怀海德研究所的研究人员报道,在当前许多各种不同的生物学研究中,用于产生和理解全局基因表达分析数据的常见假设能够导致关于基因活性和细胞行为方面严重缺陷性的结论。相关研究结果刊登在Cell期刊上。怀海德研究所研究员Richard Young说,“表达分析是当代生物学最经常用到的方法之一。因此,我们担心存在缺陷的假设可能影响对很多生物学研究的理解。”今天对基因表达数据的大多数理解都依赖于一种假设:用来分析的所有细胞拥有类似的mRNA总量,其中mRNA大约占细胞RNA中的10%,作为蛋白合成的蓝图发挥作用。然而,一些细胞,包括恶性癌细胞,要比其他细胞产生几倍多的mRNA。传统的全局基因表达分析通常忽略这些差别。Young实验室研究员和论文共同通讯作者Tony Lee说,“我们着重研究了基因表达分析的这种常见性的假设,它潜在影响了很多研究人员。我们提供一种具体的问题例子和一种研究人员能够执行的解决方法。”Young实验室的成员们最近在研究表达高水平c-Myc的癌细胞的基因表达时揭示出这种缺陷。已知c-My是一种基因调节物,在恶性癌细胞中高度表达。当比较表达高水平c-Myc的细胞和表达低水平c-Myc的细胞时,他们吃惊地发现不同的基因表达分析方法能够产生显著性的不同结果。进一步的研究揭示出在含有高水平c-Myc的和低水平c-Myc的细胞中存在显著性的不同,不过这些不同利用常见使用的实验方法和分析方法来掩盖掉。论文共同作者Jakob Lovén说,“我们从不同的基因表达分析方法中观察到的不同结果是令人震惊的,而且导致我们在几种平台上重新研究了这整个过程。我们然后意识到细胞含有类似mRNA水平的常见假设存在严重缺陷,能够导致严重性的误解,特别是对拥有非常不同RNA含量的癌细胞而言,尤其如此。”除了描绘出这种问题之外,研究人员也描述了一种补救方法。通过利用被称作RNA spike-in的人工合成mRNA作为标准对照,他们能够比较实验数据并且能够消除关于细胞RNA总量方面的假设。他们将这种补救方法应用到他们研究的所有三种基因表达分析平台。尽管研究人员相信使用RNA spike-in应当成为全局基因表达分析的新标准,但是理解很多之前的研究时产生的问题可能持续存在。(生物谷Bioon.com)http://www.bioon.com/biology/UploadFiles/201210/2012102722451179.gifdoi: 10.1016/j.cell.2012.10.012PMC:PMID:Revisiting Global Gene Expression AnalysisJakob Lovén, David A. Orlando, Alla A. Sigova, Charles Y. Lin, Peter B. Rahl, Christopher B. Burge, David L. Levens, Tong Ihn Lee, Richard A. YoungGene expression analysis is a widely used and powerful method for investigating the transcriptional behavior of biological systems, for classifying cell states in disease, and for many other purposes. Recent studies indicate that common assumptions currently embedded in experimental and analytical practices can lead to misinterpretation of global gene expression data. We discuss these assumptions and describe solutions that should minimize erroneous interpretation of gene expression data from multiple analysis platforms.

  • 单细胞分析——你能做得更多

    定义:单细胞研究,就是针对单个细胞的研究,这是相对于群体细胞的研究。研究意义:细胞是生命活动的基本单位,研究细胞的结构功能及行为,有利于揭示复杂生命体的生命活动规律,探究生理生化现象,获得统计平均结果。然而,现代研究表明,单个细胞内的成分存在巨大差异,平均分析结果不能反映单个细胞内成分的真实情况,会带来误导信息。癌症等疾病总是从个别细胞的变异开始,极少量异常细胞信号会被群体信号所掩盖,不能及时获得有关病变的信息。另外,细胞间的信号传导,应激反应等活动在细胞内迅速发生,传统方法无法做到实时监测。对于数量较少且较为珍贵的细胞样本,如干细胞、元祖细胞及患者样本,传统分析方法需要大量的细胞样本,并不适宜。关于物质在细胞内的空间分布,亚细胞结构如细胞器的分析,传统方法也不能满足。这些都要求我们在一定范围内从单细胞水平研究细胞的生命活动。单细胞分析方法:毛细管电泳、微流控芯片、图像分析、动力学分析及纳米技术等。目前单细胞分析存在的难点:首先无论是针对一个特异性大分子,还是在OMIC水平上进行分子分析,都存在单细胞提取物数量少,难以分析的困难,这甚至可以说是不可能完成的,因此增加灵敏度势在必行。除此之外高通量分析也是一个瓶颈,要想获得单细胞分析确切的分析结果,研究人员必须快速而准确的分析多个细胞,这并不容易。另外单细胞分析也常常需要进行多种方式分析,这不仅是由于细胞存在于一种异质性环境汇总,而且也在同一时间,也需要测量多个参数。

  • AI 单细胞应用!英伟达携手Deepcell开发单细胞分析的生成式AI技术应用

    [b][i]Deepcell周一表示,已与英伟达合作开发用于单细胞研究应用的生成人工智能技术。[/i][/b][align=center][b][i][img=image.png,113,83]https://img1.17img.cn/17img/images/202401/uepic/174b29e0-2f00-4d45-af22-8d08603d1fda.jpg[/img][/i][/b][/align][align=center][b][i][img=e763286044be6f856573c041d533273b_logo_with_R.jpg]https://img1.17img.cn/17img/images/202401/uepic/ee51f257-73e0-4f4c-beab-da55f87c445f.jpg[/img][/i][/b][/align]通过合作,公司将利用英伟达的计算专业知识和Clara一套专注于医疗保健的计算平台和软件,为基于细胞形态的分析应用程序构建新的算法,这些算法可以与Deepcell最近推出的REM-I高维细胞分析和分选平台等工具结合使用。Deepcell联合创始人、总裁兼首席技术官Mahyar Salek在一份声明中表示:“我们看到了将多模式和生成性人工智能融入我们的平台的多种可能性,并利用我们拥有的数十亿细胞图像的专有数据库来训练更多的人工智能模型。我们与英伟达的关系将帮助我们加快此类增强,并将这些进步带给我们的客户。”总部位于加利福尼亚州门洛帕克的Deepcell成立于2017年,是斯坦福大学的子公司,于2022年初筹集了7300万美元的B轮资金。Deepcell 是人工智能(AI)驱动的单细胞分析领域的先驱,旨在推动深度生物学发现,早在2023年2 月 6 日宣布,它已经发布了三个数据集,使研究人员能够探索新的高维形态数据。这些数据集是在 Deepcell 的高通量平台上生成的,该平台由成像和分选仪器、AI 模型和软件套件组成。Deepcell的首席技术官 Mahyar Salek曾经表示:“Deepcell的数据表明,深度学习可以实现较高的分类准确率,揭示了精确描述细胞特征和表型的新方法,并能够对感兴趣的细胞进行无标记分离,以进行进一步的深度分析。这项技术为生物医学界的科学家、转化研究机构和制药行业提供了一种新的工具,以从细胞形态学数据中获得对细胞的深度认识。”[b]关于 Deepcell[/b]Deepcell 是一家生命科学公司,它将 AI 引入细胞生物学,开启了称为形态组学的高维生物发现新领域。通过 Deepcell 的人工智能成像和微流体解决方案 REM-I 平台,该公司正在利用细胞形态学进行无限发现,从而实现新规模的细胞生物学研究和单细胞分析。Deepcell 的平台利用其 AI 模型,即人类基础模型,根据形态差异来识别和分类细胞,有助于推动基础和转化研究,并提供诊断测试和治疗靶向方面的未来应用。该公司于 2017 年从斯坦福大学分拆出来,已筹集近 1 亿美元的风险投资。[来源:仪器信息网译] 未经授权不得转载[align=right][/align]

单细胞基因表达分析相关的耗材

  • 单细胞测序 5' 转录组和免疫组试剂盒
    达普生物星海单细胞测序 5’转录组和免疫组试剂盒,全面地揭示基因表达的动态变化,以及免疫系统在健康和疾病状态下的反应。产品具有以下特点:【性能优】&bull 较高的细胞回收率:50%&bull VDJ序列组装效率:50%-80%&bull VDJ 序列配对率:80%【样本多样化】&bull 可兼容人、鼠的组织及免疫细胞&bull 针对抗体发现,推出兔免疫组试剂盒
  • 单细胞 ATAC 表观组试剂盒
    此外,单细胞 ATAC表观组试剂盒,是首个可进行混样测序的 scATAC-seq 商业化试剂盒,将帮助科学家们洞察基因调控的奥秘。具有诸多优势:【成本低】&bull 可使用超高通量测序系统,如 NovaSeq 6000,显著降低测序成本【自由度高】&bull 自由选择测序深度,低至 6G 数据,无须为上机等待同型样【效率高】&bull 选择第三方测序服务商,一周内可获得数据
  • 糖蛋白表达系统分析包
    The Protein Expression System (10K PSI) Microscale Kit consists of nanoACQUITY UPLC system, Q-Tof Premier, MassLynx&trade ProteinLynx&trade Global Server bioinformatics software, and Waters MassPREP chemistry consumables and kits. MassPREP Chemistry Consumable Kits for the Protein Express System include nanoACQUITY UPLC columns, MassPREP Protein Digestion Standards Mix 1 and 2, MassPREP Enolase Digest Standard, and RapiGestSF Surfactant.糖蛋白表达系统分析包 Microscale分析包,包括186003903nanoACQUITY UPLC 300µ m x 150 mm Atlantis dC18,3µ m,1/包186003506MPDS Mix 1,1/包186002865MPDS Mix 2,1/包186002866MPDS Enolase,1/包186002325RapiGest SF试剂,1 mg186001860Nanoscale分析包,包括186003904nanoACQUITY UPLC 75µ m x 150 mm Atlantis dC18,3µ m,1/包186003500nanoACQUITY UPLC 180µ m x 20 mm Symmetry C18捕集柱,5µ m ,1/包186003514MPDS Mix 1,1/包186002865MPDS Mix 2,1/包186002866MPDS Enolase,1/包186002325RapiGest SF试剂,1 mg186001860
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制