霍尔效应磁场检测仪

仪器信息网霍尔效应磁场检测仪专题为您提供2024年最新霍尔效应磁场检测仪价格报价、厂家品牌的相关信息, 包括霍尔效应磁场检测仪参数、型号等,不管是国产,还是进口品牌的霍尔效应磁场检测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合霍尔效应磁场检测仪相关的耗材配件、试剂标物,还有霍尔效应磁场检测仪相关的最新资讯、资料,以及霍尔效应磁场检测仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

霍尔效应磁场检测仪相关的厂商

  • 山东霍尔德电子科技有限公司是cod检测仪、氨氮检测仪、总磷总氮检测仪、生物毒性检测仪、测油仪、BOD检测仪、水质在线监测设备等生产研发销售集于一体的原厂厂家。公司主营业务是研发、生产和销售应用于水质检测、农业生态、食品快检、植物生理、气象环境、智能物联等仪器设备,在多重相关领域构建起完整的产品体系,将光电技术与物联网和云服务结合,为用户提供更加广泛的应用和深度服务,为农业、林业、科研、畜牧、气象、水利、食药、环境等相关领域提供综合解决方案。公司与全国各大高校和科研院所建立了长久的合作关系,引进先进的高科技成果,研发了众多高性价比高科技产品,广泛应用于各个行业,得到了客户的认可和青睐。
    留言咨询
  • 400-860-5168转4937
    霍尔斯(HOLVES)是一家创新的生命科学公司。自2010年创立至今,聚焦于合成生物学、生物制药、创新生物医疗等新兴领域,研发和生产了多款新型发酵罐、生物反应器、超滤系统、喷雾干燥机等设备,满足从实验到工业生产等各个需求环节。霍尔斯(HOLVES)致力于打造智能自动化系统,赋能生物研究和产业放大领域发展。 发展历程: 2010年创立霍尔斯(HOLVES)品牌,成立北京霍尔斯生物科技有限公司。2012年与美国NBS合作代理生物反应器,与德国GEA合作代理喷雾干燥机,积极学习国外先进的理念和经验。2016年自主研发的首台喷雾干燥机问世,获得市场一致好评,标志着霍尔斯(HOLVES)正式开启自主品牌道路。2017年投入全新现代化工厂基地,成立安徽霍尔斯工程技术有限公司。2020年推出全新设计的Cla系列发酵罐,Eu系列生物反应器,Su系列不锈钢发酵罐,公司和产品双双步入新征程。2021年重磅推出HPB系列平行生物反应器,助力新一代生物智造平台。
    留言咨询
  • 上海柯舜科技有限公司(LINKPHYSICS)于2008年成立,始于代理国外的知名品牌,是国内知名的低温设备制造商,是集研发、生产、销售于一体的高新技术企业,上海市“专精特新”企业、上海市宝山区企业技术中心、拥有ISO9001质量管理系统认证证书、2023年入选宝山区工业新升规快速成长企业,主要为高校、科研院所、制造业研发中心及系统集成企业提供先进的半导体测试系统及科研仪器设备,多年致力深耕低温磁场及探针台技术。公司主营产品有室温探针台、低温探针台、全自动探针台、半自动探针台、科研超导磁体系统、液氦&液氮低温恒温器、闭循环低温恒温器、霍尔效应测试系统、三维磁场测试平台、温控仪等产品。
    留言咨询

霍尔效应磁场检测仪相关的仪器

  • 霍尔效应传感器可为科学研究、医疗健康、航空航天和工业应用提供高性能的模拟磁场测量。 Figure 1. sensor on test assembly 产品特点:• 超高分辨率• 超低噪音性能• 可在极低温条件下使用• 大动态范围• 高线性• 超低功耗运行 简述:利用石墨烯固有的低噪声特性,无需信号调节即可提供出色的场分辨率。石墨烯的二维性质 很大程度地降低了平面霍尔效应,并且石墨烯的稳定性和电子 迁移率提供了 超强的温度和磁场工作范围。 应用包括:• 精密磁场测量• 场梯度和边缘场的精确映射• 高精度位置,旋转和速度感应• 低温下的超低功率场测量 产品优点:可满足各种应用需求。可以利用的优点包括:• 可以在 1.8 K - 353 K的极端温度下运行• 在大磁场范围( 9 T)内ppb磁场变化的分辨率• 低至 10 nA的工作电流,节省了功率,仅产生5 pW的散热• 平面霍尔效应可忽略不计,有助于精确地确定仪器的摆放位置场方向 需要特定要求,请联系我们info 性能特点:ParameterSymbolValue (typical)UnitNotesMaximum operating temperature rangeT1.8 to 353KPerformance guaranteed within this range. Operation 1.8 K is possibleMeasurable field rangeB+/- 9TSee Fig.2. At 1.8K, 0-9 T is possible with reduced linearityOpen Circuit SensitivityS1100V/AT@ room temperature. see Fig 3 for change with temperatureOpen Circuit Hall VoltageVH110mVI=IN and B=1 T, increases with reducing temperature Spectral Noise Density SDT7 μ???√????10 Hz, 2 VRMS (equivalent to I=IN)0.71 kHz, 2 VRMS (equivalent to I=IN)0.310 kHz, 2 VRMS (equivalent to I=IN)0.07100 kHz, 2 VRMS (equivalent to I=IN) Resolution, based on SDT on a 1 T field RSND7 ppm10 Hz, 2 VRMS (equivalent to I=IN)0.71 kHz, 2 VRMS (equivalent to I=IN)0.310 kHz, 2 VRMS (equivalent to I=IN)0.07100 kHz, 2 VRMS (equivalent to I=IN)RMS noise??T2?40?T0.1 – 10 Hz, 2 VRMS (equivalent to I=IN)2810 – 100 kHz, 2 VRMS (equivalent to I=IN)Linearity of Hall Voltage% of full scaleFL0.5%-1 to 1 T. See Fig 2 for full 0-9 T rangeCorrected Linearity0.01%-1 to 1 T, after 3rd order correctionPlanar Hall EffectHPL10μTAt I=IN , 1 TNominal Supply CurrentIN0.1mACan be operated down to I=10 nAMaximum Supply CurrentImax1mASupply Side Internal ResistanceRIN22k?B=0 THall Side Internal ResistanceROUT22k?B=0 T Offset Voltage VR08mVTypical offset voltage at I=IN and B=0 T0.6mVMin offset voltage at I=IN and B=0 T34mVMax offset voltage at I=IN and B=0 TTemperature Coefficient of SensitivityTCS-4.7V/AT/K@ room temperature, IN 高场和低温性能 Figure 2. Hall Voltage output at 295 K, from 0 to 9 T Figure 3. Sensitivity as a function of temperature from 1.8 K to 300 K. Measured at 1T. 封装信息有效面积:1.3 x 1.3 mm 位于封装的中心封装类型: 20-pin LCC, 陶瓷,无镍, 表面贴焊。PinNotesVIN+1 or 11Input voltage can be supplied with eitherpolarityVIN-11 or 1VH+6 or 16Hall voltage polarity willdepend on VIN polarity and field polarityVH-16 or 6
    留言咨询
  • 1.设备名称:霍尔效应测试仪2.功能描述:测量半导体薄膜中载流子类型、载流子浓度、迁移率、电阻率、霍尔系数等参数3.设备明细:3-1测试范围:Si, SiGe, SiC, GaAs, InGaAs, InP, GaN (N Type & P Type)等材质的半导体薄膜中载流子类型、载流子浓度、迁移率、电阻率、霍尔系数等参数3-2磁场:3-2-1磁场强度:0.5T 电磁体 (0.5T 永磁体 / 1.4T 电磁体 两种磁场可选)3-2-2磁场类型:电磁体3-2-3磁场均匀性:磁场不均匀性<± 1 %3-3测试样品:3-3-1样品测试仓:全封闭、带玻璃窗口3-4温 度:3-4-1温度区域:80K ~730K3-4-2温控精度:0.1K3-4-3温控稳定性:± 0.1 K3-5电阻率范围:10-6~1013 Ohm*cm3-6电阻范围:10 m Ohms~ 10G Ohms3-7载流子浓度:102~1022cm-33-8迁移率:10-2~109 cm2/volt*sec3-9输入电流:3-9-1电流范围:0.1 pA~10mA3-9-2电流精度:2%3-10输入电压:3-10-1电压范围:± 2.5V,最小可测到6× 10-6V3-10-2电压分辨率:3× 10-7V3-10-3电压精度:2%
    留言咨询
  • 霍尔效应实验,YMP-6106B 简介置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象被称为霍尔效应。YMP-6106B型霍尔效应实验采用一个长方体状半导体样品放置于均匀电磁场中,在这个矩形样品中横向通以电流,那么因为霍尔效应而在这个样品的垂直于电流和磁场的方向上产生一个一定大小的电势差,即为霍尔电压。特点基于光学轨道结构,霍尔探头在磁场中的位置二维可调换向开关改变霍尔电流和磁场方向,用“对称测量法”消除附加不等位电势的影响可升级为数字化实验实验内容了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识学习用“对称测量法”消除副效应的影响,测量试样的UH - IS和UH - IM曲线确定试样的导电类型、载流子浓度以及迁移率能量在电磁场中传输特性实验,YGP-6201 简介YGP-6201型实验装置采用磁耦合谐振式原理,传输效率优于感应式磁场耦合传输,并且电能传输不受空间非磁性障碍物的影响。本实验装置设计有一对谐振线圈,通过高频交流电源给一个线圈通电作为发射线圈,产生磁场能量。另外一个线圈作为接收线圈,接收后转化为电能输出,最后驱动风扇或者LED灯。本实验可以改变两个线圈距离,线圈相对角度,负载电阻和传输介质等,来研究影响传输效率的因素。特点丰富的测试模块,可基于光学轨道灵活安装功能强大的一体化实验电源,涵盖实验所需的全部输入输出信号轻便美观的谐振线圈,可90o左右旋转风扇与LED双重演示,能量传输效果直观明显可升级为数字化实验实验内容两线圈互感系数及耦合系数的实验近似测定输出功率、传输效率与负载电阻关系测定输出功率、传输效率与线圈距离关系测定输出功率、传输效率与线圈相对角度关系测定输出功率、传输效率与不同介质中电源频率关系测定演示不同负载下的传输效率电学综合实验,YGP-6204简介电学综合实验是供高校物理实验室进行电学元件伏安特性测量、光电元件特性测量,电桥原理及应用、RLC 电路原理及应用、集成放大器原理及其应用等实验而设计的开放式教学实验仪器。该仪器配套有工作电源、数字电压传感器、数字电流传感器、数字微电流传感器、光传感器、温度传感器、各种待测元件、各种控制电路元件等。以上系列设计性、综合性、开放性实验的开设,不仅可以让学生深入了解经典的电学现象和原理,还可以了解目前主流的电子信息技术和产品,深入理解其工作原理和产品特性,使学生可以接触到电子信息技术领域的前沿的科技,并对其未来的发展空间产生想象和兴趣。特点独立模块设计,积木式拼搭组合,充分调动学生的动手能力模块底部采用可视化透明材料,方便观察元器件模块采用可拆卸结构,方便更换元器件配置无线电压传感器、无线电流传感器、无线微电流传感器和数据分析软件传感器采样频率最高可达1KHz,每组数据的采集量可达到100000组以上;采样精度达到0.5%,数字化采集实验数据并实时分析,使得物理定律显而易见实验内容1、电学元件伏安特性的测量;2、光敏元件的应用;3、热敏元件的应用;4、电表的改装与校准;5、单臂电桥原理及应用;6、双臂电桥原理及应用;7、非平衡电桥原理及应用;8、RLC 电路的暂态过程研究;9、RLC电路的谐振特性研究;10、整流、滤波及稳压电路;11、集成放大器及其应用;12、应用电路实验。RLC电路实验,YGP-6207简介YGP-6207 RLC电路实验包括RLC电路的暂态过程研究、RLC谐振电路特性研究等内容。学习的知识点有RL、RC、RLC电路中电流、电压的暂态过程特征,指数衰减时间常数定义和测量方法,衰减振荡周期和时间常数定义和测量方法,RC微分电路的用法和参数选择,RC积分电路的用法和参数选择以及RLC电路稳态、谐振、幅频特性、相频特性、高通电路、低通电路、上限频率、下限频率、截止频率、通频带宽度、谐振频率、电感性、电容性、品质因数、选频、共地、电压谐振、电流谐振、相位差的测量等。本实验装置可实现RLC电路实验的分层次教学,完成其中的基础内容、提升内容、进阶内容以及高阶内容。特点独立模块设计,积木式拼搭组合,充分调动学生的动手能力模块底部采用可视化透明材料,方便观察元器件模块采用可拆卸结构,方便更换元器件使用电压传感器测量时间常数非常容易二极管伏安特性曲线使用软件的曲线拟合功能很容易验证曲线是否呈指数实验内容观测RC、RL、RLC串联电路的幅频/相频特性以及品质因数Q观察RC、RL串联电路的暂态过程,测量其指数衰减时间常数观测不同Q值下RLC串联电路的幅频特性测试;RLC并联电路的幅频/相频特性测试;设计RC低通滤波电路和高通滤波电路观察RLC串联电路的暂态过程及其阻尼振荡规律设计二阶RC滤波电路研究RLC并联电路的暂态行为、设计积分或微分电路等设计整流滤波电路、LC三阶低通滤波电路、无阻尼振荡电路等对电路暂态过程进行计算机显示等直流电桥实验,YGP-6209简介YGP-6209直流电桥实验学习的知识点有直流电桥测电阻,交换(换臂)法,倍率选取、电桥灵敏度测量,电阻率测量等。该实验装置可完成直流电桥实验的基础内容、提升内容、进阶内容以及高阶内容,实现分层次教学。特点独立模块设计,积木式拼搭组合,充分调动学生的动手能力模块底部采用可视化透明材料,方便观察元器件模块采用可拆卸结构,方便更换元器件采用微电流传感器替代传统检流计,实现分层次教学实验内容自组电桥,选择合适的倍率、测量不同未知(中值)电阻的阻值,测出电桥的灵敏度考虑电桥比率臂阻值、检流计灵敏度对整个电桥灵敏度及测量精度的影响,计算未知电阻的不确定度,写出结果表达式搭建双臂直流电桥,依据双臂电桥原理及测量方法,测量金属棒的阻值;测量其长度、直径,计算金属棒的电阻率结合工程技术,研究直流电桥的应用,如:温控、光控电路等结合现代科学技术,利用传感器、数据采集、虚拟技术等,将电桥电压采集到计算机中,在软件方面设计应用更多精彩,请关注下方!
    留言咨询

霍尔效应磁场检测仪相关的资讯

  • 中国科学家首次发现量子反常霍尔效应 影响重大
    图一,量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应     图二,理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导     图三,在Cr掺杂的(Bi,Sb)2Te3拓扑绝缘体磁性薄膜中测量到的霍尔电阻  中新社北京3月15日电 (记者 马海燕)北京时间3月15日凌晨,《科学》杂志在线发文,宣布中国科学家领衔的团队首次在实验上发现量子反常霍尔效应。这一发现或将对信息技术进步产生重大影响。  这一发现由清华大学教授、中国科学院院士薛其坤领衔,清华大学、中国科学院物理所和斯坦福大学的研究人员联合组成的团队历时4年完成。在美国物理学家霍尔1880年发现反常霍尔效应133年后,终于实现了反常霍尔效应的量子化,这一发现是相关领域的重大突破,也是世界基础研究领域的一项重要科学发现。  由于人们有可能利用量子霍尔效应发展新一代低能耗晶体管和电子学器件,这将克服电脑的发热和能量耗散问题,从而有可能推动信息技术的进步。然而,普通量子霍尔效应的产生需要用到非常强的磁场,因此应用起来将非常昂贵和困难。但量子反常霍尔效应的好处在于不需要任何外加磁场,这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。  美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。1980年,德国科学家冯克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果分别于1985年和1998年获得诺贝尔物理学奖。  相关链接  “量子反常霍尔效应”研究获突破  中国科学网  由中国科学院物理研究所和清华大学物理系的科研人员组成的联合攻关团队,经过数年不懈探索和艰苦攻关,最近成功实现了“量子反常霍尔效应”。这是国际上该领域的一项重要科学突破,该物理效应从理论研究到实验观测的全过程,都是由我国科学家独立完成。  量子霍尔效应是整个凝聚态物理领域最重要、最基本的量子效应之一。它是一种典型的宏观量子效应,是微观电子世界的量子行为在宏观尺度上的一个完美体现。1980年,德国科学家冯克利青(Klaus von Klitzing)发现了“整数量子霍尔效应”,于1985年获得诺贝尔物理学奖。1982年,美籍华裔物理学家崔琦(Daniel CheeTsui)、美国物理学家施特默(Horst L. Stormer)等发现“分数量子霍尔效应”,不久由美国物理学家劳弗林(Rober B. Laughlin)给出理论解释,三人共同获得1998年诺贝尔物理学奖。在量子霍尔效应家族里,至此仍未被发现的效应是“量子反常霍尔效应”——不需要外加磁场的量子霍尔效应。  “量子反常霍尔效应”是多年来该领域的一个非常困难的重大挑战,它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应 同时它的实现也更加困难,需要精准的材料设计、制备与调控。1988年,美国物理学家霍尔丹(F. Duncan M. Haldane)提出可能存在不需要外磁场的量子霍尔效应,但是多年来一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。2010年,中科院物理所方忠、戴希带领的团队与张首晟教授等合作,从理论与材料设计上取得了突破,他们提出Cr或Fe磁性离子掺杂的Bi2Te3、Bi2Se3、Sb2Te3族拓扑绝缘体中存在着特殊的V.Vleck铁磁交换机制,能形成稳定的铁磁绝缘体,是实现量子反常霍尔效应的最佳体系[Science,329, 61(2010)]。他们的计算表明,这种磁性拓扑绝缘体多层膜在一定的厚度和磁交换强度下,即处在“量子反常霍尔效应”态。该理论与材料设计的突破引起了国际上的广泛兴趣,许多世界顶级实验室都争相投入到这场竞争中来,沿着这个思路寻找量子反常霍尔效应。  在磁性掺杂的拓扑绝缘体材料中实现“量子反常霍尔效应”,对材料生长和输运测量都提出了极高的要求:材料必须具有铁磁长程有序 铁磁交换作用必须足够强以引起能带反转,从而导致拓扑非平庸的带结构 同时体内的载流子浓度必须尽可能地低。最近,中科院物理所何珂、吕力、马旭村、王立莉、方忠、戴希等组成的团队和清华大学物理系薛其坤、张首晟、王亚愚、陈曦、贾金锋等组成的团队合作攻关,在这场国际竞争中显示了雄厚的实力。他们克服了薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,利用分子束外延方法生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功地观测到了“量子反常霍尔效应”。该结果于2013年3月14日在Science上在线发表,清华大学和中科院物理所为共同第一作者单位。  该成果的获得是我国科学家长期积累、协同创新、集体攻关的一个成功典范。前期,团队成员已在拓扑绝缘体研究中取得过一系列的进展,研究成果曾入选2010年中国科学十大进展和中国高校十大科技进展,团队成员还获得了2011年“求是杰出科学家奖”、“求是杰出科技成就集体奖”和“中国科学院杰出科技成就奖”,以及2012年“全球华人物理学会亚洲成就奖”、“陈嘉庚科学奖”等荣誉。该工作得到了中国科学院、科技部、国家自然科学基金委员会和教育部等部门的资助。(中科院物理研究所 作者:薛其坤等)
  • 我国科学家在反铁磁拓扑绝缘体MnBi2Te4中发现π/2周期的平面霍尔效应
    近日,中国科学院合肥物质科学研究院强磁场科学中心田明亮课题组利用磁输运方法,在本征反铁磁拓扑绝缘体MnBi2Te4中发现体态轨道磁矩产生的四重对称性的平面霍尔效应。相关研究成果发表在Nano Letters上 。  当前,拓扑量子材料由于其独特的性能,在未来低功耗量子自旋器件中颇具应用价值,是相关领域的研究热点。在拓扑材料中,贝里曲率和轨道磁矩是两个基本的赝矢量,对材料物性产生重要影响。轨道磁矩在谷电子学和手性磁效应中具有重要作用,而相比贝里曲率研究,关于轨道磁矩相关新奇物性的研究较少。近年来,本征反铁磁拓扑绝缘体MnBi2Te4受到广泛关注。这个体系具有丰富的物性,如量子反常霍尔效应、拓扑轴子态等,并为探讨轨道磁矩和贝里曲率对量子输运现象的影响提供了良好的平台。  科研人员利用微纳加工技术,制备出基于MnBi2Te4纳米片的Hall-bar器件,通过平面霍尔效应的测量,探究了贝里曲率和轨道磁矩对输运现象的影响。实验发现,在低温下弱磁场(B 7T)下,平面霍尔效应表现出二重对称性且电阻各项异性大于零。分析显示,这种π周期的平面霍尔效应可归因于无能隙的拓扑表面态。而当体系进入极化铁磁态时(B 10T),平面霍尔效应的周期从π转变成π/2,同时幅值由正变为负。为了阐明π/2周期的物理机制,研究人员进行理论计算。计算结果表明,π/2周期的平面霍尔效应来源于体态Dirac电子的拓扑轨道磁矩,且理论结果与实验结果完全吻合。进一步实验发现,随着温度升高,由于体态和表面态的竞争,平面霍尔效应发生非平庸演化。该研究揭示了轨道磁矩诱导的新颖电磁效应,也为磁性拓扑材料在低功耗自旋电子学中的应用提供了指引。  研究工作得到国家自然科学基金、国家重点研发计划、强磁场安徽省实验室等的支持。  论文链接
  • 射线检测仪测到地球磁场出现裂缝 引发人类关注未来
    地球周围有巨大的地磁防护罩,保护人类和其他生物免受太空射线的伤害。  一项最新地球研究报告说,地球磁场不仅正在减弱,而且出现裂缝,因此包括人类在内的生命随时会受到高能量宇宙射线的威胁。  据物理学网站近日报导,印度科学家使用世界最敏感、最大型的宇宙射线检测仪器于近期观察到地球磁场出现裂缝。  科学家在《物理评论快报》(Physics Review Letter)上指出,因为地磁出现裂缝,所以日冕喷发的巨大等离子能量束冲击地球磁层,引发地磁风暴。  地磁裂缝  这种检测仪器为GRAPES-3 介子望远镜,位于印度乌提(Ooty)的塔塔基础研究院(TIFR)宇宙射线实验室。2015年6月22日,该实验室记录到时间长达2小时的200亿电子伏特(20GeV) 高能量太空粒子束,以每小时250万公里的速度撞击地球,造成很多距北极较近的国家地区出现无线电信号中断。  当时,天空出现绚丽多彩的北极光。科学家说,这是因为地磁遭受那种极高速粒子的冲压而产生磁暴的结果。  而这种磁暴的根本原因是近年强度不断减弱的磁场发生重新联接时出现一种磁场裂缝。  报导说,地球磁场是一种人肉眼看不见的无形保护层,减少我们受宇宙射线的威胁。而这个巨大的防护罩近年来出现明显的变化,因此那些潜在的太空威胁问题变得越来越突出。  地磁分布变化  澳洲Science Alert科技新闻网曾于5月11日报导,科学家注意到,地球磁场保护层已经出现非常明显的变化,如地磁北极发生了偏移。  地球磁场强度近年来一直在减弱,目前地球磁场强度以每10年下降5%的速度减弱,而且减弱速度比以前快10倍。而且地磁的分布特点出现改变,即地磁在某些地区增强,在某些地区减弱。  欧洲空间局(ESA)在5月初布拉格召开的“生命地球研讨会”(The Living Planet Symposium )上报告,地磁北极正快速地朝向亚洲东方偏移。  该报告指出,自1999年以来,地球磁场强度在北美上空减弱3.5%,而在亚洲增强2%。大西洋南部的南美地区,地磁强度异常减弱2%,而且近7年来其减弱趋势一直朝着西部方向发展。  与人类未来有关  科学家推测,地球磁场强度不断减弱的最终结果是地磁两极倒转,造成宇宙射线强烈照射地球,包括人在内的生物因此遭受毁灭性灾难。科学家估计,这种地磁倒转的灾难会每10万年发生一次。  报导说,这种研究结果听起来很可怕。但是实际情况可能不是想像的那么糟糕。欧洲空间局地磁观测项目经理鲁尼弗莱博哈根(Rune Floberghagen)于2014年7月曾解释:“这种磁极突然倒转不是瞬间出现,而是在几千年或者几百年的时间内发生。这种现象在过去的历史发生过许多次。”  而且2014年7月,加州大学等机构于英国皇家《国际地球物理研究杂志》(Geophysical Journal International )发表报告认为,78.6万年前的地球磁场活动曾在6000年内一直处于不稳定状态,最后在100年间发生磁场两极倒转。  加州大学伯克利分校的研究者考特妮斯普莱恩(Courtney Sprain)说:“我们很惊讶,当时地球磁场的两极倒转速度很快。”  科学家根据目前的地磁减弱情况推测地磁南北极会在今后几千年间突然发生倒转。  伯克利分校的地质年代学中心主任保罗瑞尼(Paul Renne)教授表示,虽然尚不清楚将在何时突然发生下一次的地球磁场倒转,但人们需要多思考一旦发生后人类会遭受什么。

霍尔效应磁场检测仪相关的方案

霍尔效应磁场检测仪相关的资料

霍尔效应磁场检测仪相关的试剂

霍尔效应磁场检测仪相关的论坛

  • 我科学家首次发现量子反常霍尔效应

    美妙之处或可加速推进信息技术进步的进程 新华社北京3月15日电 (记者李江涛)由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队在量子反常霍尔效应研究中取得重大突破,他们从实验中首次观测到量子反常霍尔效应,这是我国科学家从实验中独立观测到的一个重要物理现象,也是物理学领域基础研究的一项重要科学发现。 该成果于北京时间3月15日凌晨在美国《科学》杂志在线发表。 据介绍,美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。而在磁性材料中不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。 量子霍尔效应之所以如此重要,一方面是由于它们体现了二维电子系统在低温强磁场的极端条件下的奇妙量子行为,另一方面这些效应可能在未来电子器件中发挥特殊的作用,可用于制备低能耗的高速电子器件。 例如,如果把量子霍尔效应引入计算机芯片,将会克服电脑的发热和能量耗散问题。然而由于量子霍尔效应的产生需要非常强的磁场,因此至今为止它还没有特别大的实用价值,因为要产生所需的磁场不但价格昂贵,而且其体积庞大(衣柜大小),也不适合于个人电脑和便携式计算机。 据了解,量子反常霍尔效应的美妙之处是不需要任何外加磁场,因此,这项研究成果将会推动新一代的低能耗晶体管和电子学器件的发展,可能加速推进信息技术进步的进程。

  • “量子反常霍尔效应”离诺贝尔物理奖有多近?

    我国科学家首次发现“量子反常霍尔效应”这一科研成果离诺贝尔物理奖有多近2013年04月11日 来源: 中国科技网 作者: 林莉君 李大庆 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244421_change_wtt3427_b.jpg量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244437_change_wtt3428_b.jpg理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导 “这个研究成果是从中国实验室里,第一次发表出来了诺贝尔物理奖级别的论文,这不仅是清华大学、中科院的喜事,也是整个国家发展中喜事。”4月10日,诺贝尔物理奖得主、清华大学高等研究院名誉院长杨振宁教授高度评价了我国科学家的重大发现——量子反常霍尔效应。 由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于3月14日在线发表这一研究成果。由于此前和量子霍尔效应有关的科研成果已经3获诺贝尔奖,学术界很多人士对这项“可能是量子霍尔效应家族最后一个重要成员”的研究给予了极高的关注和期望。那么什么是量子反常霍尔效应?对它的研究为什么引起世界各国科学家的兴趣?它的发现有什么重大意义? 重要性 突破摩尔定律瓶颈 加速推动信息技术革命进程 在认识量子反常霍尔效应之前,让我们先来了解一下量子霍尔效应。量子霍尔效应,于1980年被德国科学家发现,是整个凝聚态物理领域中重要、最基本的量子效应之一。它的应用前景非常广泛。 薛其坤院士举了个简单的例子:我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗。而量子霍尔效应则可以对电子的运动制定一个规则,让它们在各自的跑道上“一往无前”地前进。“这就好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在‘各行其道、互不干扰’的高速路上前进。”薛其坤打了个形象的比喻。 然而,量子霍尔效应的产生需要非常强的磁场,“相当于外加10个计算机大的磁铁,这不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。”薛其坤说,而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。 自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2006年, 美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于2008年指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等有多个世界一流的研究组沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。 薛其坤团队经过近4年的研究,生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。 “量子反常霍尔效应可在未来解决摩尔定律瓶颈问题,它发现或将带来下一次信息技术革命,我国科学家为国家争夺了这场信息革命中的战略制高点。”拓扑绝缘体领域的开创者之一、清华大学“千人计划”张首晟教授说。 创新性 让实验材料同时具备“速度、高度和灵巧度” 从美国物理学家霍尔丹于1988年提出可能存在不需要外磁场的量子霍尔效应,到我国科学家为这一预言画上完美句号,中间经过了20多年。课题组成员、中科院物理所副研究员何珂告诉记者:“量子反常霍尔效应实现非常困难,需要精准的材料设计、制备与调控。尽管多年来各国科学家提出几种不同的实现途径,但所需的材料和结构非常难以制备,因此在实验上进展缓慢。” “这就如同要求一个运动员同时具有刘翔的速度、姚明的高度和郭晶晶的灵巧度。在实际的材料中实现以上任何一点都具有相当大的难度,而要同时满足这三点对实验物理学家来讲是一个巨大的挑战。”课题组成员、清华大学王亚愚教授这样描述实验对材料要求的苛刻程度。 实验中,材料必须具有铁磁性从而存在反常霍尔效应;材料的能带结构必须具有拓扑特性从而具有导电的一维边缘态,即一维导电通道;材料的体内必须为绝缘态从而对导电没有任何贡献,只有一维边缘态参与导电。 2010年,课题组完成了对1纳米到6纳米(头发丝粗细的万分之一)厚度薄膜的生长和输运测量,得到了系统的结果,从而使得准二维超薄膜的生长测量成为可能。 2011年,课题组实现了对拓扑绝缘体能带结构的精密调控,使得其体材料成为真正的绝缘体,去除了其对输运性质的影响。 2012年初,课题组在准二维、体绝缘的拓扑绝缘体中实现了自发长程铁磁性,并利用外加栅极电压对其电子结构进行原位精密调控。 2012年10月,课题组终于发现在一定的外加栅极电压范围内,此材料在零磁场中的反常霍尔电阻达到了量子霍尔效应的特征值h/e2—25800欧姆——世界难题得以攻克。 课题组克服薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,最终为这一物理现象的实现画上了完美的句号。 “下一步我们主要的努力方向是全面测量材料在极低温下的电子结构和输运性质,寻找更好的材料体系,在更高的温度下实现这一效应。那时,也许我们能对其应用前景作更好的判断。”王亚愚告诉记者。 外界评说 这是凝聚态物理界一项里程碑式的工作 “实验成果出来以后,量子霍尔效应的发现者给我发了一封邮件。他写道:我深信拓扑绝缘体和量子反常霍尔效应是科学王冠上的明星。”张首晟向记者展示了这封邮件。 《科学》杂志的一位审稿人说:“这项工作毫无疑问地证实了与普通量子霍尔效应不同来源的单通道边缘态的存在。我认为这是凝聚态物理学一项非常重要的成就。”另一位审稿人说:“这篇文章结束了多年来对无朗道能级的量子霍尔效应的探寻。这是一篇里程碑式的文章。” 延伸阅读 霍尔效应与反常霍尔效应 霍尔效应是美国物理学家霍尔于1879年发现的一个物理效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。产生的横向电压被称为霍尔电压,霍尔电压与施加的电流之比则被称为霍尔电阻。由于洛伦兹力的大小与磁场成正比,所以霍尔电阻也与磁场成线性变化关系。 1880年,霍尔在研究磁性金属的霍尔效应时发现,即使不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。 量子霍尔效应的相关研究已3次获得诺贝尔奖 量子霍尔效应在凝聚态物理的研究中占据着极其重要的地位。它就像一个富矿,一代又一代科学家为之着迷和献身,他们的成就也多次获得诺贝尔物理奖。 1985年,诺贝尔物理奖颁给了德国科学家冯·克利青,他于1980年发现了整数量子霍尔效应。 1998年,诺贝尔物理奖颁给了美国科学家:美籍华人物理学家崔琦以及施特默、劳弗林。前两人于1982年发现了分数量子霍尔效应,而后者则对这一效应进一步给出了理论解释。 2010年,诺贝尔物理奖颁给了英国科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。他们俩在2005年发现了石墨烯中的半整数量子霍尔效应。 此外,量子化自旋霍尔效应于2007年被发现,2010年获得欧洲物理奖,2012年获得美国物理学会巴克利奖。(记者 林莉君 李大庆) 《科技日报》(2013-04-11

  • 霍尔效应测试仪 ITO 薄膜测试案例

    样品: ITO 氧化铟锡, 标记为 ITO1, ITO2, ITO3样品薄膜厚度: 60 - 100 nm样品尺寸: 10 * 10 mm实验内容: 载流子浓度, 类型, 霍尔迁移率, 方块电阻 实验仪器: 上海伯东英国 NanoMagnetics ezHEMS [url=http://www.hakuto-vacuum.cn/product-list.php?sid=131][color=#0000ff]霍尔效应测试仪[/color][/url]测试温度和磁场温度: 300K RT 1 Tesla[color=#ff0000]* 在测试开始前, 仪器均经过标准样品校验. 所有样品根据 ASTM 标准.[/color][b][color=#000000]样品 ITO1 测试结果:[/color][color=#000000]I-V 测量结果[img=霍尔效应测试仪 ITO 薄膜]http://www.hakuto-vacuum.cn/hakuto_upfile/images/ITO-nano.jpg[/img][/color][/b][color=#000000][b]VdP 测量结果[/b][/color][color=#000000] 测量头类型: RT Head 磁场: 9677G 厚度: 80nm[img=霍尔效应测试仪 ITO 薄膜]http://www.hakuto-vacuum.cn/hakuto_upfile/images/ITO-vdp.jpg[/img][/color][b]部分测试结论:[/b]1. 得到的电阻值彼此相容.2. 所有的IV 曲线都是线性的3. 所有样本都是欧姆的,统一的,均匀的.4. Van der Pauw 测试为了保证准确性, 测试了2次, 测试结果是相同的. ...[color=#ff0000]* 鉴于信息保密, 更详细的霍尔效应测试案例欢迎联络上海伯东[/color]

霍尔效应磁场检测仪相关的耗材

  • 美国holiday,规格:HI3604工频电磁场测量仪,测电场和磁场
    美国holiday,规格:HI3604工频电磁场测量仪,测电场和磁场,液晶显示器显示的单位可选择毫高斯,高斯,伏/米,千伏/米,并有图形显示功能,可方便直观的定位电磁场源位置及强辐射点。销售热线:15300030867,张经理,欢迎您的来电咨询!单探头实现全量程,仪器面板为覆膜式按键设计,非常适合现场使用,内部存储器可存储最多127个读数。美国holiday,规格:HI3604工频电磁场测量仪,测电场和磁场,配置:标配:电磁场两用探头(单轴),显示部分,绝缘手柄,使用手册,便携箱选件:HI3616远方显示器,HI4413 RS232光纤MODEM,三脚架美国holiday,规格:HI3604工频电磁场测量仪,测电场和磁场,技术参数:频率响应:30-2000Hz频率响应:±0.5dB(50-1000Hz)±2.0dB(30-2000Hz)电场测量范围:1 V/m –200 kV/m磁场测量范围:0.2mG-20 gauss检测: 单向响应: 真有效值存储: 内置,最多127个读数环境: 温度:10-40℃ 湿度:5%-95%不冷凝
  • 德国安诺尼HF-6080高频电磁场强仪
    德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪 德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪是一款性能优异的高灵敏度电磁辐射分析仪器,它可用于检测、分析各种复杂环境中的超高频电磁辐射、微波强度等,包括5厘米业余波段、5-6GHz无线局域网等,仪器采用创新的专利技术,可对各种复杂环境中存在的电、磁场辐射进行全方向高精度检测,内置高性能DSP(数字信号处理器)芯片不仅能精确显示电场强度、磁场强度、功率密度、电压、微波功率;同时还可显示所测到的电磁辐射绝对值与国际标准限值相比较的百分比,测量结果清晰、直观。可用于测量移动通信基站、广播电视、卫星通讯设备、无线网络、微波等多种高频电磁波、微波强度。我们的V4系列为最新一代设备,相比其它产品,该系列提供更快的采样时间、更好的IP3、更大的动态范围,更高灵敏度、也更小范围的过滤器(RBW),显著降低的相位噪音和更大的解调带宽,对Pre-Compliance 和 EMC/EMI 测试能提供最好的测量结果。德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪,特点:1. 外置式、高精度定向探测天线,有效提高检测范围及检测精度2. 14 Bit双通道ADC转换器、双DDC的硬件过滤器3. 150 MIPS DSP (CPU),更快更强大的运算功能4. RF频谱显示功能,AM调幅/FM调频解调功能、DECT & TimeSlot 分析功能、矢量(I / Q)/真实有效值功率测量功能、5. 便携式设计,重量轻,内置高性能锂电池,可轻松单手操作,便于移动或现场测量6. 新一代高精度、大尺寸液晶显示屏,清晰、直观的显示多种检测结果7. 多种显示模式:实时、最大值保持、暴露极限计算和显示(DIN/VDE 0848)等,可同时显示频率和信号强度8. 内置USB2.0高速数据通讯端口,配合专用数据分析软件可与电脑联接甚至组建远程电磁辐射实时监测系统,实现电磁辐射的连续多点监测9. 可选配前置放大器(扩展范围达15分贝)、实时带峰值功率器、增益放大器等附件,简单实现功能升级 德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪,应用:1. 环境电磁辐射监测2. 移动通讯、广播电视等单位的电磁辐射监测3. 工作场所的电磁场安全监测4. 无线电频谱管理5. 国防电子设备的电磁安全检测6. 航空航天设备电磁环境监测7. 机场雷达电磁环境的安全监测8. EMI、EMC 电磁兼容测试9. Radio & TV10. Tetra/BOS11. ISM43412. LTE80013. ISM86814. GSM900/ GSM1800/ GSM190015. DECT16. UMTS17. WLAN18. Microwave19. WiFi20. Bluetooth21. LTE2.622. WiMAX23. Directional Radio24. 5GHz WLAN。。。。。。德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪,规格:探测天线:双锥全向+定向对数周期频率范围:10MHz–8GHzDANL: -145dBm(1Hz)DANL with Preamp(前置放大器): -160dBm(1Hz)最大 RF input功率: +10dBm最小采样时间: 10毫秒Resolution (RBW): 1kHz ~ 50MHz显示单位:dBm, dBμV, V/m, A/m, W/m2(dBμV/m, W/cm2 etc. via PC software)探测器: RMS, Min/Max解调器:AM、 FM、PM(调相)输入:50 Ohm SMA RF-input (f)精度:+/- 2dB (typ.)内置数据记录器:64K,可升级至1MB(选配)尺寸:250x86x27mm重量:430g德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪 德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪 德国安诺尼HF-6080(10MHz~8GHz)高频电磁场强仪本公司现货产品TN3红外测温仪fluke59mini红外测温仪照度计CENTER337tx2000h2氢气检测仪HI93734-01余氯、总氯(Cl2)配套试剂HI93735-01总硬度配套试剂3011食品中心温度计FD216测氡仪土壤取样器HGY2058在线电磁式酸碱浓度计HGY2018在线PH计RE5299旋转蒸发器AR3130电子天平SA1200(P)空气消毒机YSI85-10手提式野外水质测量仪DO200在线溶解氧测定仪YSI556MPS型多参数水质检测仪3M6800防毒面罩美国华瑞PGM-2400四合一复合式气体检测仪YSI3100电导率仪HT10S烟气黑度照相测定仪正压式空气呼吸器COD-571-1型消解装置PPMhtv甲醛检测仪AD102农药检测卡DYM3型空盒气压表PROVA5637钩式接地电阻计PRM-3040射线检测仪美国MSA10108311欧特防护眼镜PGM-1700硫化氢便携式气体检测仪MIC-800-CO2便携式二氧化碳检测报警仪MIC-500-CH4O甲醇探测器YSI550A型便携式溶氧仪TES-1360A温湿度计GM1357声级计PGM-7840复合气体检测仪GDYS-102SJ尿素测定仪GDYS-101ST铁测定仪GDYS-101SC2臭氧测定仪GDYN-110SA农药残毒快速检测仪(10通道)GDYS-101SC2臭氧测定仪D3A激光测距仪本月特价产品现货美国英思科M40四合一气体检测仪M40硫化氢传感器PGM-7840复合气体检测仪PGM-62086合一气体检测仪FGM-1100IR可燃气在线监测仪PRM-1200(DoseRAE2)射线检测仪FGM-3300环氧乙烷(ETO)气体检测仪M40一氧化碳传感器M40氧气传感器PGM-1600可燃气体报警仪
  • 便携式ATP菌落总数荧光快速检测仪
    便携式ATP菌落总数荧光快速检测仪操作简单-使用方便,ATP是一种在所有动、植物、细菌、霉菌、酵母菌等活细胞中均含有的能量单位,所有活的微生物富含ATP,故检测ATP, 可反映所有微生物的多少。样品中微生物的ATP在被萃取出来后,在与荧光素酶(Luciferase)和荧光素(Luciferin)作用下产生荧光,光量与ATP成正比,而该光量可被深芬仪器的手持式ATP荧光检测仪检测出来,活的微生物越多,则ATP就越多,产生的光量越大,从而达到检测出样品中微生物的状况。 产品特点:1、试剂开放:通用国内外一体化采集拭子及分离拭子2、包装精美:配置铝合金包装箱及ATP拭子冷藏盒、表面取样器3、检测准确:具有显著的低背景值更有利于检测痕量ATP,具有良好的重现性4、电源管理:3000mAh大容量充电锂电池供电,通过Mini USB口充电,可选配太阳能充电器、车载电源充电器5、人机对话:界面简洁,易操作,具备息屏时间设置可调、显示屏亮度可调、语音提示开启和关闭、历史记录关闭及开启6、检测智能:底部检测,内置有高精度倾角传感器,对仪器倾角状态实时监控,提高检测精度,采样速率1000次每秒,15秒检测一个样本7、机壳设计:采用特殊密封性材质,提升避光性,内置有高精度霍尔传感器,检测上盖是否完全闭合,检测仓内是否放置拭子,减小外界干扰,检测结果更为准确、稳定。 技术参数:1、检测准确度:1×10-16 mol ATP2、检测精度:1 RLU(相对发光单位)3、检测范围:0~9999 RLU(相对发光单位)4、检测下限:检测微生物总量可达到1.4 CFU/ml5、检测时间:标准量15秒、快速测量10秒,二种模式可选6、准确误差:±5%7、屏幕:3.5英寸彩色触摸屏,内置触摸屏较准程序,可直接对触摸屏进行较准9、历史存储:≥20000个数据记录,记录包括检测时间、检测结果、判断结果、检测上限、检测下限等数据10、数据查询:以记录方式查询11、计算机连接:USB 接口,可实时检测并传输检测结果,历史数据下载等12、电源:5V,2A13、操作温度范围:5℃到40℃14、操作相对湿度范围:20%~80%,15、存放温度范围:-10℃~40℃16、存放相对湿度范围:20%~90%,17、电池:3000mAh充电锂电池18、仪器尺寸(L×W×H):195mm×75mm×40mm19、便携式ATP菌落总数荧光快速检测仪仪器重量:300g
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制