逻辑芯片分析仪

仪器信息网逻辑芯片分析仪专题为您提供2024年最新逻辑芯片分析仪价格报价、厂家品牌的相关信息, 包括逻辑芯片分析仪参数、型号等,不管是国产,还是进口品牌的逻辑芯片分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合逻辑芯片分析仪相关的耗材配件、试剂标物,还有逻辑芯片分析仪相关的最新资讯、资料,以及逻辑芯片分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

逻辑芯片分析仪相关的厂商

  • 苏州汶颢芯片科技有限公司是一家留学人员回国创业的高新科技企业,集研发、生产、销售为一体,技术力量雄厚,生产设备先进,检测手段齐全,产品质量过硬。公司建立了完备的微流控芯片研发与生产中心,配置了三条微流控芯片生产线,包括数控CNC微加工仪器,软刻蚀有机芯片加工系统,光刻-掩模无机芯片加工系统,可以加工生产所有材质的芯片,如玻璃、石英、硅、PDMS和PMMA等。产品涵盖集成式通用医疗诊断芯片、集成式通用环境保护分析监测芯片、集成式通用食品安全分析检测芯片和基于微流控芯片的新能源体系四大系列数十个品种,以及各类科研类芯片,并在生物芯片和化学芯片领域一直保持技术和研发的领先地位,拥有81项知识产权,其中:已申请发明**65件、实用新型**7件,注册商标2件,登记软件著作权7件。
    留言咨询
  • 浙江扬清芯片技术有限公司(YoungChip)是一家专注于微流控芯片实验室整体解决方案的企业,技术力量雄厚,生产设备先进,检测手段齐全,产品质量过硬。公司可提供整套微流控芯片生产线, 包括CNC 数控微加工仪器、精密激光加工系统、光刻加工系统、塑料芯片注塑系统和微流控芯片热压键合系统, 可以加工生产所有材质的芯片, 如玻璃、石英、硅、PDMS 和PMMA 等。主营产品包括: ① 微流控芯片的设计、开发与加工服务; ②微流控芯片实验室组建及芯片技术培训; ③ 微流控芯片的耗材、配件及相关设备; ④ 模块化的芯片温度控制系统、流体操控系统和检测系统; ⑤ 基于微流控技术平台的POCT 快速检测系统。产品涵盖医疗生化诊断、环境监测、食品安全分析检测、化学合成等几大应用领域。目前,扬清芯片(YoungChip)已和中科院大连化学物理研究所、中国科学院苏州纳米技术与纳米仿生研究所、生物芯片北京国家工程研究中心(博奥生物有限公司)、中国石油勘探开发研究院、浙江省检验检疫局、广东产品质量监督检验研究院、深圳出入境检验检疫局、广州迪澳生物科技有限公司等多家单位建立了长期紧密的项目合作。
    留言咨询
  • 苏州原位芯片科技有限责任公司成立于2015年,由清华大学和中科院微电子专业人士共同创立,并获得国内顶尖VC机构千万级投资。公司专注于新型MEMS芯片与模组的研发、生产和销售。掌握40多项领先MEMS技术,拥有芯片设计、工艺开发、流片生产和测试的全流程自主研发、自主生产能力。 MEMS芯片凭借高精度、低成本、体积小的特点,拥有千亿级的广阔市场空间,公司已推出多款打破国外垄断产品,其中自主研发的氮化硅薄膜窗口产品凭借优异的薄膜洁净度和高强度,获得广大TEM和同步辐射研究人员的高度好评。公司已申请十余项发明、实用新型专利。未来还将推出多款新型MEMS芯片。 公司已与多家研究所、大学、医疗、工业、智能装备等行业的企事业单位建立了良好的合作伙伴关系。凭借国内领先的核心技术,公司成员齐心协力,致力于成为世界领先的生物MEMS技术公司。为更好的世界,提供更好的芯片!
    留言咨询

逻辑芯片分析仪相关的仪器

  • 仪器简介:MultiNA—是通过将岛津公司先进的微芯片技术和自动化分析技术完美结合,缔造出的全新的DNA/RNA快速分析系统,与传统的琼脂糖电泳技术相比,费用更低、速度更快、灵敏度更高!简单易用的MultiNA,提供更加卓越的分析精度,使电泳分析进入新境界。MultiNA!为生命科学实验室带来突破性变革的新一代微芯片电泳系统。主要特点: 分析成本极低采用精湛工艺制作的可重复利用的微芯片使消耗品费用在为减少,与琼脂糖凝胶电泳相比,运行成本更低。 分析速度快高速自动化分析,分析顺序表中一次最多可设定120个分析循环,可承载4枚微芯片平行样品前处理,顺序电泳分析,最快分析循环仅75秒。 高灵敏度检测采用LED激发的荧光检测器,达到比溴化乙锭染色法高出10倍以上的分析灵敏度。 分辨率高,重现性好根据样品的类型选择相应的分离缓冲液,样品与内标一起电泳,实现和保证了分析结果的可靠性和重现性。 使用简单方便控制和数据处理软件提供直观的图形界面,操作和掌控极为简单。三步操作即可完成从设置到启动的全过程。
    留言咨询
  • Discovery逻辑分析仪系列PGY-LA-EMBD内置I2C逻辑分析仪、SPI逻辑分析仪、UART逻辑分析仪等功能。这是基于 PC 的逻辑分析仪。 Discovery 逻辑分析仪用于调试嵌入式系统,逻辑分析仪不仅减少了工作台面积,还允许具有非常小的外形尺寸,可用于现场调试故障。协议解码功能旨在调试消费、工业、家庭自动化、健康和教育领域的嵌入式设计团队面临的逻辑和协议问题。 PGY-LA-EMBD 是业内首台逻辑分析仪,使工程师能够调试计时问题,并在嵌入式设计中同时对 I2C、SPI、UART、 I3C、 SPMI 和 RFFE 接口进行协议分析。 这使得设计人员能够快速调试电路级别和系统级别问题。 PGY-LA-EMBD 提供 1GS/Sec 异步(定时)数据和 100Mhz 同步(状态)数据捕获,使其成为解决数字设计问题的理想调试工具。 除了分析协议问题外,设计人员现在还可以轻松分析建立和保持时间问题、毛刺和同步数据活动。 当代嵌入式设计人员需要从 I2C、SPI 和 UART 等多个接口收集数据并对其进行处理,以实现其设计的最佳性能。 嵌入式设计团队需要及时采取行动以满足产品的预期目标。 PGY-LA-EMBD 同时解码 I2C、SPI 和 UART 总线,并显示带有时间戳信息的协议活动。 PGY-LA-EMBD 是调试硬件和嵌入式软件集成问题并优化软件性能的理想工具。 多个标记可实现智能增量测量,这对设计人员至关重要。 多个标记可实现智能增量测量,这对设计人员至关重要。 特征: • 具有协议和逻辑分析功能的 16 个通道。 • 1GS/Sec 定时(异步)分析 • 100MHz 状态(同步)分析 • UART、SPI、 I2C、 I3C、 SPMI 和 RFFE 的同步协议分析。 • 详细的触发功能:自动、模式、协议感知(UART、SPI、 I2C、 I3C、 SPMI 和 RFFE)和定时(脉冲宽度和延迟)。 • 来自协议的智能数据流。 分析仪到主机使用 USB3 接口进行长时间捕获。 • 创新的易于使用的图形用户界面。 • 提供时序、波形、列表和协议列表视图 • 协议解码数据的详细过滤能力 • PDF 和 CSV 报告格式。 • API 支持。 欧奥电子是Prodigy在中国区的官方授权合作伙伴,Prodigy MPHY, UniPro, UFS 3.1/4.0 总线协议分析仪测试解决方案不会收到EAR进出口方面的管制。 同时还有代理其他总类的协议分析仪,包括嵌入式设备用的eMMC5.0/5.1 SDIO协议分析仪, QSPI协议分析仪及训练器, I3C协议分析仪及训练器, RFFE协议分析仪及训练器等等。 我司还有代理SPMI协议分析仪及训练器, 车载以太网分析仪,以及各种相关的基于示波器的解码软件和SI测试软件。 同时,欧奥电子也有提供高难度焊接,以及高速信号,如UFS,DDR3/DDR4,USB type C等高速协议抓取和分析的服务。
    留言咨询
  • 东莞天兴 泰克示波器, 安捷伦示波器, 是德示波器,DPO77002SX, DPS77004SX,DPO73304SX,T3-8,UXR0334A安捷伦校准件,是德校准件,安捷伦探头,是德探头 现货 出售 租赁 回收 是德 U4164A逻辑分析仪系统将可靠的数据采集与强大的分析和验证工具相结合,帮助您充满信心地快速验证和调试高速数字设计,这些设计的运行速度可以高达4Gb/s。U4164A 逻辑分析仪模块提供一下独特的功能,帮助您执行测量并获得其他逻辑分析仪无法获得得洞察力。U4164A 逻辑分析仪模块拥有2种工作模式:四倍采样状态模式和10GHz 1/4通道时序模式。使用四倍采样状态模式,可以从每路输入的单一探测点,在两个独立调节阔值上对4个不同位置进行采样。四倍采样状态模式意味着探测高数据速率信号(例如 DDR4、DDR5、LPDDR4 和 LPDDR5)所需的空间更少,这些信号需要不同的采样位置来读取和写入数据,并未大于205Gb/秒的数据速率分离上沿/下降沿样本。四分之一通道(10GHz)定时模式可以为每个输入提供高达1.6Gb的样本。除了新的工作模式外,U4164A 逻辑分析仪模块还拥有多项新特性,帮助高速数字和DDR/LPDDR存储器设计工程师加快系统启动和调试速度。U4164A的特性包括实现模式偏移校正控制、双采样状态模式双阔值、时钟滞后控制(该特性可以调整状态模式的噪声灵敏度)以及业界出色的存储器选件(400 Mb全通道,800Mb 半通道,1.6Gb 1/4通道)为了从U4164A 迹线捕获中获得更深的洞察力,B4661A 存储器分析软件提供先进工具,利于加速DDR/2/3/4/5 和 LPDDR/1/2/3/4/5 测量的设置和配置,还提供各种以或许可的选件,用于 DDR/2/3/4/5、LPDDR/1/2/3/4/5 和 ONFi(开放式 NANAD 闪存接口)存储器分析和一致性验证。状态速度模式选择的速率高达4Gb/s使用四倍采样状态模式,可以从单个探测点的两个不同阔值进行四个采用状态模式的时钟滞后设置高达10GHz 的全存储器深度时序模式高达400 Mb 的内存深度选件(400 Mb 全通道时序、800 Mb &half 通道时序、1.6 Gb ¼ 通道时序)时序模式的偏移校正接口眼图扫描技术、扫描增量高达5ps*5mV12.5GHz,256k深度定时缩放
    留言咨询

逻辑芯片分析仪相关的资讯

  • 应用材料公司推出用于先进存储器和逻辑芯片的新型刻蚀系统Sym3
    p2020年8月7日,应用材料公司今天宣布为其大获成功的Centris® Sym3® 刻蚀产品系列再添新成员。现在,该系列产品能让芯片制造商在尖端存储器和逻辑芯片上以更加精细的尺寸成像和成型。/pp应用材料公司的Centris® Sym3® Y刻蚀系统能让芯片制造商在尖端存储器和逻辑芯片上以更加精细的尺寸成像和成型。/pp新型Centris Sym3® Y是应用材料公司最先进的导体刻蚀系统。该系统采用创新射频脉冲技术为客户提供极高的材料选择性、深度控制和剖面控制,使之能够在3D NAND、DRAM和逻辑节点(包括FinFET和新兴的环绕栅极架构)创建密集排列的高深宽比结构。/ppSym3系列成功的关键在于其独特技术特征:高电导反应腔架构能够提供特殊的刻蚀剖面控制,快速有效地排出每次晶圆工艺产生的刻蚀副产物。Sym3 Y系统采用保护关键腔体组件的专有新型涂层材料,扩大了该成功架构的优势,从而进一步减少缺陷并提高良率。/ppSym3刻蚀系统于2015年首次推出,如今已成为应用材料公司历史上最迅速大量占领市场的产品。时至今日,Sym3反应腔出货量达到了5000台大关。/pp应用材料公司的战略是为客户提供全新的材料成型和成像方法,以实现新型3D结构并开辟继续进行2D微缩的新途径,而Sym3系列正是实现这一战略的关键产品。应用材料公司采用独特的化学气相沉积(CVD)镀膜技术对Sym3系统进行协同优化,让客户能够增加3D NAND内存器件中的层数,并减少DRAM制造中四重成型所需的步骤数。应用材料公司会将上述技术与其电子束检测和审查技术一同部署,以加快研发并大规模实现行业最先进节点的产量爬坡,从而帮助客户改善芯片功耗、增强芯片性能、降低单位面积成本并加快上市时间(PPACt)。/pp应用材料公司半导体产品事业部副总裁兼总经理Mukund Srinivasan博士表示:“应用材料公司在2015年推出Sym3系统时采用了全新方法进行导体刻蚀,并解决了3D NAND和DRAM中一些最棘手的刻蚀难题。今天,在最先进的存储器和代工厂逻辑节点中,关键刻蚀和极紫外(EUV)图形化应用呈现出强劲的发展势头和增长。未来,我们将继续升级并助力业界向下一代芯片设计演进。”/pp每个Sym3 Y系统均包括多个刻蚀和等离子清洁晶圆工艺反应腔,并由智能系统控制可确保每个反应腔都拥有一致的性能,从而实现稳定的工艺和高生产力。全球多家领先的NAND、DRAM和代工厂逻辑节点客户都在使用这一新系统。/p
  • 得利特技术创新的四层逻辑生成 探索油液水分含量分析国产路径
    石油工业踏着改革开放的节拍,走得越来越从容自信。从能源“凛冬”到油气饭碗端在自己手里,我国石油工业一路高歌猛进。与石油工业一同加速的还有其检测行业。作为油品质量的“把关人”,油品检测作用日益凸显。   滚石上山、爬坡过坎。对得利特(北京)科技有限公司(以下简称“得利特”)技术经理王志强来说,油液分析与他共度半生。“油品检测产品要增强核心竞争力、迈出技术高水平自立自强坚实步伐。”王志强一语道出现阶段油品检测的动力,同时解读了得利特的发展逻辑和产业路径:挑战、创新、扩张与精进。   坚韧性挑战:研发力从“量变”到“质变”   “2000年离开无线电元件厂后,我进入了油分析仪器仪表行业。”王志强回忆。长久的钻研让王志强看到行业更多可能性,同时极具挑战性的科研工作强烈吸引着王志强。“我喜欢挑战,科研毫无疑问是属于这种工作。”科研成就感和价值感让王志强在油品分析仪器仪表路上越走越远、越走越深。   加入得利特后,王志强迎来了更多挑战机会,这得益于得利特的发展思路:注重原创技术攻关,走自主创新的可持续发展道路。在得利特创立初期,王志强秉持上述企业思路,与技术团队加大科技投入,专注核心技术研发,心无旁骛地啃技术“硬骨头”。   掌握核心技术绝非朝夕,需要年复一年技术积累。在王志强与技术团队的共同努力下,得利特推出精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等多款仪器。如今,适合采用库伦法测量微量水分的测定仪设备面世,实现企业研发力从量的积累迈向质的飞跃。   突破性创新:满足精确微量水分测定需求   水分含量分析是油液检测的重要项目。“石油产品中的水分蒸发时吸收热量,发热量降低;而在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,阻碍发电机燃料系统的燃料供给。此外,石油产品中有水会加速油品的氧化生胶,润滑油中有水时不但会引起发动机零件的腐蚀,而且水和高于100℃的金属零件接触时会变成水蒸气,破坏润滑油膜。”王志强解释。   轻质油品密度小、黏度小,油水容易分离,而重质油品则相反,不易分离。这一特性对微量水分检测仪器的自动化、便捷度提出更高要求。久居油品检测技术场,王志强察觉,相比其他水分检测方法,库伦法测量自动化、节省人工等优势备受青睐。基于该种方法的测量仪器能够在尽可能节省人工的同时得到更精确数据。   “微量水分检测数据的精度、便捷度大幅提高,这是得利特库伦法测量微量水分测定仪的突破性创新点。”王志强补充。基于两个核心优势,以及智能自检等新功能,该款微量水分的测定仪受众广泛,在油液水分含量分析市场中占达到了一定份额。下一步,得利特将侧重于设备测量时的自动化,脱离人工干预,并通过电子监测,更加准确地判断出油液中水的含量。   体系性扩张:产研结合扩充技术链条   挑战、创新让得利特尝到甜头。得利特微量水分的测定仪等多款产品广泛应用于石化、电力、环保、医药、军工、航空等领域,并得到用户充分认可。如何实现持续性研发,保持企业机动力?这是技术企业在“后创新时代”思考的问题。   在王志强看来,产学研结合能够及时丰富技术创新力量,扩充技术链条。这一想法不仅与得利特的技术班底相映照,更与产学研融合的政策相呼应。   实际上,得利特成立之初就整合石化科学研究院、中国计量科学研究院、北京铁道科学研究院、空军计量总站等单位的油品、仪器方面专家,将其作为企业技术班底,加速成果转化,优势互补、互惠互利。“我们正在与多家大学、电科院联合研发新产品。”   产学研融合为得利特建造了人才高地,推动预见性与实践性并存,调和国产仪器研、产不对等矛盾,解决油液水分析多个难题。同时,人才补充和研发合作鼓足得利特底气,其以北京为研发销售中心,开拓吉林、山东为生产加工中心,扩充企业链条。   精进性守业:精确性与智能化并进   技术跟上后,石油分析检测形势一片大好,但王志强直言:“国内对油液水含量的分析还能有很大的提升空间。**设备检测准确性高,但相对价格高;国产设备价格低,但稳定性、工艺水平有待提高。”基于上述难题,王志强带领团队提高优化电解液的配方,增强实验结果的广泛适用性、稳定性,提高关键部件工艺水平,在促进实验结果的重复性等方面下工夫,为油液水分含量分析的稳定性与工艺水平献力。   精确性技术攻克热火朝天。与此同时,更加长远、持久的计划箭在弦上。今年年初,多部门联合发布《关于“十四五”推动石化化工行业高质量发展的指导意见》,指出加快改造提升,实施智能制造,推进石化产业数字化转型。   提及石油化工检测技术发展方向,王志强说道:“强化检测技术的数字化,控制技术的智能化是我所期待重点的发展方向。”   他认为“十四五”高质量发展的主要目标是基本形成自主创新能力强、结构布局合理、绿色安全低碳的高质量发展格局,这一格局离不开数字变更。5G、大数据、人工智能等新一代信息技术与石化化工行业逐渐融合,检测过程数据获取能力不断增强,基于工业互联网的产业链监测、精益化服务系统正在完善。“高端油液检测产品还应提高智能化程度,增强核心竞争力,迈出高水平自立自强的坚实步伐。”王志强补充。   王志强透露,得利特将沿着自动化方向和智能化趋势,为国内企业提供高性能的自动化油品分析仪器和专业化的技术咨询、培训等服务,帮助企业以高效率、精细化管理、解决油品检测、设备润滑管理方面存在的问题。   后记:国产石油分析检测企业如何在产业扩张中顺势而为,与**品牌分庭抗礼,是摆在石油石化分析检测行业面前的一道必答题。面对错综复杂的行业形势,作为一股国产油液分析检测力量,得利特在王志强及技术团队把控下,按照四层增长逻辑和既定节奏,由高速转向高质量发展,积极构建创新型、智能化产业。   百尺竿头,更进一步。拥有突破性创新、体系性扩张,积极精益求精时,企业产能规模自然更上一层。这四层增长逻辑不仅带来良性增长,更难能可贵的是,其或将成为众多国产油液分析检测企业的范本。
  • 芯片集成度越来越高,故障后失效分析该如何“追凶”?
    随着科技进步,智能化产品与日俱增。从电脑、智能手机,再到汽车电子、人工智能,如今在我们的生产生活中已随处可见。它们之所以能够得以发展,驱动内部收发信号的半导体芯片是关键。 我们这里讲的半导体为IC(集成电路)或者LSI(大规模集成电路)。制造的芯片可以分为逻辑芯片、存储芯片、模拟芯片、功率器件。根据摩尔定律,每18-24个月,集成电路上可以容纳的器件数目就会增加一倍,这将让更多的科技应用逐步实现,并得以优化。应用场景和市场的扩大,半导体芯片的需求无疑也会随之增长,对其质量则有了更高的要求。 比如汽车行业,除了传统的汽车电子,目前也有许多目光投向了自动驾驶。像这样高度涉及人身安全的车用芯片,在高温、低温、受潮、老化、长期工作等因素下,性能都必须保持稳定。所以,无论从半导体芯片的研发设计,再到前道工序,后道工序,甚至最终投入使用,每一个流程都需要有必要的检测来护航。 芯片制作流程概括性示意 对于芯片制造商来说,单纯知道芯片是否达标,以此来淘汰坏品保证输出产品质量,是远不够的。还需要“知其所以然”,保证良率,追根溯源,节约成本的同时给企业创造更高的效益。所以围绕着这个主题,将进行一系列的检测,我们将此称为半导体失效分析。它的意义在于确定半导体芯片的失效模式和失效机理,以此进行追责,提出纠正措施,防止问题重复出现。失效分析检测简直就像一场“追凶”之旅。通过初步证据锁定嫌疑范围,再通过各种方法获得更多证据,步步锁定,拨开层层“疑云”去获得最终的真相。检测流程上,一般来说,制造商会首先对待测半导体晶圆(wafer)或裸片(die)实施传统的电性测量。一方面来确定芯片是否有故障的情况存在;一方面,若故障确切存在,也可以为后续失效分析提供必要的信息。 已经过诸多工艺处理后的晶圆(wafer),裸片(die)即从其切割而来 但想达到溯源的目的,仅凭传统的电性测试是远不够的。还需要进一步了解缺陷具体存在的位置,甚至还原出失效的场景、模式,用以了解失效机理。这也就是在半导体失效分析中重要而困难的一项,缺陷定位。失效分析工程师结合测试机测得的失效模式以及其他故障信息,可以初步判断需要采取的定位方法,然后不断结合获得的新数据,逐步推测出失效发生在芯片的哪层结构中,及其根本缘由。缺陷定位 而半导体工艺日新月异发展飞速,制程上,从70年代的微米级芯片早已经提升至纳米级芯片。芯片层数增加和晶体管数量的急剧增加,让失效点越来越难以发现。不断提升的集成度,对检测设备的性能提出了更多的挑战。1971年到2000年,英特尔芯片的发展 挑战 1:更高的弱光探测能力 首先,芯片集成化程度越来越高,芯片的层数也将逐渐增多,电路会变得越来越细,电压要求也随之降低。因此,在检测过程中,故障处可能发出的光信号就变得微弱,再加上层数的叠加,光信号将再次被削弱,这要求检测仪拥有更高的弱光探测能力。挑战 2:更多检测功能 不断提高的集成度在带来了日趋强大的芯片功能外,也让可能出现的故障风险变得更多。一旦出现失效,其故障原因亦可能更加复杂。因此,在失效定位时,需要发展出更多、更细化的测试方法和功能模块,去对应这样的变化。 挑战 3:无损检测技术的推进 对于出现问题返厂的成品芯片,一般会在完成一系列无损检测(如X射线检测),以及打开封装后的显微镜检查后,再进入到传统电性测试这一步。对于愈加高集成化、紧凑的芯片来说,打开封装时内部裸片受损的可能性会增大,而这一步亦是不可逆的。受损后,失效模式将难以还原,继而无法得出失效的真正原因。因此,需要时,可以尽量达到无损检测,也是给失效定位提出的又一挑战。 早在30余年前,滨松就开始了在半导体失效分析应用中的研究。1987年,推出了第一代微光显微镜,并在此后逐渐组建起了专门针对半导体缺陷位置定位的PHEMOS系列产品。针对应用中呈现出的诸多要求,滨松亦在技术上做出了进一步的开发。 滨松半导体失效分析系统PHEMOS系列 为了增强微光探测能力,滨松开发了C-CCD、Si-CCD、InGaAs等多类高端相机。用户可根据样品制程和结构,选择不同的相机加装在设备中。 IPHEMOS-MP的信号侦测示意 除了相机以外,滨松还不断为PHEMOS系列开发出了新的功能模块,实现更多元、更深入的检测,以应对越来越复杂的故障原因: 可通过Probing的方式给样品加电,广泛适用于从prober card到12英寸wafer的测试; 可搭载波长为1.3 μm的激光,实现OBIRCH(Optical beam induced resistance change 激光诱导电阻改变测试)。也可选配其他光源,将样品连接测试机进行DALS, EOP/EOFM测量,实现样品的动态缺陷检测分析。通过这些诱导侦测方法,能有效的截获因温度、频率、电压的改变而导致sample时好时坏的困扰; 可选配Laser marker功能,方便后续分析。Laser marker为脉冲激光,可自定义设置打点位置、次数、能量强度、打点形状等; 可选配Nano lens & Sil cap,从样品背面观察内部结构。Nano lens & Sil cap在工作时会与样品表面完全接触,增加了图像的清晰度,提升了分辨率便于观察更细的线路。搭配Nano lens的使用,用户还可以选配tilt stage,将样品调平,增强信号侦测强度 除了Emission功能外,PHEMOS系列还具备Thermal的功能模块。通过配备InSb材料的高灵敏度热成像相机,可探测发射热点源,方便用于package样品侦测,不需要给待测品去除封装,实现无损检测。设备可以同时满足给样品加多路电,有效降低噪声提升信号敏感度。(可提供单独拥有此功能的Thermal-F1)高灵敏度热成像相机 C9985-06 半导体制造涉及众多工序,过程复杂。除了失效分析以外,滨松还有众多产品都被应用在了其中,以保证生产制造的顺利进行以及产品的质量。以沉淀了60余年的光子技术,为半导体制造提供支持。

逻辑芯片分析仪相关的方案

逻辑芯片分析仪相关的资料

逻辑芯片分析仪相关的试剂

逻辑芯片分析仪相关的论坛

  • 【资料】正确选择和使用逻辑分析仪

    正确选择和使用逻辑分析仪一、逻辑分析仪的发展  自20世纪70 年代初研制成微处理器,出现4位和8位总线,传统示波器的双通道输入无法满足8位字节的观察。微处理器和存储器的测试需要不同于时域和频域仪器。数域测试仪器应运而生。HP公司推出状态分析仪和Biomation公司推出定时分析仪(两者最初很不相同)之后不久,用户开始接受这种数域测试仪器作为最终解决数字电路测试的手段,不久状态分析仪与定时分析仪合并成逻辑分析仪。  20世纪80 年代后期,逻辑分析仪变得更加复杂,当然使用起来也就更加困难。例如,引入多电平树形触发,以应付条件语句如IF、THEN、ELSE等复杂事件。这类组合触发必然更加灵活,同时对大多数用户来说就不是那样容易掌握了。  逻辑分析仪的探头日益显得重要。需用夹子夹住穿孔式元件上的16根引脚和双列直插式元件上的只有0.1″间隙的引脚时,就出现探头问题。今天的逻辑分析仪提供几百个工作在200MHz频率上的通道信号连接就是个现实问题。适配器、夹子和辅助爪钩等多种多样,但是最好的办法的是设计一种廉价的测试夹具,逻辑分析仪直接连接到夹具上,形成可靠和紧凑的接触。  今天的发展趋势  逻辑分析仪的基本取向近年来在计算机与仪器的不断融合中找到了解决的办法。Tektronix公司TLA600系列逻辑分析仪着重解决导向和发展能力,亦即仪器如何动作和如何构建有特色的结构。导向采用微软的Windows接口,它非常容易驱动。改进信号发现能力必然涉及到仪器结构的变动。在所有要处理的数据中着重处理与时间有关联的数据,不同类型的信息采用多窗口显示。例如,对于微处理器来说,最好能同时观察定时和状态以及反汇编源码,而且各窗口上的光标彼此跟踪相连。  关于触发,总是传统逻辑分析仪中的难题。TLA600系列逻辑分析仪为用户提供触发库,使复杂触发事件的设置简单化,保证你精力集中解决测试问题上,而不必花时间去调整逻辑分析仪的触发设置。该库中包含有许多易于掌握的触发设置,可以作为通常需要修改的触发起始点。需要特殊的触发能力只是问题的一部分。除了由错误事件直接触发外,用户还希望从过去的时段去观察信号,找出造成错误的根源和它前后的关系。精细的触发和深存储器可提高超前触发能力。  在PC机平台上使用Windows,除了为广大用户提供了许多熟知的好处之外,只要给定正确的软件和相关工具,即可通过互联网进行远程控制,从目标文件格式中提取源码和符号,支持微软公司的CMO/DCOM标准,而且处理器可运行各种控制操作。  二、逻辑分析仪的选择  如果数字电路出现故障,我们一般优先就考虑使用逻辑分析仪来检查数字电路的完整性,不难发现存在的故障;但是在其他情况下你是否考虑到使用逻辑分析仪呢?譬如说:第一点如何观察测试系统在执行我们事先编制好的程序时,是不是真正地在按照我们设计好的程序来执行呢?如果我们向系统写入的是(MOV A,B)而系统则是执行的(ADD A,B),那会造成什么样的后果?第二点:怎么样真正地监测软件系统的实际工作状态,而不是用DEBUG等方式进行设置断点后,查看预先设定的某些变量或内存中的数据是我们预先想得到的值。在这里我们有第三、第四等等很多问题有待解决。  通常我们将数字系统分成硬件部分和软件部分,在研发设计这些系统时,我们有很多事情要做,譬如硬件电路的初步设计、软件的方案制定和初步编制、硬件电路的调试、 软件的调试、以及最终的系统的定型等等工作,在这些工作中几乎每一步工作都要逻辑分析仪的帮助,但是鉴于每个单位的经济实力和人员状况不同,并且在很多系统的使用中都不是要把以上的每个部分都进行一 遍,这样我们就把逻辑分析仪的使用分成以下几个层次:  第一个层次:只要查看硬件系统的一些常见的故障,例如时钟信号和其他信号的波形、信号中是否存在严重影响系统的毛刺信号等故障;  第二个层次:要对硬件系统的各个信号的时序进行很好的分析,以便最好地利用系统资源,消除由定时分析能够分析出的一些故障;  第三个层次:要对硬件对软件的执行情况的分析,以确保写入的程序被硬件系统完整地执行;  第四个层次:需要实时地监测软件的执行情况,对软件进行实时地调试。  第五个层次:需要进行现有客户系统的软件和硬件系统性的解剖分析,达到我们对现有客户系统的软件和硬件系统全面透彻地了解和掌握的功能。  对以上的几个层次的要求,我们可以看出,他们并不都需要很高档的逻辑分析仪,对于第一层次的使用者,他们甚至用一台功能比较好的示波器就可以解决问题,针对以上的几个使用层次,在选择仪器时可以选用相应的仪器。实际上逻辑分析仪也有几个层次,他们有:  1、 普通2~4通道的数字存储器,例如TDS3000系列(加上TDS3TRG高级触发模块),利用它的一些高级触发功能(例如脉冲宽度触发、欠幅脉冲触发、各个通道之间的一定的与、或、与或、异或关系的触发)就可以找到我们希望看到的信号,发现并排除一些故障,况且示波器的功能还可以作为其他使用,在这里我们只不过用了一台示波器的附加功能,可以说这种方式是最节省的方式。  2、当示波器的通道数不够时,也可以选用一些带有简单的定时分析功能的多通道定时分析仪器,如早期的逻辑分析仪和现在市面上还有的混合信号示波器,如Agilent的546××D示波器。  3、一些功能比较简单,速度不是特别快的的计算机插卡 式,基于Windows、绝大部分功能都由软件来完成的虚拟仪器,这类产品在国内的很多厂家都有生产。  4、采样速率、触发功能、分析功能都很强大的不可扩展的固定式整机。例TLA600系列。  5、功能更强扩展性更好的模块化插卡式整机;对不同的用户,可以针对需要,选择不同档次的仪器。  逻辑分析仪的一些技术指标:  1、逻辑分析仪的通道数 :在需要逻辑分析仪的地方,要对一个系统进行全面地分析,就应当把所有应当观测的信号全部引入逻辑分析仪当中,这样逻辑分析仪的通道数至少应当是:被测系统的字长(数字总线数)+被测系统的控制总线数+时钟线数。这样对于一个16位机系统,就至少需要68个通道。现在几个厂家的主流产品的通道数多达340通道以上。例Tektronix等。  2、定时采样速率 :在定时采样分析时,要有足够的 定时分辨率,就应当足够高的定时分析采样速率,我们应当知道,并不是只有高速系统才需要高的采样速率(见下表)现在的主流产品的采样速率高达2Gs/S,在这个速率下,我们可以看到0.5ps时间上的细节。  以下是一些很常见的芯片的工作频率和建立/保持时间的列表,我们可以看出,即使它们的工作频率很低,但在时间分析(Timing)中要求的分辨率也很高。表一:典型的数字设备  3、状态分析速率:在状态分析时,逻辑分析仪采样基准时钟就用被测试对象的工作时钟(逻辑分析仪的外部时钟)这个时钟的最高速率就是逻辑分析仪的高状态分析速率。也就是说,该逻辑分析仪可以分析的系统最快的工作频率。现在的主流产品的定时分析速率在100MHz,最高可高达300MHz甚至更高。  4、逻辑分析仪的每通道的内存长度:逻辑分析仪的内存是用于存储它所采样的数据,以用于对比、分析、转换(譬如将其所捕捉到的信号转换成非二进制信号【汇编语言、C语言 、C++ 等】,等在选择内存长度时的基准是“大于我们即将观测的系统可以进行最大分割后的最大块的长度。  5、逻辑分析仪的探头:逻辑分析仪通过探头与被测器件连接,探头起着信号接口的作用,在保持信号完整性中占有重要位置。逻辑分析仪与数字示波器不同,虽然相对上下限值的幅度变化并不重要,但幅度失真一定会转换成定时误差。逻辑分析仪具有几十至几百通道的 探头其频率响应从几十至几百MHz,保证各路探头的相对延时最小和保持幅度的失真较低。这是表征逻辑分析仪探头性能的关键参数。Agilent公司的无源探头和Tektronix公司的有源探头最具代表性,属于逻辑分析仪的高档探头。  逻辑分析仪的强项在于能洞察许多信道中信号的定时关系。可惜的是,如果各个通道之间略有差别便会产生通道的定时偏差,在某些型号的 逻辑分析仪里,这种偏差能减小到最小,但是仍有残留值存在。通用逻辑分析仪,如Tektronix公司的TLA600型或Agilent公司的HP16600型,在所有通道中的时间偏差约为1ns。因而探头非常重要,详见本站“测试附件及连接探头”。  a)探头的阻性负载,也就是探头的接入系统中以后对系统电流的分流作用的大小,在数字系统中,系统的电流负载能力一般在几个KΩ以上,分流效应对系统的影响一般可以忽略,现在流行的几种长逻辑分析仪探头的阻抗一般在20~200KΩ之间。  b)探头的容性负载:容性负载就是探头接入系统时,探头的等效电容,这个值一般在1~30PF之间,在现在的高速系统中,容性负载对电路的影响远远大于阻性负载,如果这个值太大,将会直接影响整个系统中的信号“沿”的形状改变整个电路的性质,改变逻辑分析仪对系统观测的实时性,导致我们看到的并不是系统原有的特性。 c)探头的易用性:是指探头接入系统时的难易程度,随着芯片封装的密度越来越高,出现了BGA、QFP、TQFP、PLCC、SOP等各种各样的封装形式,IC的脚间距最小的已达到0.3mm以下,要很好的将信号引

  • 逻辑分析仪原理及应用

    一般来说,逻辑分析仪能看到比示波器更多的信号线。对于观察总线上的定时关系或数据 ——例如微处理器地址、数据或控制总线时,逻辑分析仪是特别有用的。逻辑分析仪能够解码微处理器的总线信息,并以有意义的形式显示。总之,当您通过了参数设计阶段,开始关注许多信号间的定时关系和需要在逻辑高和低电平码型上触发时,逻辑分析仪就是正确的测试工具。[b]逻辑分析仪[/b]大多数逻辑分析仪实际是合二而一的分析仪:一部分是定时分析仪,另一部分是状态分析仪。定时分析仪的信息显示形式与示波器的相同,水平轴代表时间,垂直轴代表电压幅度。由于这两种仪器上的波形都与时间相关,因此称为“时域”显示仪。[b]选择正确的采样方法[/b]定时分析仪好像是一台具有 1bit 垂直分辨率的数字示波器。由于只有 1bit 分辨率,因此只能实现两种状态 —高或低的显示。定时分析仪只关心用户定义的电压阈值。如果采样时信号高于该阈值,就以高或 1 显示,低于阈值的采样信号用低或0显示。从这些采样点得到一张由 1 和 0 组成,代表输入波形 1bit 图的表格。这张表格保存在存储器中,并可用来重建输入波形的 1bit 图,如图1所示。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278254695.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278254695.jpg[/img][/url][/align][align=center][size=12px]图 1 定时分析仪的采样点[/size][/align]定时分析仪趋向于把各种信号拉成方波,这似乎会影响到它的可用性,但如果您需要同时观察几条甚至几百条信号线以验证信号间的定时关系,那么定时分析仪就是正确选择。应记住每个采样点都要使用一个存储器位置。分辨率越高(采样率越快),采集窗就越短。[b]跳变采样[/b]当我们捕获如图2 所示带有数据突发的输入线上的数据时,我们必须把采样率调到高分辨率(例如 4ns),以捕获开始处的快速脉冲。这意味着具有 4K(4096 样本)存储器的定时分析仪在 16.4ms 后将停止采集数据,使您不能捕获到第二个数据突发。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255647.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255647.jpg[/img][/url][/align][align=center][size=12px]图2 高分辨率采样[/size][/align]在通常的调试工作中,我们采样和保存了长时间没有活动的数据。它们使用了逻辑分析仪存储器,却不能提供更多的信息。如果我们知道跳变何时产生,是正跳变还是负跳变,就能够解决这一问题。这一信息是有效使用存储器的跳变定时基础。为实现跳变定时,我们可在定时分析仪和计数器的输入处使用“跳变探测器”。现在定时分析仪只保存跳变前的那些样本,以及两个跳变之间的时间间隔。采用这种方法,每一跳变就只需使用两个存储器位置,输入无变动时就完全不占用存储器位置。在我们的例子中,根据每一突发中存在多少脉冲数,现在能捕获到第二、第三、第四和第五个突发。并同时保持达到 4ns 的高定时分辨率(图3)。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255224.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255224.jpg[/img][/url][/align][align=center][size=12px]图3 使用跳变探测器采样[/size][/align][b]毛刺捕获[/b]毛刺脉冲因为会随机出现,造成灾难性的后果而声名狼藉。定时分析仪可采样输入数据,保持对采样间所产生任何跳变的跟踪,容易捕获毛刺。在分析仪中,把毛刺定义为相邻两次采样间穿越逻辑阈值一次以上的任何跳变。为了识别毛刺,我们要“教会”分析仪保持对所有多个异常跳变的跟踪,并将它们作为毛刺显示。毛刺显示是一种很有用的功能,能够提供毛刺触发和显示超前毛刺的数据,从而帮助我们确定毛刺产生的原因。这种能力也使得分析仪只捕获毛刺产生时所要的数据。回顾本节开始时提到的例子。我们有一个系统周期性地因毛刺出现在一条信号线上而崩溃。由于毛刺发生具有偶然性,您即使能保存整个时间上所有数据(假定有足够的存储能力),也很难在巨大的信息量中找到它。另一种方法是使用没有毛刺触发功能的分析仪,您必须坐在仪器前,按运行按钮,等待看到毛刺为止。[b]定时分析仪的触发[/b]逻辑分析仪连续捕获数据,并在找到跟踪点后停止采集。这样,逻辑分析仪就能显示出被称为负时间的跟踪点前的信息,以及跟踪点后的信息。[b]码型触发[/b]设置定时分析仪的跟踪特性与设置示波器的触发电平和斜率稍有一点区别。许多分析仪是在跨多条输入线的高和低码型上触发。为使某些用户更感方便,绝大多数分析仪的触发点不仅可用二进制( 1 和 0),而且可用十六进制、八进制、ASCII或十进制设置。在查看4、 8、16、24、32bit宽的总线时,使用十六进制的触发点会更加方便。设想如果用二进制设置24bit总线就会麻烦得多。[b]边沿触发[/b]在调节示波器的触发电平旋钮时,您知道是在设置电压比较器的电平,这个电平将告诉示波器在输入电压穿越该电平时触发。定时分析仪的边沿触发与其基本相似,但触发电平已预设置到逻辑阈值。大部分逻辑器件都与电平相关,这些器件的时钟和控制信号通常都对边沿敏感。边沿触发使您能与器件时钟同步地捕获数据。您能告诉分析仪在时钟边沿产生(上升或下降)时捕获数据,并获取移位寄存器的所有输出。当然在这种情况下,必须延迟跟踪点,以顾及通过移位寄存器的传播延迟。[b]状态分析仪基础[/b]如果您从未使用过状态分析仪,您可能认为这是一种极为复杂的仪器,需要花很多时间才能掌握使用方法。事实上,许多硬件设计师发现状态分析仪中有许多极有价值的工具。一个逻辑电路的“状态”是数据有效时对总线或信号线的采样样本。例如,取一个简单的“D”触发器。“D”输入端的数据直到时钟正沿到来时才有效。这样,触发器的状态就是正时钟沿产生时的状态。现在,假定我们有8个这样的触发器并联。所有8个触发器都连到同样的时钟信号上。当时钟线上产生正跳变时,所有8个触发器都要捕获各自“D”输入的数据。这样,每当时钟线上正跳变时就产生一个状态,这8条线类似于微处理器总线。如果我们把状态分析仪接到这8条线上,并告诉它在时钟线正跳变时收集数据,状态分析仪将照此执行。除非时钟跳到高电平,否则输入的任何活动将不被状态分析仪捕获。定时分析仪由内部时钟控制采样,因此它是对被测系统作异步采样。而状态分析仪从系统得到采样时钟,因此它是对系统同步采样。状态分析仪通常用列表方式显示数据,而定时分析仪用波形图显示数据。[b]理解时钟[/b]在定时分析仪中,采样是沿着单一内部时钟的方向进行,从而使事情非常简单。但微处理器系统中往往会有若干个“时钟”。假定某个时刻我们要在RAM中的一个特定地址上触发,并查看所保存的数据;再假定使用的微处理器是Zilog公司的 Z80。为了用状态分析仪从Z80捕获地址,我们要在MREQ线为低时进行捕获。而为了捕获数据,需要在WR线为低(写周期)或RD线为低(读周期)时让分析仪采样。某些微处理器可在同一条线上对数据和地址进行多路转换。分析仪必须能让时钟信息来自相同的信号线,而非来自不同的时钟线。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255919.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255919.jpg[/img][/url][/align][align=center][size=12px]图 4 RAM 定时波形图[/size][/align]在读写周期期间,Z80首先把一个地址放在地址总线上。接着设定MREQ线在该地址对存储器的读或写有效。最后根据现在是读还是写对RD或WR线断言。WR线只有在总线数据有效后才被设定。这样,定时分析仪就作为多路分配器在适当的时间捕获地址,然后在同一信号线上捕获产生的数据。[b]触发状态分析 [/b]像定时分析仪一样,状态分析仪也提供限定所要保存数据的功能。如果我们要寻找地址总线上由高低电平构成的特定码型,可告诉分析仪在找到该模式时开始保存,直到分析仪的存储器完全装满。这些信息可以用十六进制或二进制格式显示。但在解码至汇编码时,十六进制可能更为方便。在使用处理器时,应把这些特定的十六进制字符与处理器指令相比较。大多数分析仪制造商设计了称为反汇编器的软件包,这些软件包把十六进制代码翻译成易于阅读的汇编码。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255303.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255303.jpg[/img][/url][/align][align=center][size=12px]图 5 把十六进制码翻译成汇编码[/size][/align][b]序列级和选择性保存[/b]状态分析仪具有帮助触发和存储的“序列级”数据。序列级使您能比单一触发点更精确地限定要保存的数据。也就是说可使用更精确的数据窗,而不必存储不需要的信息。选择性的保存意味着可只保存较大整体中的一部分。例如,假定我们有一个计算给定数平方的汇编例程。如果该例程不能正确计算平方,我们就告诉状态分析仪捕获这一例程。具体做法是先让状态分析仪寻找该例程的起点。当它找到起始地址时,我们再告诉它寻找终止地址,并保存两者之间的所有信息。当发现例程结束时,我们告诉分析仪停止状态保存。[b]探测解决方案[/b]为进行调试,向数字系统施加的物理连接必须方便可靠,对被调试的目标系统只有最小的侵扰,这样才能使逻辑分析仪得到精确的数据。普通的探测解决方案是每条电缆有 16 个通道的无源探头。每个通道的两端用100kΩ并联8pF 端接。您可将这种无源探头与示波器探头的电气性能作一比较。无源探测系统除了更小的尺寸和更高的可靠性外,还能把探头端接在与目标系统的连接点上。这就避免了从大的有源探头接口夹到被测电路之间大量引线所产生的附加杂散电容。因此您的被测电路就只“看到”8pF的负载电容,而不再是前述探测系统的16pF。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255595.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255595.jpg[/img][/url][/align][align=center][size=12px]图6 分析探头[/size][/align]把状态分析仪接到微处理器系统需要进行机械连接和时钟选择。某些微处理器可能需要外部电路对一些信号进行解码,才能得到用于状态分析仪的时钟。分析探头不仅能提供与目标系统快速、可靠和正确的机械连接,而且能提供必要的电气适配能力,如为正确捕获系统运行提供的时钟和多路分配器。[b]结语[/b]绝大多数逻辑分析仪都由定时分析仪和状态分析仪这两个主要部分组成。定时分析仪更适于处理多线的总线型结构或应用。它能够在信号线上的码型上,甚至在毛刺上触发。状态分析仪常被看成是一种软件工具,事实上它在硬件设定也很有用。由于它从被测系统得到时钟,因此捕获的数据也就是系统在时钟上的数据。逻辑分析仪为数字电路设计工程师提供了强大的设计工具。[table=349][tr][td][url=https://yqj.mumuxili.com/?from=YQSQ2-7/1]https://yqj.mumuxili.com/?from=YQSQ2-7/2[/url][/td][/tr][/table]

  • 供应Lattice可编程逻辑芯片FPGA和CPLD

    [url=https://www.ldteq.com/brand/95.html]Lattice[/url][size=14px]是一家知名的半导体公司,专注于生产FPGA(现场可编程门阵列)和CPLD(复杂可编程逻辑器件)产品。这些产品被广泛应用于通信、工业控制、汽车电子、消费类电子等领域,为客户提供了灵活的、可定制的解决方案。Lattice的FPGA产品具有低功耗、高性能和丰富的资源,而CPLD产品则提供了低成本、低功耗的可编程逻辑解决方案。无论您是在寻找灵活的数字逻辑设计解决方案还是需要实现特定的控制和处理任务,Lattice的产品系列都能够满足您的需求。([color=#ff0000]推荐[/color]:[url=https://www.ldteq.com/article/3103.html]可编程逻辑器件芯片选型[/url])[/size][size=14px]Lattice FPGA和CPLD产品是一类重要的可编程逻辑器件,它们在现代电子设计和嵌入式系统开发中具有广泛的应用。FPGA(现场可编程门阵列)是一种集成电路芯片,具有可编程的逻辑功能,可根据用户的需求进行配置和重新编程。与之相比,CPLD(复杂可编程逻辑器件)则是一种更小型化的可编程器件,适用于需要较低功耗、较小规模的应用。Lattice FPGA和CPLD产品对于满足各行各业的高性能、低功耗、灵活配置等需求至关重要。[/size][align=center][size=14px][img=Lattice可编程逻辑芯片FPGA和CPLD,400,262]https://www.ldteq.com/public/ueditor/upload/image/20231207/1701938993563492.png[/img][/size][/align][b][size=14px]FPGA现场可编程门阵列[/size][/b][size=14px]Lattice FPGA(现场可编程门阵列)是一种灵活的、可编程的集成电路,可用于实现各种数字逻辑功能。Lattice FPGA具有高度灵活性和可重构性,可以根据特定的应用需求进行重新配置,从而为设计师提供了广泛的定制化选项。Lattice FPGA产品系列包括ECP、MachXO、iCE40等型号,适用于不同的应用场景,如通信、工业、汽车电子等,为用户提供了多种选择。[/size][b][size=14px][b]FPGA[/b]产品系列[/size][/b][size=14px]:[url=https://www.ldteq.com/product/1601.html]LatticeXP2系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1600.html]LatticeECP3系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1599.html]ECP5 / ECP5-5G系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1598.html]Certus-NX系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1597.html]CertusPro-NX系列[/url][color=#0070c0],[/color][/size][url=https://www.ldteq.com/product/1596.html]Avant-E?系列[/url][size=14px][color=#0070c0],[url=https://www.ldteq.com/product/1594.html]MachXO3系列[/url],[url=https://www.ldteq.com/product/1593.html]MachXO3D系列[/url],[url=https://www.ldteq.com/product/1592.html]Mach-NX系列[/url],[url=https://www.ldteq.com/product/1591.html]MachXO5-NX系列[/url][/color][/size][b][size=14px]CPLD复杂可编程逻辑器件[/size][/b][size=14px]Lattice的复杂可编程逻辑器件(CPLD)产品系列提供了低功耗、高性能的解决方案,适用于数字逻辑设计和控制应用。这些产品通常具有灵活的IO资源和可编程的逻辑功能,可用于实现各种控制和处理任务。Lattice的CPLD产品广泛应用于通信、工业控制、消费类电子等领域。[/size][b][size=14px][b]CPLD[/b]产品系列[/size][/b][size=14px]:[url=https://www.ldteq.com/product/1588.html]LA-MachXO汽车系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1586.html]MachXO系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1585.html]MachXO2系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1584.html]ispMACH 4A系列[/url][color=#0070c0],[/color][url=https://www.ldteq.com/product/1583.html]ispMACH 4000V/B/C/Z系列[/url][/size][size=14px][url=https://www.ldteq.com/]立维创展[/url]供应[url=https://www.ldteq.com/brand/95.html]Lattice[/url]可编程逻辑芯片FPGA和CPLD全系列产品,价格优惠,欢迎咨询 。[/size]

逻辑芯片分析仪相关的耗材

  • Whatman 客户定制芯片
    定制基于抗体的蛋白芯片Whatman芯片定制服务可以为拥有芯片扫描和数据分析仪器的科学家提供基于Whatman抗体清单或客户自备蛋白库的FAST Slide芯片制备服务。定制服务为科学家提供完整的可行性分析,芯片设计、加工,和数据分析等服务。我们可以根据需求,对客户提供的生物样本的某些确定的特异性项目进行定量或定性的检测。为客户提供的最终报告包括: 每个样品原始和修正后的数据、每个微点的总荧光信号(仅定量检测)、% CV和标准差、比例柱状图、平均背景信号、外围识别。整个蛋白芯片的研发制作过程由经认证的研发项目领导负责,并根据涉及的领域、资源和时间确定需要的研究人员。专门的客户专员通过与研发团队紧密的合作,负责项目的执行、重大事件以及与客户的沟通。无论是来自Whatman还是由客户提供的蛋白被特异性的点加到FAST Slide片基上,使用的点样技术是接触式或非接触式,每个样品重复点样3次,除非另有说明。悬浮于Whatman蛋白芯片缓冲液中可长期保持蛋白的稳定。制作一个基于抗体的蛋白芯片第1步:你想要自己制作芯片吗? 如果是的话,希望我们的FAST Slide产品和芯片缓冲液能帮助您得到出色的结果。第2步:你想从我们提供的清单中选择制作芯片吗?如果是的话,只要与我们联系,告知您的特殊需求和芯片的详细情况,我们的专家将为您设计最适合的芯片。我们的清单在不断扩充,我们很乐于满足您的需求。从抗体清单中选择您需要制作成芯片的蛋白,或者将您自己的蛋白库发送给我们。您的芯片将在订单日起的15~20个工作日内制作完成。第3步:如果您希望我们帮处理您的定制样品或现有的芯片,只需与我们联系并提供样品需要的详细数量和种类。3上海楚柏实验室设备有限公司为您提供实验室整体解决方案(实验室设计、实验室家具、仪器、耗材、试剂等&hellip &hellip )可电话咨询:021-67696665
  • 数字PCR生物芯片盒(单芯片)
    臻准数字PCR芯片制备方式采用的是“固相分割”路线,利用MEMS工艺刻蚀加工晶圆,形成微米级腔室,微体系反应液在固相微腔中完成PCR过程,避免了交叉干扰和剧烈热反应造成的稳定性破坏。在此基础上,微体系组分的变化并不影响物理结构,从而为平台带来了更强的开放性。芯片式除了均一稳定的优势之外,还有一些其他的特点,每个微单元可以独立观测、芯片可以反复阅读、图像可以溯源等等,非常利于研发人员进行分析和溯源。 臻准微腔式芯片优势特点:工艺硅基芯片,腔室稳定均一;单孔可独立观测;芯片可反复观测;数据图像可追溯;芯片封闭无污染;
  • 激光器增益芯片
    总览增益芯片是用作外腔半导体激光器或可调谐二极管激光器增益介质的半导体元件。增益芯片被用作TLS(可调谐光源),它可以使用波长选择滤波器(如衍射光栅)来改变振荡波长。增益芯片类似于激光二极管芯片,不同的是它在一个或两个端面上都有较深的抗反射涂层,大大提高或消除了自激阈值。通用参数使用衍射光栅的外腔激光器有两种:Littrow型和Littman/Metcalf型。Littrow型衍射光栅的初级衍射光直接反馈到半导体激光器中,通过与垂直端面的低反射膜(LR)共振来实现振荡。由于衍射只进行一次,因此获得比Littman型更大的光学输出。通过旋转光栅来扫描波长。一般来说,采用腔内消色差透镜对光栅上较大面积的扩展光束进行准直。零级衍射光束可以作为输出激光束。Innvolume 增益芯片的产品线可细分为两大类:• 单面光接入(类型A和B)• 双面光接入(类型C和D)在输出功率从外腔向外耦合的方案中,单边光纤接入增益芯片是理想的工作元件。通常,它们的封装形式是晶体管外形罐。双边光纤接入增益芯片可用于从增益芯片端面进行功率输出耦合以减少光损耗的方案中,或用于光放大方案中。A型增益芯片具有垂直于端面的直条纹,具有高反射和抗反射涂层。这是构造外腔二极管激光器最具性价比的解决方案。A型增益芯片具有对称的光束远场,使用高数值孔径的非球面透镜,提供与外腔和后腔的有效耦合。与其他类型相比,这种类型的增益芯片具有相对较低的增益谱纹波抑制,这是由于抗反射涂层的反射率在0.1%的水平上,并且可以通过弯曲条纹到端面的设计来进一步降低反射率。B型增益芯片具有弯曲条纹,正常侧为高反射率,倾斜侧为深反射率涂层。弯曲的条纹和抗反射涂层提供极低的反射率( 10E-5),允许抑制自激光和最小化增益起伏。弯曲条纹的缺点是输出光束的畸变,这使准直变得困难,并降低了反向耦合的效率。故必须使用高数值孔径的光学器件。C型增益芯片在倾斜侧有弯曲条纹和抗反射涂层,在正常侧有百分之几的反射率。波长选择反馈必须设置在倾斜侧(与B型的优点和缺点相同),而输出功率则从正常侧进行输出。这种设计使得输出功率高,输出光束较好。带正常条纹的端面反射必须根据系统配置和所需输出功率分别进行设计。D型增益芯片有一个倾斜条纹,两侧均有抗反射涂层,通常适用于需要内置放大单元的先进光学方案。创新的刻面涂层技术,包括刻面钝化,满足高可靠性要求。符合ISO9001:2008的生产标准,是基于精心设计制造和广泛测试的结果。每个设备都经过单独测试,并附带一组测试数据。尺寸图 产品型号中心波长的调谐范围调谐范围最大功率波长外腔功率输出快轴光束发散度慢轴光束发散度ASE电源无反馈(ASEpower w/ofeedback)条纹长度工作电流nmnmnmmWdegdegmWmmmAGC-780-40-TO-30-B780407803020851.5150GC-780-40-TO-100-B78040780110208202250GC-800-40-TO-100-B7954580011022852250GC-800-40-TO-130-B80040800130325252250GC-920-90-TO-200-B9059092020033871.5400GC-950-110-TO-200-B950110980240326351.5400GC-1030-150-TO-200-B10301501060200381031.5400GC-1030-160-TO-200-B10301601080220178501.5400GC-1060-150-TO-200-B10601501090210169501.5400GC-1105-130-TO-200-B110513011302004091.51.4400GC-1110-70-TO-300-A111070112035035483600GC-1160-90-TO-200-A115090116023040523600GC-1180-80-TO-200-A116080117022042433600GC-1180-100-TO-200-B115010011702104071103600GC-1220-110-TO-200-B12201101240230376153800GC-1260-60-TO-200-B12601101270210387203800GC-1270-60-TO-200-A127060127020033533800GC-1270-130-TO-200-B12701301230, 13202003864.53800GC-1270-140-TO-200-A12701301230, 13102203851.53800GC-1300-60-TO-200-B13006013202003864.53800GC-1310-60-TO-200-A13106013102203851.53800GC-1330-60-TO-200-A133060133020040453800GC-1330-70-TO-200-B1330701340200377173800*–@ CW,25C散热器温度,外腔采用Littman配置,反馈约为10%
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制