逻辑信号分析仪

仪器信息网逻辑信号分析仪专题为您提供2024年最新逻辑信号分析仪价格报价、厂家品牌的相关信息, 包括逻辑信号分析仪参数、型号等,不管是国产,还是进口品牌的逻辑信号分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合逻辑信号分析仪相关的耗材配件、试剂标物,还有逻辑信号分析仪相关的最新资讯、资料,以及逻辑信号分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

逻辑信号分析仪相关的厂商

  • 潽洛因思分析仪器(苏州)有限公司隶属于Process Insights集团。Process Insights集团遍布全球的分析仪器和过程自动化产品提供了创新及差异化的分析、测量方法,为我们全球的客户带来了高附加值的解决方案。我们致力于开发及创新,持续为我们的客户提供更好的产品和服务来保护环境,让我们的生活更美好。 我们不断的追求,我们的战略和全球扩张为我们的客户、渠道合作伙伴和供应商在整个价值链中提供了重要的未来机会。Process Insights 产品组合: Tiger Optics LAR Process Analysers & Hygrocontrol Extrel CMS MBW Calibration COSA Xentaur Alpha Omega Instruments ATOM Instrument
    留言咨询
  • 400-860-5168转5072
    江苏东华分析仪器有限公司为江苏东华测试技术股份有限公司全资子公司(股票代码:300354),公司成立于2013年,专门从事电化学工作站和交流阻抗测试系统的研发、制造及提供专业的测试解决方案。 依托母公司30多年在抗干扰和小信号处理等方面的技术积累,公司研发团队突破了多项技术壁垒,实现自主可控,产品性能已达国内先进水平,核心技术拥有完全的自主知识产权,拥有多项专利和软件著作权。 DH7000系列电化学工作站运用于常规电化学分析测试、腐蚀、电化学传感器、教学、储能研究等方面,覆盖了电化学测试现有的方法,已经销售到清华大学、上海交通大学、西安交通大学、中南大学、中山大学、厦门大学、中船*所等客户,高性能指标满足客户的不同需求,获得客户一致好评。 公司拥有一支强大的售后服务队伍,可以为广大用户提供良好的技术服务,分布在全国11个销售服务网点,为及时响应上门服务提供了保障。公司有一套专业的用户档案管理软件,专人管理,及时把用户资料信息录入档案,准确的查阅用户信息,了解其需求;根据需要上门对所供货物进行专业的保养及维护;公司为客户提供进场前培训与进场后培训,我方提供标准培训教材,覆盖操作指引、常见异常问题及处理、设备保养、设备维修、备品备件等方面。 现代科学研究和装备制造业的进步,离不开先进的测试技术和专业服务,公司的目标是为客户提供技术更加先进可靠、使用更加方便灵活、软件功能更加丰富多样的测试系统和更加专业的增值服务。
    留言咨询
  • 济南日高分析仪器有限公司,是一家中日合作企业,公司致力于药品包装材料检测仪器的研发、生产、销售以及提供药包材质量控制的整体解决方案。产品涵盖:初粘性测试仪、持粘性测试仪、剥离试验机、摩擦系数仪、热封试验仪、拉力试验机、密封测试仪、顶空分析仪、瓶盖扭矩仪、撕裂度仪、测厚仪、摩擦试验机、塑料瓶(塑料袋)耐压测试仪、落标冲击仪、落球冲击仪、加热收缩率测试仪、摆锤冲击仪、泄漏与密封强度测试仪、瓶盖开启力测试仪、药包材溶剂残留检测仪、垂直轴偏差测定法、耐内压力测试、水蒸气透过量测定仪、药用铝箔取样器.济南日高分析仪器有限公司,力求更加全面、及时、周到、专业的为用户提供优质的服务!为客户创造更多价值,实现长久共赢!
    留言咨询

逻辑信号分析仪相关的仪器

  • Discovery逻辑分析仪系列PGY-LA-EMBD内置I2C逻辑分析仪、SPI逻辑分析仪、UART逻辑分析仪等功能。这是基于 PC 的逻辑分析仪。 Discovery 逻辑分析仪用于调试嵌入式系统,逻辑分析仪不仅减少了工作台面积,还允许具有非常小的外形尺寸,可用于现场调试故障。协议解码功能旨在调试消费、工业、家庭自动化、健康和教育领域的嵌入式设计团队面临的逻辑和协议问题。 PGY-LA-EMBD 是业内首台逻辑分析仪,使工程师能够调试计时问题,并在嵌入式设计中同时对 I2C、SPI、UART、 I3C、 SPMI 和 RFFE 接口进行协议分析。 这使得设计人员能够快速调试电路级别和系统级别问题。 PGY-LA-EMBD 提供 1GS/Sec 异步(定时)数据和 100Mhz 同步(状态)数据捕获,使其成为解决数字设计问题的理想调试工具。 除了分析协议问题外,设计人员现在还可以轻松分析建立和保持时间问题、毛刺和同步数据活动。 当代嵌入式设计人员需要从 I2C、SPI 和 UART 等多个接口收集数据并对其进行处理,以实现其设计的最佳性能。 嵌入式设计团队需要及时采取行动以满足产品的预期目标。 PGY-LA-EMBD 同时解码 I2C、SPI 和 UART 总线,并显示带有时间戳信息的协议活动。 PGY-LA-EMBD 是调试硬件和嵌入式软件集成问题并优化软件性能的理想工具。 多个标记可实现智能增量测量,这对设计人员至关重要。 多个标记可实现智能增量测量,这对设计人员至关重要。 特征: • 具有协议和逻辑分析功能的 16 个通道。 • 1GS/Sec 定时(异步)分析 • 100MHz 状态(同步)分析 • UART、SPI、 I2C、 I3C、 SPMI 和 RFFE 的同步协议分析。 • 详细的触发功能:自动、模式、协议感知(UART、SPI、 I2C、 I3C、 SPMI 和 RFFE)和定时(脉冲宽度和延迟)。 • 来自协议的智能数据流。 分析仪到主机使用 USB3 接口进行长时间捕获。 • 创新的易于使用的图形用户界面。 • 提供时序、波形、列表和协议列表视图 • 协议解码数据的详细过滤能力 • PDF 和 CSV 报告格式。 • API 支持。 欧奥电子是Prodigy在中国区的官方授权合作伙伴,Prodigy MPHY, UniPro, UFS 3.1/4.0 总线协议分析仪测试解决方案不会收到EAR进出口方面的管制。 同时还有代理其他总类的协议分析仪,包括嵌入式设备用的eMMC5.0/5.1 SDIO协议分析仪, QSPI协议分析仪及训练器, I3C协议分析仪及训练器, RFFE协议分析仪及训练器等等。 我司还有代理SPMI协议分析仪及训练器, 车载以太网分析仪,以及各种相关的基于示波器的解码软件和SI测试软件。 同时,欧奥电子也有提供高难度焊接,以及高速信号,如UFS,DDR3/DDR4,USB type C等高速协议抓取和分析的服务。
    留言咨询
  • v 逻辑分析仪配置:标配 68 通道、350 MHz 状态、12.5 GHz 计时缩放、2.5 GHz 计时、2 Mb 深存储器15 英寸(38.1 厘米)彩色触摸屏使您可以查看大量信号和总线,并在其中快速导航内置可拆卸固态硬盘、USB 3.0 端口和局域网端口,可以快速传输数据和存储大量数据1.4 GHz 触发序列发生器确保捕获高速事件v 计时分析(异步采样):高达 2.5 GHz/5.0 GHz/10 GHz(全通道/半通道/四分之一通道)计时,能够以高分辨率捕获信号活动高达 128 Mb/256 Mb/512 Mb(全通道/半通道/四分之一通道)深存储器,支持识别间隔很长时间的问题和症状的根本原因12.5 GHz(80 ps)计时缩放和 256 K 存储器深度支持在高分辨率下分析触发事件v 状态分析(同步采样):状态数据速率高达 1.4 Gb/s,状态时钟速率高达 700 MHz,支持高速数据捕获自动设置阈值/采样位置,实现对高速总线的准确测量同时显示所有通道的眼图,使您可以快速发现问题信号
    留言咨询
  • 东莞天兴 泰克示波器, 安捷伦示波器, 是德示波器,DPO77002SX, DPS77004SX,DPO73304SX,T3-8,UXR0334A安捷伦校准件,是德校准件,安捷伦探头,是德探头 现货 出售 租赁 回收 是德 U4164A逻辑分析仪系统将可靠的数据采集与强大的分析和验证工具相结合,帮助您充满信心地快速验证和调试高速数字设计,这些设计的运行速度可以高达4Gb/s。U4164A 逻辑分析仪模块提供一下独特的功能,帮助您执行测量并获得其他逻辑分析仪无法获得得洞察力。U4164A 逻辑分析仪模块拥有2种工作模式:四倍采样状态模式和10GHz 1/4通道时序模式。使用四倍采样状态模式,可以从每路输入的单一探测点,在两个独立调节阔值上对4个不同位置进行采样。四倍采样状态模式意味着探测高数据速率信号(例如 DDR4、DDR5、LPDDR4 和 LPDDR5)所需的空间更少,这些信号需要不同的采样位置来读取和写入数据,并未大于205Gb/秒的数据速率分离上沿/下降沿样本。四分之一通道(10GHz)定时模式可以为每个输入提供高达1.6Gb的样本。除了新的工作模式外,U4164A 逻辑分析仪模块还拥有多项新特性,帮助高速数字和DDR/LPDDR存储器设计工程师加快系统启动和调试速度。U4164A的特性包括实现模式偏移校正控制、双采样状态模式双阔值、时钟滞后控制(该特性可以调整状态模式的噪声灵敏度)以及业界出色的存储器选件(400 Mb全通道,800Mb 半通道,1.6Gb 1/4通道)为了从U4164A 迹线捕获中获得更深的洞察力,B4661A 存储器分析软件提供先进工具,利于加速DDR/2/3/4/5 和 LPDDR/1/2/3/4/5 测量的设置和配置,还提供各种以或许可的选件,用于 DDR/2/3/4/5、LPDDR/1/2/3/4/5 和 ONFi(开放式 NANAD 闪存接口)存储器分析和一致性验证。状态速度模式选择的速率高达4Gb/s使用四倍采样状态模式,可以从单个探测点的两个不同阔值进行四个采用状态模式的时钟滞后设置高达10GHz 的全存储器深度时序模式高达400 Mb 的内存深度选件(400 Mb 全通道时序、800 Mb &half 通道时序、1.6 Gb ¼ 通道时序)时序模式的偏移校正接口眼图扫描技术、扫描增量高达5ps*5mV12.5GHz,256k深度定时缩放
    留言咨询

逻辑信号分析仪相关的资讯

  • 得利特技术创新的四层逻辑生成 探索油液水分含量分析国产路径
    石油工业踏着改革开放的节拍,走得越来越从容自信。从能源“凛冬”到油气饭碗端在自己手里,我国石油工业一路高歌猛进。与石油工业一同加速的还有其检测行业。作为油品质量的“把关人”,油品检测作用日益凸显。   滚石上山、爬坡过坎。对得利特(北京)科技有限公司(以下简称“得利特”)技术经理王志强来说,油液分析与他共度半生。“油品检测产品要增强核心竞争力、迈出技术高水平自立自强坚实步伐。”王志强一语道出现阶段油品检测的动力,同时解读了得利特的发展逻辑和产业路径:挑战、创新、扩张与精进。   坚韧性挑战:研发力从“量变”到“质变”   “2000年离开无线电元件厂后,我进入了油分析仪器仪表行业。”王志强回忆。长久的钻研让王志强看到行业更多可能性,同时极具挑战性的科研工作强烈吸引着王志强。“我喜欢挑战,科研毫无疑问是属于这种工作。”科研成就感和价值感让王志强在油品分析仪器仪表路上越走越远、越走越深。   加入得利特后,王志强迎来了更多挑战机会,这得益于得利特的发展思路:注重原创技术攻关,走自主创新的可持续发展道路。在得利特创立初期,王志强秉持上述企业思路,与技术团队加大科技投入,专注核心技术研发,心无旁骛地啃技术“硬骨头”。   掌握核心技术绝非朝夕,需要年复一年技术积累。在王志强与技术团队的共同努力下,得利特推出精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等多款仪器。如今,适合采用库伦法测量微量水分的测定仪设备面世,实现企业研发力从量的积累迈向质的飞跃。   突破性创新:满足精确微量水分测定需求   水分含量分析是油液检测的重要项目。“石油产品中的水分蒸发时吸收热量,发热量降低;而在低温情况下,燃料中的水会结冰,堵塞燃料导管和滤清器,阻碍发电机燃料系统的燃料供给。此外,石油产品中有水会加速油品的氧化生胶,润滑油中有水时不但会引起发动机零件的腐蚀,而且水和高于100℃的金属零件接触时会变成水蒸气,破坏润滑油膜。”王志强解释。   轻质油品密度小、黏度小,油水容易分离,而重质油品则相反,不易分离。这一特性对微量水分检测仪器的自动化、便捷度提出更高要求。久居油品检测技术场,王志强察觉,相比其他水分检测方法,库伦法测量自动化、节省人工等优势备受青睐。基于该种方法的测量仪器能够在尽可能节省人工的同时得到更精确数据。   “微量水分检测数据的精度、便捷度大幅提高,这是得利特库伦法测量微量水分测定仪的突破性创新点。”王志强补充。基于两个核心优势,以及智能自检等新功能,该款微量水分的测定仪受众广泛,在油液水分含量分析市场中占达到了一定份额。下一步,得利特将侧重于设备测量时的自动化,脱离人工干预,并通过电子监测,更加准确地判断出油液中水的含量。   体系性扩张:产研结合扩充技术链条   挑战、创新让得利特尝到甜头。得利特微量水分的测定仪等多款产品广泛应用于石化、电力、环保、医药、军工、航空等领域,并得到用户充分认可。如何实现持续性研发,保持企业机动力?这是技术企业在“后创新时代”思考的问题。   在王志强看来,产学研结合能够及时丰富技术创新力量,扩充技术链条。这一想法不仅与得利特的技术班底相映照,更与产学研融合的政策相呼应。   实际上,得利特成立之初就整合石化科学研究院、中国计量科学研究院、北京铁道科学研究院、空军计量总站等单位的油品、仪器方面专家,将其作为企业技术班底,加速成果转化,优势互补、互惠互利。“我们正在与多家大学、电科院联合研发新产品。”   产学研融合为得利特建造了人才高地,推动预见性与实践性并存,调和国产仪器研、产不对等矛盾,解决油液水分析多个难题。同时,人才补充和研发合作鼓足得利特底气,其以北京为研发销售中心,开拓吉林、山东为生产加工中心,扩充企业链条。   精进性守业:精确性与智能化并进   技术跟上后,石油分析检测形势一片大好,但王志强直言:“国内对油液水含量的分析还能有很大的提升空间。**设备检测准确性高,但相对价格高;国产设备价格低,但稳定性、工艺水平有待提高。”基于上述难题,王志强带领团队提高优化电解液的配方,增强实验结果的广泛适用性、稳定性,提高关键部件工艺水平,在促进实验结果的重复性等方面下工夫,为油液水分含量分析的稳定性与工艺水平献力。   精确性技术攻克热火朝天。与此同时,更加长远、持久的计划箭在弦上。今年年初,多部门联合发布《关于“十四五”推动石化化工行业高质量发展的指导意见》,指出加快改造提升,实施智能制造,推进石化产业数字化转型。   提及石油化工检测技术发展方向,王志强说道:“强化检测技术的数字化,控制技术的智能化是我所期待重点的发展方向。”   他认为“十四五”高质量发展的主要目标是基本形成自主创新能力强、结构布局合理、绿色安全低碳的高质量发展格局,这一格局离不开数字变更。5G、大数据、人工智能等新一代信息技术与石化化工行业逐渐融合,检测过程数据获取能力不断增强,基于工业互联网的产业链监测、精益化服务系统正在完善。“高端油液检测产品还应提高智能化程度,增强核心竞争力,迈出高水平自立自强的坚实步伐。”王志强补充。   王志强透露,得利特将沿着自动化方向和智能化趋势,为国内企业提供高性能的自动化油品分析仪器和专业化的技术咨询、培训等服务,帮助企业以高效率、精细化管理、解决油品检测、设备润滑管理方面存在的问题。   后记:国产石油分析检测企业如何在产业扩张中顺势而为,与**品牌分庭抗礼,是摆在石油石化分析检测行业面前的一道必答题。面对错综复杂的行业形势,作为一股国产油液分析检测力量,得利特在王志强及技术团队把控下,按照四层增长逻辑和既定节奏,由高速转向高质量发展,积极构建创新型、智能化产业。   百尺竿头,更进一步。拥有突破性创新、体系性扩张,积极精益求精时,企业产能规模自然更上一层。这四层增长逻辑不仅带来良性增长,更难能可贵的是,其或将成为众多国产油液分析检测企业的范本。
  • 超灵敏生物医学检验! 苏州医工所在DNA逻辑电路构建方面取得进展
    基于DNA碱基之间的互补配对原则,可以设计组装多种复杂的二级结构,进而开发出具有特定功能的DNA分子器件,包括分子开关、纳米机器、分子框架、逻辑电路等。这些分子器件不仅在生命科学研究领域内发挥着重要的作用,而且在能源、信息、生物计算等研究领域内都具有重要的意义。DNA逻辑门是将DNA等生物分子或其他外界信息作为输入(input),通过DNA结构变化引发的各种表征结果作为输出(output),布尔运算后可以使得各种输入之间的相互识别关联关系得以明确。此外,通过将前一个逻辑门的输出作为后一个逻辑门的输入,可以构建多个级联的逻辑门,即逻辑电路。逻辑电路的组合、信号输出方式具有多样化的特点,具有广泛的应用前景。近期苏州医工所缪鹏研究员课题组发展了一种基于DNA双足步行的电化学纳米机器,并通过级联链置换构建出一系列的DNA逻辑电路,用于研究复杂生物样本中多种生物分子的关联关系。首先在电极界面修饰茎环结构的轨道探针分子;在上游均相体系中引入目标触发的链置换聚合反应用于特定序列单链的大量合成;利用DNA三通结结构完成双足步行链的组装;在茎环结构驱动链的存在条件下使其在电极界面交替行走,完成电化学信号分子的富集探测(图1)。进一步地,利用不完整三通结及双链结构的设计,进行级联链置换反应构建出AND, OR门,并与NOT门联合发展出NAND, NOR, XOR, XNOR门。所构建的双输入逻辑电路表现出良好的逻辑运算、操作性能(图2)。随后,通过四通结及双链结构的设计完成了三输入AND, OR门的搭建。发展的一系列逻辑电路不仅可应用于超灵敏生物医学检验,也为生物分子信息控制、通信、生物计算机等领域的研究工作提供了新的思路。相关工作得到了国家重点研发计划(2017YFE0132300)、国家自然科学基金(81771929)等项目的资助。结果已发表ACS Cent. Sci. 2021, 7, 1036-1044 (IF=14.553)。  论文链接:https://pubs.acs.org/doi/abs/10.1021/acscentsci.1c00277 图1 DNA双足步行器的示意图及结果 图2 双输入的逻辑电路示意图及结果 图3 三输入的逻辑电路示意图及结果
  • 《碳中和:逻辑体系与技术需求》出版
    近日,由中国科学院院士丁仲礼、张涛领衔,多位院士、专家共同撰写的《碳中和:逻辑体系与技术需求》一书由科学出版社正式出版。该书入选了中宣部2022年主题出版重点出版物。力争2060年前实现碳中和,是以习近平同志为核心的党中央经过深思熟虑作出的重大战略决策,是我们对国际社会的庄严承诺,也是当前社会各界普遍关心的热点问题。作为最大的发展中国家,我国实现这个宏伟目标时间紧、压力大、任务重。在此背景下,如何绘制具有较强前瞻性和可操作性的“碳中和”路线图,以利于我国在展现大国担当的同时顺利实现产业体系的绿色低碳化转型,是政策制定背后的重大科学问题。为此,中国科学院于2021年设立了“中国碳中和框架路线图研究”重大咨询项目,组织百余位院士专家,围绕“我国实现碳中和需要研发什么样的技术体系”这一主题,从固碳、能源、政策三个方面开展前瞻性研究,力求描绘出我国碳中和的框架路线图。项目对“为什么要实现碳中和”“怎样实现碳中和”等社会各界普遍关心的问题进行了深入解读,尤其是较为全面地列出了实现碳中和需要研发的技术需求清单,在国内外尚属首例。项目专家们在项目成果的基础上,补充必要的材料,最终形成了这本碳中和研究的权威著作。《碳中和:逻辑体系与技术需求》一书从实现碳中和的基本逻辑入手,追本溯源,系统阐述了碳中和的问题由来及相关概念,然后以技术需求清单的方式,从技术内涵、现状及发展趋势和需解决的关键科技问题等方面,立体化地展现了发电端构建新型电力系统的前沿技术、能源消费端的低碳技术、固碳端的生态系统固碳增汇技术以及碳排放与碳固定核查评估技术。此外,书中还简要介绍了世界主要国家设立的碳中和目标及技术、行政、财税、法规等措施,提出了对我国构建碳中和政策体系的启示。

逻辑信号分析仪相关的方案

逻辑信号分析仪相关的资料

逻辑信号分析仪相关的试剂

逻辑信号分析仪相关的论坛

  • 逻辑分析仪原理及应用

    一般来说,逻辑分析仪能看到比示波器更多的信号线。对于观察总线上的定时关系或数据 ——例如微处理器地址、数据或控制总线时,逻辑分析仪是特别有用的。逻辑分析仪能够解码微处理器的总线信息,并以有意义的形式显示。总之,当您通过了参数设计阶段,开始关注许多信号间的定时关系和需要在逻辑高和低电平码型上触发时,逻辑分析仪就是正确的测试工具。[b]逻辑分析仪[/b]大多数逻辑分析仪实际是合二而一的分析仪:一部分是定时分析仪,另一部分是状态分析仪。定时分析仪的信息显示形式与示波器的相同,水平轴代表时间,垂直轴代表电压幅度。由于这两种仪器上的波形都与时间相关,因此称为“时域”显示仪。[b]选择正确的采样方法[/b]定时分析仪好像是一台具有 1bit 垂直分辨率的数字示波器。由于只有 1bit 分辨率,因此只能实现两种状态 —高或低的显示。定时分析仪只关心用户定义的电压阈值。如果采样时信号高于该阈值,就以高或 1 显示,低于阈值的采样信号用低或0显示。从这些采样点得到一张由 1 和 0 组成,代表输入波形 1bit 图的表格。这张表格保存在存储器中,并可用来重建输入波形的 1bit 图,如图1所示。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278254695.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278254695.jpg[/img][/url][/align][align=center][size=12px]图 1 定时分析仪的采样点[/size][/align]定时分析仪趋向于把各种信号拉成方波,这似乎会影响到它的可用性,但如果您需要同时观察几条甚至几百条信号线以验证信号间的定时关系,那么定时分析仪就是正确选择。应记住每个采样点都要使用一个存储器位置。分辨率越高(采样率越快),采集窗就越短。[b]跳变采样[/b]当我们捕获如图2 所示带有数据突发的输入线上的数据时,我们必须把采样率调到高分辨率(例如 4ns),以捕获开始处的快速脉冲。这意味着具有 4K(4096 样本)存储器的定时分析仪在 16.4ms 后将停止采集数据,使您不能捕获到第二个数据突发。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255647.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255647.jpg[/img][/url][/align][align=center][size=12px]图2 高分辨率采样[/size][/align]在通常的调试工作中,我们采样和保存了长时间没有活动的数据。它们使用了逻辑分析仪存储器,却不能提供更多的信息。如果我们知道跳变何时产生,是正跳变还是负跳变,就能够解决这一问题。这一信息是有效使用存储器的跳变定时基础。为实现跳变定时,我们可在定时分析仪和计数器的输入处使用“跳变探测器”。现在定时分析仪只保存跳变前的那些样本,以及两个跳变之间的时间间隔。采用这种方法,每一跳变就只需使用两个存储器位置,输入无变动时就完全不占用存储器位置。在我们的例子中,根据每一突发中存在多少脉冲数,现在能捕获到第二、第三、第四和第五个突发。并同时保持达到 4ns 的高定时分辨率(图3)。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255224.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255224.jpg[/img][/url][/align][align=center][size=12px]图3 使用跳变探测器采样[/size][/align][b]毛刺捕获[/b]毛刺脉冲因为会随机出现,造成灾难性的后果而声名狼藉。定时分析仪可采样输入数据,保持对采样间所产生任何跳变的跟踪,容易捕获毛刺。在分析仪中,把毛刺定义为相邻两次采样间穿越逻辑阈值一次以上的任何跳变。为了识别毛刺,我们要“教会”分析仪保持对所有多个异常跳变的跟踪,并将它们作为毛刺显示。毛刺显示是一种很有用的功能,能够提供毛刺触发和显示超前毛刺的数据,从而帮助我们确定毛刺产生的原因。这种能力也使得分析仪只捕获毛刺产生时所要的数据。回顾本节开始时提到的例子。我们有一个系统周期性地因毛刺出现在一条信号线上而崩溃。由于毛刺发生具有偶然性,您即使能保存整个时间上所有数据(假定有足够的存储能力),也很难在巨大的信息量中找到它。另一种方法是使用没有毛刺触发功能的分析仪,您必须坐在仪器前,按运行按钮,等待看到毛刺为止。[b]定时分析仪的触发[/b]逻辑分析仪连续捕获数据,并在找到跟踪点后停止采集。这样,逻辑分析仪就能显示出被称为负时间的跟踪点前的信息,以及跟踪点后的信息。[b]码型触发[/b]设置定时分析仪的跟踪特性与设置示波器的触发电平和斜率稍有一点区别。许多分析仪是在跨多条输入线的高和低码型上触发。为使某些用户更感方便,绝大多数分析仪的触发点不仅可用二进制( 1 和 0),而且可用十六进制、八进制、ASCII或十进制设置。在查看4、 8、16、24、32bit宽的总线时,使用十六进制的触发点会更加方便。设想如果用二进制设置24bit总线就会麻烦得多。[b]边沿触发[/b]在调节示波器的触发电平旋钮时,您知道是在设置电压比较器的电平,这个电平将告诉示波器在输入电压穿越该电平时触发。定时分析仪的边沿触发与其基本相似,但触发电平已预设置到逻辑阈值。大部分逻辑器件都与电平相关,这些器件的时钟和控制信号通常都对边沿敏感。边沿触发使您能与器件时钟同步地捕获数据。您能告诉分析仪在时钟边沿产生(上升或下降)时捕获数据,并获取移位寄存器的所有输出。当然在这种情况下,必须延迟跟踪点,以顾及通过移位寄存器的传播延迟。[b]状态分析仪基础[/b]如果您从未使用过状态分析仪,您可能认为这是一种极为复杂的仪器,需要花很多时间才能掌握使用方法。事实上,许多硬件设计师发现状态分析仪中有许多极有价值的工具。一个逻辑电路的“状态”是数据有效时对总线或信号线的采样样本。例如,取一个简单的“D”触发器。“D”输入端的数据直到时钟正沿到来时才有效。这样,触发器的状态就是正时钟沿产生时的状态。现在,假定我们有8个这样的触发器并联。所有8个触发器都连到同样的时钟信号上。当时钟线上产生正跳变时,所有8个触发器都要捕获各自“D”输入的数据。这样,每当时钟线上正跳变时就产生一个状态,这8条线类似于微处理器总线。如果我们把状态分析仪接到这8条线上,并告诉它在时钟线正跳变时收集数据,状态分析仪将照此执行。除非时钟跳到高电平,否则输入的任何活动将不被状态分析仪捕获。定时分析仪由内部时钟控制采样,因此它是对被测系统作异步采样。而状态分析仪从系统得到采样时钟,因此它是对系统同步采样。状态分析仪通常用列表方式显示数据,而定时分析仪用波形图显示数据。[b]理解时钟[/b]在定时分析仪中,采样是沿着单一内部时钟的方向进行,从而使事情非常简单。但微处理器系统中往往会有若干个“时钟”。假定某个时刻我们要在RAM中的一个特定地址上触发,并查看所保存的数据;再假定使用的微处理器是Zilog公司的 Z80。为了用状态分析仪从Z80捕获地址,我们要在MREQ线为低时进行捕获。而为了捕获数据,需要在WR线为低(写周期)或RD线为低(读周期)时让分析仪采样。某些微处理器可在同一条线上对数据和地址进行多路转换。分析仪必须能让时钟信息来自相同的信号线,而非来自不同的时钟线。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255919.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255919.jpg[/img][/url][/align][align=center][size=12px]图 4 RAM 定时波形图[/size][/align]在读写周期期间,Z80首先把一个地址放在地址总线上。接着设定MREQ线在该地址对存储器的读或写有效。最后根据现在是读还是写对RD或WR线断言。WR线只有在总线数据有效后才被设定。这样,定时分析仪就作为多路分配器在适当的时间捕获地址,然后在同一信号线上捕获产生的数据。[b]触发状态分析 [/b]像定时分析仪一样,状态分析仪也提供限定所要保存数据的功能。如果我们要寻找地址总线上由高低电平构成的特定码型,可告诉分析仪在找到该模式时开始保存,直到分析仪的存储器完全装满。这些信息可以用十六进制或二进制格式显示。但在解码至汇编码时,十六进制可能更为方便。在使用处理器时,应把这些特定的十六进制字符与处理器指令相比较。大多数分析仪制造商设计了称为反汇编器的软件包,这些软件包把十六进制代码翻译成易于阅读的汇编码。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255303.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255303.jpg[/img][/url][/align][align=center][size=12px]图 5 把十六进制码翻译成汇编码[/size][/align][b]序列级和选择性保存[/b]状态分析仪具有帮助触发和存储的“序列级”数据。序列级使您能比单一触发点更精确地限定要保存的数据。也就是说可使用更精确的数据窗,而不必存储不需要的信息。选择性的保存意味着可只保存较大整体中的一部分。例如,假定我们有一个计算给定数平方的汇编例程。如果该例程不能正确计算平方,我们就告诉状态分析仪捕获这一例程。具体做法是先让状态分析仪寻找该例程的起点。当它找到起始地址时,我们再告诉它寻找终止地址,并保存两者之间的所有信息。当发现例程结束时,我们告诉分析仪停止状态保存。[b]探测解决方案[/b]为进行调试,向数字系统施加的物理连接必须方便可靠,对被调试的目标系统只有最小的侵扰,这样才能使逻辑分析仪得到精确的数据。普通的探测解决方案是每条电缆有 16 个通道的无源探头。每个通道的两端用100kΩ并联8pF 端接。您可将这种无源探头与示波器探头的电气性能作一比较。无源探测系统除了更小的尺寸和更高的可靠性外,还能把探头端接在与目标系统的连接点上。这就避免了从大的有源探头接口夹到被测电路之间大量引线所产生的附加杂散电容。因此您的被测电路就只“看到”8pF的负载电容,而不再是前述探测系统的16pF。[align=center][url=http://www.elecfans.com/article/UploadPic/2008-11/200811278255595.jpg][img]http://www.elecfans.com/article/UploadPic/2008-11/200811278255595.jpg[/img][/url][/align][align=center][size=12px]图6 分析探头[/size][/align]把状态分析仪接到微处理器系统需要进行机械连接和时钟选择。某些微处理器可能需要外部电路对一些信号进行解码,才能得到用于状态分析仪的时钟。分析探头不仅能提供与目标系统快速、可靠和正确的机械连接,而且能提供必要的电气适配能力,如为正确捕获系统运行提供的时钟和多路分配器。[b]结语[/b]绝大多数逻辑分析仪都由定时分析仪和状态分析仪这两个主要部分组成。定时分析仪更适于处理多线的总线型结构或应用。它能够在信号线上的码型上,甚至在毛刺上触发。状态分析仪常被看成是一种软件工具,事实上它在硬件设定也很有用。由于它从被测系统得到时钟,因此捕获的数据也就是系统在时钟上的数据。逻辑分析仪为数字电路设计工程师提供了强大的设计工具。[table=349][tr][td][url=https://yqj.mumuxili.com/?from=YQSQ2-7/1]https://yqj.mumuxili.com/?from=YQSQ2-7/2[/url][/td][/tr][/table]

  • 【资料】正确选择和使用逻辑分析仪

    正确选择和使用逻辑分析仪一、逻辑分析仪的发展  自20世纪70 年代初研制成微处理器,出现4位和8位总线,传统示波器的双通道输入无法满足8位字节的观察。微处理器和存储器的测试需要不同于时域和频域仪器。数域测试仪器应运而生。HP公司推出状态分析仪和Biomation公司推出定时分析仪(两者最初很不相同)之后不久,用户开始接受这种数域测试仪器作为最终解决数字电路测试的手段,不久状态分析仪与定时分析仪合并成逻辑分析仪。  20世纪80 年代后期,逻辑分析仪变得更加复杂,当然使用起来也就更加困难。例如,引入多电平树形触发,以应付条件语句如IF、THEN、ELSE等复杂事件。这类组合触发必然更加灵活,同时对大多数用户来说就不是那样容易掌握了。  逻辑分析仪的探头日益显得重要。需用夹子夹住穿孔式元件上的16根引脚和双列直插式元件上的只有0.1″间隙的引脚时,就出现探头问题。今天的逻辑分析仪提供几百个工作在200MHz频率上的通道信号连接就是个现实问题。适配器、夹子和辅助爪钩等多种多样,但是最好的办法的是设计一种廉价的测试夹具,逻辑分析仪直接连接到夹具上,形成可靠和紧凑的接触。  今天的发展趋势  逻辑分析仪的基本取向近年来在计算机与仪器的不断融合中找到了解决的办法。Tektronix公司TLA600系列逻辑分析仪着重解决导向和发展能力,亦即仪器如何动作和如何构建有特色的结构。导向采用微软的Windows接口,它非常容易驱动。改进信号发现能力必然涉及到仪器结构的变动。在所有要处理的数据中着重处理与时间有关联的数据,不同类型的信息采用多窗口显示。例如,对于微处理器来说,最好能同时观察定时和状态以及反汇编源码,而且各窗口上的光标彼此跟踪相连。  关于触发,总是传统逻辑分析仪中的难题。TLA600系列逻辑分析仪为用户提供触发库,使复杂触发事件的设置简单化,保证你精力集中解决测试问题上,而不必花时间去调整逻辑分析仪的触发设置。该库中包含有许多易于掌握的触发设置,可以作为通常需要修改的触发起始点。需要特殊的触发能力只是问题的一部分。除了由错误事件直接触发外,用户还希望从过去的时段去观察信号,找出造成错误的根源和它前后的关系。精细的触发和深存储器可提高超前触发能力。  在PC机平台上使用Windows,除了为广大用户提供了许多熟知的好处之外,只要给定正确的软件和相关工具,即可通过互联网进行远程控制,从目标文件格式中提取源码和符号,支持微软公司的CMO/DCOM标准,而且处理器可运行各种控制操作。  二、逻辑分析仪的选择  如果数字电路出现故障,我们一般优先就考虑使用逻辑分析仪来检查数字电路的完整性,不难发现存在的故障;但是在其他情况下你是否考虑到使用逻辑分析仪呢?譬如说:第一点如何观察测试系统在执行我们事先编制好的程序时,是不是真正地在按照我们设计好的程序来执行呢?如果我们向系统写入的是(MOV A,B)而系统则是执行的(ADD A,B),那会造成什么样的后果?第二点:怎么样真正地监测软件系统的实际工作状态,而不是用DEBUG等方式进行设置断点后,查看预先设定的某些变量或内存中的数据是我们预先想得到的值。在这里我们有第三、第四等等很多问题有待解决。  通常我们将数字系统分成硬件部分和软件部分,在研发设计这些系统时,我们有很多事情要做,譬如硬件电路的初步设计、软件的方案制定和初步编制、硬件电路的调试、 软件的调试、以及最终的系统的定型等等工作,在这些工作中几乎每一步工作都要逻辑分析仪的帮助,但是鉴于每个单位的经济实力和人员状况不同,并且在很多系统的使用中都不是要把以上的每个部分都进行一 遍,这样我们就把逻辑分析仪的使用分成以下几个层次:  第一个层次:只要查看硬件系统的一些常见的故障,例如时钟信号和其他信号的波形、信号中是否存在严重影响系统的毛刺信号等故障;  第二个层次:要对硬件系统的各个信号的时序进行很好的分析,以便最好地利用系统资源,消除由定时分析能够分析出的一些故障;  第三个层次:要对硬件对软件的执行情况的分析,以确保写入的程序被硬件系统完整地执行;  第四个层次:需要实时地监测软件的执行情况,对软件进行实时地调试。  第五个层次:需要进行现有客户系统的软件和硬件系统性的解剖分析,达到我们对现有客户系统的软件和硬件系统全面透彻地了解和掌握的功能。  对以上的几个层次的要求,我们可以看出,他们并不都需要很高档的逻辑分析仪,对于第一层次的使用者,他们甚至用一台功能比较好的示波器就可以解决问题,针对以上的几个使用层次,在选择仪器时可以选用相应的仪器。实际上逻辑分析仪也有几个层次,他们有:  1、 普通2~4通道的数字存储器,例如TDS3000系列(加上TDS3TRG高级触发模块),利用它的一些高级触发功能(例如脉冲宽度触发、欠幅脉冲触发、各个通道之间的一定的与、或、与或、异或关系的触发)就可以找到我们希望看到的信号,发现并排除一些故障,况且示波器的功能还可以作为其他使用,在这里我们只不过用了一台示波器的附加功能,可以说这种方式是最节省的方式。  2、当示波器的通道数不够时,也可以选用一些带有简单的定时分析功能的多通道定时分析仪器,如早期的逻辑分析仪和现在市面上还有的混合信号示波器,如Agilent的546××D示波器。  3、一些功能比较简单,速度不是特别快的的计算机插卡 式,基于Windows、绝大部分功能都由软件来完成的虚拟仪器,这类产品在国内的很多厂家都有生产。  4、采样速率、触发功能、分析功能都很强大的不可扩展的固定式整机。例TLA600系列。  5、功能更强扩展性更好的模块化插卡式整机;对不同的用户,可以针对需要,选择不同档次的仪器。  逻辑分析仪的一些技术指标:  1、逻辑分析仪的通道数 :在需要逻辑分析仪的地方,要对一个系统进行全面地分析,就应当把所有应当观测的信号全部引入逻辑分析仪当中,这样逻辑分析仪的通道数至少应当是:被测系统的字长(数字总线数)+被测系统的控制总线数+时钟线数。这样对于一个16位机系统,就至少需要68个通道。现在几个厂家的主流产品的通道数多达340通道以上。例Tektronix等。  2、定时采样速率 :在定时采样分析时,要有足够的 定时分辨率,就应当足够高的定时分析采样速率,我们应当知道,并不是只有高速系统才需要高的采样速率(见下表)现在的主流产品的采样速率高达2Gs/S,在这个速率下,我们可以看到0.5ps时间上的细节。  以下是一些很常见的芯片的工作频率和建立/保持时间的列表,我们可以看出,即使它们的工作频率很低,但在时间分析(Timing)中要求的分辨率也很高。表一:典型的数字设备  3、状态分析速率:在状态分析时,逻辑分析仪采样基准时钟就用被测试对象的工作时钟(逻辑分析仪的外部时钟)这个时钟的最高速率就是逻辑分析仪的高状态分析速率。也就是说,该逻辑分析仪可以分析的系统最快的工作频率。现在的主流产品的定时分析速率在100MHz,最高可高达300MHz甚至更高。  4、逻辑分析仪的每通道的内存长度:逻辑分析仪的内存是用于存储它所采样的数据,以用于对比、分析、转换(譬如将其所捕捉到的信号转换成非二进制信号【汇编语言、C语言 、C++ 等】,等在选择内存长度时的基准是“大于我们即将观测的系统可以进行最大分割后的最大块的长度。  5、逻辑分析仪的探头:逻辑分析仪通过探头与被测器件连接,探头起着信号接口的作用,在保持信号完整性中占有重要位置。逻辑分析仪与数字示波器不同,虽然相对上下限值的幅度变化并不重要,但幅度失真一定会转换成定时误差。逻辑分析仪具有几十至几百通道的 探头其频率响应从几十至几百MHz,保证各路探头的相对延时最小和保持幅度的失真较低。这是表征逻辑分析仪探头性能的关键参数。Agilent公司的无源探头和Tektronix公司的有源探头最具代表性,属于逻辑分析仪的高档探头。  逻辑分析仪的强项在于能洞察许多信道中信号的定时关系。可惜的是,如果各个通道之间略有差别便会产生通道的定时偏差,在某些型号的 逻辑分析仪里,这种偏差能减小到最小,但是仍有残留值存在。通用逻辑分析仪,如Tektronix公司的TLA600型或Agilent公司的HP16600型,在所有通道中的时间偏差约为1ns。因而探头非常重要,详见本站“测试附件及连接探头”。  a)探头的阻性负载,也就是探头的接入系统中以后对系统电流的分流作用的大小,在数字系统中,系统的电流负载能力一般在几个KΩ以上,分流效应对系统的影响一般可以忽略,现在流行的几种长逻辑分析仪探头的阻抗一般在20~200KΩ之间。  b)探头的容性负载:容性负载就是探头接入系统时,探头的等效电容,这个值一般在1~30PF之间,在现在的高速系统中,容性负载对电路的影响远远大于阻性负载,如果这个值太大,将会直接影响整个系统中的信号“沿”的形状改变整个电路的性质,改变逻辑分析仪对系统观测的实时性,导致我们看到的并不是系统原有的特性。 c)探头的易用性:是指探头接入系统时的难易程度,随着芯片封装的密度越来越高,出现了BGA、QFP、TQFP、PLCC、SOP等各种各样的封装形式,IC的脚间距最小的已达到0.3mm以下,要很好的将信号引

  • 逻辑分析仪 (Logic Analyzer)

    逻辑分析仪 (Logic Analyzer) 1. 隔离独立界面的负载效应须具备: Isolated interface of Loading Effect - 高阻抗/ 低电容输入 - 互相隔离的电源界面 Isolated power interface - 互相隔离的接地电路设计 Isolated ground of circuits interface 2. 启动触发信号满足最小的Setup Time和Hold Time 3. 足够大的频宽 4. 越大的内存深度越能满足您未来的设计需求 (例如video streaming, PCI streaming 等) 频率产生器 (Clock Generator)1. 足够高的频脉输出足以应付将来的须要 (例如DDR, PCI-x, ARM & DSP, embedded system) 2. 快速的上升和下降时间 (Rising and Falling Time)3. 大的Vp-p 4. 低输出容值

逻辑信号分析仪相关的耗材

  • 双通道动态信号分析仪new
    双通道动态信号分析仪new
  • 安捷伦气相色谱仪7890逻辑板
    描述安捷伦货号安捷伦描述7890主板G3430-60151(G3430-61850)FP Analog And Power PCA7890逻辑板G3430-60101Logic board for OEMs that require old firmware, used with series 7890 gas chromatography systems, model 7890A7890电路板G3430-60050(G3430-61851)AC power circuit board, used with series 7890 gas chromatography systemsFID逻辑板G3431-60020 (G3431-61820)FID signal electronics board, used with series 7820 and 7890 gas chromatography systems
  • G3430-60101安捷伦气相色谱仪7890逻辑板
    描述安捷伦货号安捷伦描述7890主板G3430-60151(G3430-61850)FP Analog And Power PCA7890逻辑板G3430-60101Logic board for OEMs that require old firmware, used with series 7890 gas chromatography systems, model 7890A7890电路板G3430-60050(G3430-61851)AC power circuit board, used with series 7890 gas chromatography systemsFID逻辑板G3431-60020 (G3431-61820)FID signal electronics board, used with series 7820 and 7890 gas chromatography systems
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制