炉内气体分析仪

仪器信息网炉内气体分析仪专题为您提供2024年最新炉内气体分析仪价格报价、厂家品牌的相关信息, 包括炉内气体分析仪参数、型号等,不管是国产,还是进口品牌的炉内气体分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合炉内气体分析仪相关的耗材配件、试剂标物,还有炉内气体分析仪相关的最新资讯、资料,以及炉内气体分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

炉内气体分析仪相关的厂商

  • 滕州市鲁创分析仪器有限公司,是一家专业从事气相色谱仪、液相色谱仪、气体发生器、色谱工作站、实验室分析仪器及相关产品的研制、生产、销售于一体的高新技术企业。  公司拥有专业的色谱分析专家、专业的生产管理人员、试验人员以及完备独立的分析实验室,致力于色谱分析方法的创建、应用与推广,为用户提供色谱检测系统的整体解决方案。根据客户的检测对象和分析要求的不同,可以选配FID、TCD、ECD、FPD、NPD等五种检测器和不锈钢、玻璃填充柱以及石英毛细管柱。  现生产的GC-9860、GC-9870、GC-9880、GC-9890系列气相色谱仪;LC-3000、LC-3000A系列液相色谱仪,本着“稳定高于一切”的设计思路,已成为国内最具典型的色谱仪之一,已被评为"中国色谱仪器十佳品牌"。产品销往全国二十多个省市、自治区及直辖市,并实现了部分出口。广泛应用于卫生防疫、食品卫生、环境检测、质量监督、石油化工、精细化工、农药、制药、商检、电力、白酒、矿山等系统以及科研机关和大专院等。公司拥有一套完善合理的售后服务体系、一支专业化的服务队伍,本着快速、高效和精益求精的精神,从而更好的为广大色谱工作者提供更完美的服务。山东滕州鲁创分析仪器有限公司,愿与各界朋友共创美好明天,努力做到最好!
    留言咨询
  • 企业的竞争就是能否创造优势产品和优质服务的竞争,在色谱分析领域,优势源于产品的品质、技术创新、售前、售后的延伸服务,山东鲁创就是杰出的代表! 滕州市鲁创分析仪器有限公司,是一家专业从事气相色谱仪、燃气分析色谱仪、液相色谱仪、离子色谱仪、气体发生器、色谱工作站、顶空进样器、氮吹仪、纯水机、实验室分析仪器及相关产品的研制、生产、销售于一体的高新技术企业,并通过ISO9001:2008质量管理体系认证。 公司拥有专业的气相色谱仪、燃气分析色谱仪、液相色谱仪及离子色谱仪专业的生产管理人员、试验人员以及完备独立的色谱分析实验室,致力于色谱分析方法的创建、应用与推广,为用户提供色谱检测系统的整体解决方案。根据客户的检测对象和分析要求的不同,可以选配FID、TCD、ECD、FPD、NPD等五种检测器和不锈钢、玻璃填充柱以及石英毛细管柱。 现生产的GC-9860、GC-9870、GC-9880、GC-9890系列气相色谱仪;LC-3000、LC-3000A系列液相色谱仪,本着“稳定高于一切”的设计思路,已成为国内最具典型的色谱仪之一,已被评为"中国色谱仪器十佳品牌"。产品销往全国二十多个省市、自治区及直辖市,并实现了部分出口。广泛应用于气体分析、印刷包装、环境检测、白酒饮料、煤矿油田、卫生防疫、食品卫生、质量监督、石油化工、精细化工、农药、制药、商检等系统以及科研机关和大专院等。公司拥有一套完善合理的售后服务体系、一支专业化的服务队伍,本着快速、高效和精益求精的精神,从而更好的为广大色谱工作者提供更完美的服务。山东滕州市鲁创分析仪器有限公司,愿与各界朋友共创美好明天,努力做到最好!
    留言咨询
  • 济南隆安电子有限公司是个人安全防护用品(PPE)、电工仪表及气体检测报警仪的专业供应商。我们向客户提供种类繁多的产品,帮助他们的设施正常运作并降低客户的采购本。 我们一直注重于服务,自创立以来,我们的员工充分理解客户的需求并竭尽全力为之服务。可信赖的客户服务代表和专业销售人员,将为客户的采购工作提供全面解决方案。 公司将继续发扬“创新图强 严细求真 高效简明 尊诚重信”的企业精神,进一步加强与广大客户、供应商、合作伙伴及社会各界的合作,为共同开创更加美好的明天携手前进!我们同时提供以下进口的产品:
    留言咨询

炉内气体分析仪相关的仪器

  • MATRIX-MG系列自动化高性能气体分析仪MATRIX-MG系列包括三款高性能FT-IR气体分析仪,它们均置于结实耐用的紧凑型机箱内。它们专为实现对气体浓度的自动化、高精度、实时监测而设计,适用于许多不同的应用领域。主要特点*能实现对气体组分的快速、连续、全自动的识别和定量*具备出色的灵敏度,可检测从ppb级直到百分之百等各种浓度*无需对目标气体进行标定*便于操作和维护*大气中气体和干扰物的补偿*嵌入坚固耐用的紧凑型机箱*基于RockSolid™ 干涉仪,确保永久准直的光学器件并对振动不敏感*温度可控的气体池(最高191°C)*气体池内部的内置传感器感知可变气体压力和温度*测量结果输出到工业通信接口 全自动识别和定量目标气体在气体池中进行测量,实现基于FT-IR光谱的高灵敏度化合物分析。根据所获得的光谱,由综合软件包内的非线性拟合程序自动得到气体浓度,无需气体标定。分析程序会对干扰气体的影响以及不断变化的气体温度和压力予以考虑。高动态范围MATRIX-MG系列配备具有0.1m(MG01)、2m(MG2)或5m(MG5)光程的气体池,能检测和定量浓度从十亿分之几(ppb)一直到百分之百的气体组分。快速和连续定量MATRIX-MG光谱仪在高光谱分辨率0.5 cm-1时可以每秒测量多达5个光谱,在4cm-1光谱分辨率时每秒测量多达30个光谱。创新型气体池的设计能实现快速换气,以便测量动态过程。借助标准接头,我们能实现气体分析仪与外部管道的轻松连接。MATRIX-MG系列非常适于实现自动、快速、精确和连续定量,甚至在气体组份快速波动的情况下也不例外。由于可检测大量的气体组分(适用于超过400种化合物),MATRIX-MG系列可以在非常广泛的过程应用领域中使用。借助于各种配件,我们可以在很宽的压力和温度范围内测量气体。MATRIX-MG5配备久经考验的RockSolidTM干涉仪的工业级MATRIX IR Cube,是可靠的MATRIX-MG系列气体分析仪的基础。MATRIX-MG5全新设计的5m多次反射气体池,能实现很高的光通量(高灵敏度)并能优化气流,完成快速换气。由于具备镀镍内表面和镀金反射镜,它甚至能测量腐蚀性气体。内部压力和温度传感器能实现对气体温度和压力的在线、现场测量,获得高精度的定量结果。结实耐用的紧凑设计使其能轻松集成于许多工业应用、科研应用,甚至是移动应用。OPUS GA综合软件包OPUS GA(OPUS气体分析)可实时自动评估测得的光谱,以便识别和定量气体化合物。定量基于非线性拟合算法,使相应的库谱与测量相拟合。在这个拟合过程中,还包括对干扰气体的吸收的考虑。可以识别和定量超过400种化合物,无需标定测量。此外,个别参比光谱可由用户进行测量。为进行详细分析,可在OPUS GA软件内对测得的光谱和相应拟合做进一步研究。软件包OPUS GA用于实现对气体化合物的自动化识别和定量。测量(蓝色)和拟合(橙色),对甲烷的量进行定量。另外,还要对干扰水蒸气的贡献予以考虑。 *对目标气体的自动识别和定量*干扰化合物的自动补偿 *无需对目标气体进行标定*适用于400多种化合物*可将测量值传输至工业接口应用由于可检测大量的气体组分(适用于超过400种化合物,而不需要进行标定测量),MATRIX-MG可以在非常广泛的应用领域使用。其中,比如:*工业应用,生产线中的过程监控*监测烟囱的废气*机动车尾气排放分析*沼气分析*测定气体杂质*科学研究选项为满足各种应用的具体要求,我们为MATRIX-MG系列提供了多个不同的选项:快速换气选项该选项有气体池和外部管道组成,能实现非常快的换气过程,以便分析动态过程,比如,汽车发动机废气。高分辨率选项该选项支持以优于0.5 cm-1的分辨率进行测量(标准分辨率:优于1 cm-1),即使有严重重叠的红外信号,也能实现对气体混合物的识别和定量。高压选项高压选项支持在高达20巴(20°C,标准:2巴)的压力下测量气体,甚至能进一步降低检测极限。它特别适合于检测非常低的气体浓度,比如,气体产品中的杂质。 布鲁克提供多种附件,能简化集成于专门应用和过程分析,比如,泵、加热过滤器、采样探头和传输线等。 为防止用户接触热表面,MATRIX-MG气体分析仪随附围绕气体池的防护机箱。为实现最低检测限和微量气体分析,可根据要求提供26 m多次反射气体池。 技术规格 MG01MG2MG5气体池内的光程长0.1 m2 m5 m气体池最高温度191° C191° C191° C外形尺寸~ 447 x 320 x 240 mm3无防护机箱~ 640 x 450 x 258 mm3防护机箱~640 x 450 x 258 mm3防护机箱质量~ 25 kg~ 27 kg~ 29 kg将测量值传输至可用的工业接口(比如,4-20 mA analog、PROFIBUS、Modbus) 性能* 光谱范围:650-5000cm-1(可选其它的光谱范围)* 检测器:液氮冷却MCT,可选其它的检测器,比如DTGS* 干涉仪:Rocksolid™ ,永久准直* 光谱速率:最高30张光谱/秒,4 cm-1分辨率时 最高5张光谱/秒,0.5 cm-1分辨率时* 光谱分辨率:优于1cm-1(切趾)(选项:优于0.5 cm-1)* 波数精度:优于0.05 cm-1 @ 2000 cm-1* 透过率精度:优于0.1% 专业知识与服务的完美结合布鲁克光谱仪器公司面向不同行业和应用,专业提供傅立叶变换红外、近红外和拉曼光谱仪的领先制造商和全球供应商。多年来,在光学精度和效率、人体工程学和易操作性、咨询和服务等方面,我们都在市场上树立了全新标准。来自于知名公司的最高质量:始终超越您的预期我们永不满足于通常的市场标准。这就是我们自己的研发部门的用武之地:这里,新的想法会变成创新产品——实现更高的精度、良好的用户舒适度和无与伦比的可靠性。对我们而言,显而易见的是,这些最高要求也适用于我们的生产过程。高品质的材料、细致的做工,同时,如有必要,还有特别开发的生产工艺和测试程序,能确保高品质,而高品质是所有的布鲁克光谱仪所共有的。无论我们设计哪些新产品,我们全都会秉承最高要求。 在全球各地提供现场服务:我们能随时为您提供帮助布鲁克的竞争力在于能满足客户需求——从最初的联系开始。我们的应用专家都是科研人员和工程师,他们了解红外光谱学和光谱仪以及客户应用。依托遍布欧洲、北美和南美、亚洲及大洋洲的服务中心,我们能提供高效的全球技术支持保障。其中包括关于您的应用的专业指导,以及合格、快捷的售后服务,并且,如有需要,我们还能提供远程诊断服务。我们有充足的时间提供个人咨询和客户服务,能保证为客户带来可持续的、高效解决方案。
    留言咨询
  • 多组分气体分析仪 痕量气体分析仪飞瑞特T690型TDLAS痕量气体分析仪采用增强型可调谐半导体激光吸收光谱(TDLAS)技术,检测固定污染源和大气环境中的NH3/CH4//HF /HCI/CO2/H20等物质。 多组分气体分析仪 痕量气体分析仪飞瑞特 仪器特点1.多组分气体分析仪 痕量气体分析仪飞瑞特 高度订制检测模式订制:根据具体的应用场景可以分为壁挂式、19英寸机架式以及便携式三种模式;仪器的检测成分订制:用户可以自由选择具体的检测成分;量程订制:具体检测成分的量程可以实现从ppb级别到百分比级别的订制。 2.多组分气体分析仪 痕量气体分析仪飞瑞特 高精度和高灵敏度 仪器采用高分辨率的“指纹光谱”进行气体分析,能够提供高精度的测量结果。其高灵敏度使得仪器可以检测到极低浓度的气体组分,甚至在ppb(十亿分之一)或更低的水平上进行精确测量。 “指纹光谱”是指气体分子在特定波长范围内的吸收光谱特征。每种气体都具有独特的吸收线和波长,就像每个人都有独特的指纹一样,因此被称为“指纹光谱”。这种“指纹光谱”技术具有重要意义:首先,不同气体分子在吸收光谱中的吸收线位置和强度是独特的。通过选择合适的激光波长与目标气体的吸收线匹配,仪器能够实现高灵敏度和选择性的气体测量。通过分析气体在特定波长下的吸收光谱,可以准确识别和区分不同的气体。这种特异性识别使得仪器在复杂气体混合物的分析中非常有优势,它可以精确测量低浓度的气体,并排除其他干扰物质的影响,确保数据的准确性和可靠性。 3.多组分气体分析仪 痕量气体分析仪飞瑞特 实时监测和快速响应 TDLAS痕量气体分析仪具有快速响应时间,能够实时监测气体浓度的变化。这对于需要及时了解气体浓度波动的应用场景非常重要,例如工业过程控制、安全监测和环境保护等领域。 4.多组分气体分析仪 痕量气体分析仪飞瑞特 不需要频繁校准 TDLAS痕量气体分析仪内置参考光路信号,这些参考信号可以用来实时监测激光光源的稳定性和光路的漂移情况。通过与参考信号进行比对,可以实现实时的校准和补偿,消除光源波动和光路漂移对测量结果的影响。另外,仪器采用了先进的半导体激光器和探测器,这些元件具有长期的稳定性和可靠性,可以保持仪器的准确性和一致性,减少了校准的需求。 多组分气体分析仪 痕量气体分析仪飞瑞特 除TDLAS痕量气体分析仪外,天津飞瑞特科技有限公司还供应各种原理的气体分析检测仪器,可以检测几乎所有的气体种类,检测量程可以从ppb级别到百分比级别。您只需要将被检测的气体成分名称和大致含量告知我们即可,我们将根据您的具体要求以及工况制定出最适合您的气体检测解决方案。如果您对我们的仪器感兴趣或有任何疑问,请随时联系我们,我们将竭诚为您提供支持和咨询。
    留言咨询
  • 仪器简介:红外线气体分析仪作为一种快速、准确的气体分析技术,特别在连续污染物监测系统(CEMS)、机动车尾气检测、垃圾焚烧及填埋、瓦斯气体检测及工业气体检测应用中十分普遍。主要产品包括CO2气体分析仪、CO气体分析仪及CH4气体分析仪技术参数:Guardian Plus系列可检测气体: CO2:0-3000ppm到0-100%多浓度范围可选 CH4:0-5%到0-100%多浓度范围可选 Guardian SP系列可检测气体: CO2: 0-1000ppm, 0-5000ppm CO: 0-3%到0-100%多个浓度范围可选 N2O: 0-1000ppm Guardian FR系列可检测气体: 制冷剂: 0-1000ppm MYCO2系列可检测气体: CO2: 0-1000ppm, 0-3000ppm,0-5000ppm主要特点:Guardian Plus系列应用领域:瓦斯气体检测、沼气/垃圾填埋气发电、食品加工等。 Guardian SP系列应用领域:有毒气体检测、微量CO2气体检测、水果储藏、泄漏检测等。 Guardian FR系列应用领域:制冷剂(氟利昂)检测。 MYCO2系列 提供带或不带4位数字显示的LCD屏; 方便的安装在墙上。
    留言咨询

炉内气体分析仪相关的资讯

  • 布鲁克推出OMEGA5 FT-IR气体分析仪
    p style="text-align: justify text-indent: 2em "日前,布鲁克宣布推出基于OMEGA 5傅立叶变换红外(FT-IR)的新型气体分析仪。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202004/uepic/ae58408b-baf4-49ee-a555-e1cbf16c26da.jpg" title="OMEGA 5 - Versatile FT-IR based Gas Analyzer.jpg" alt="OMEGA 5 - Versatile FT-IR based Gas Analyzer.jpg"//pp style="text-align: center "strongOMEGA 5:基于FT-IR的多功能气体分析仪/strong/pp style="text-align: justify text-indent: 2em "OMEGA 5可在复杂的混合气体中自动、高精度、实时地监测气体浓度,适应多种应用场景,例如生产线中的过程监控、催化过程的研究、以及气体杂质的确定和科学研究等。/pp style="text-align: justify text-indent: 2em "OMEGA 5是19英寸机架安装式箱式气体分析仪,配备了5m光程长度的多反射气室。该气室可加热到191℃,并在气体分析软件OPUS GA定量过程中自动显示目标气体的压力和温度。OMEGA 5的光学元件是密封的和可吹扫的,这可以使大气干扰化合物(例如水和二氧化碳)的浓度不断降低。 使用DryPathTM选件,可将这些大气干扰化合物保持在最低水平,而无需外部吹扫气体。/pp style="text-align: justify text-indent: 2em "OMEGA 5配备了热电冷却检测器,即使在ppb范围内也无需液氮即可测量浓度。它可以优于1 cmsup-1/sup的光谱分辨率进行测量,从而可以定量分析大多数气体混合物中具有高度重叠红外信号的化合物。独立的综合软件包OPUS GA(OPUS气体分析)可建立易于使用的图形用户界面来控制OMEGA 5。/pp style="text-align: justify text-indent: 2em "布鲁克气体拉曼和痕量检测业务部副总裁Armin Gembus表示:“我们完全相信,OMEGA 5的出色光谱性能和独特功能与完善的气体分析软件OPUS GA相结合,将为我们的客户提供终极技术解决方案,实现全自动定量复杂气体化合物,而无需任何专业知识。”/ppbr//p
  • UoW FTIR 多要素温室气体分析仪引导温室气体在线测量技术最前沿
    温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。 UoW FTIR 多要素温室气体气体分析仪由澳大利亚Wollongong 大学研发,由ECOTECH 合作生产,并提供全球范围内的分销及符合ISO9001 标准的售后服务。UoW FTIR 多要素温室气体气体分析仪应用多光程&mdash &mdash 傅里叶红外变换(FTIR)光谱测量解析技术和高性能红外检测元器件,结合了完善的控制软件系统,能够全自动地运行,在线精确连续测量环境大气(或其他种类的混合气体)中多种温室气体成分的浓度及其同位素丰度,运行成本低,适于长期连续观测。也可以根据用户需求,改变地相应的配置,测量其他种类的痕量气体。 自第一台Uow FTIR 多要素温室气体气体分析仪投入现场观测应用以来,10 余年间,在全球已有多个用户将本仪器用于环境大气和本底地区大气的温室气体观测,并开发了温室气体以外的测量功能。这些用户包括:澳大利亚的Wollongong 大学、Melbourne 大学、公共财富科学与工业研究组织(CSIRO)、科学与技术组织(ANSTO),新西兰的国家水和大气研究所(NIWA),德国的Heidelberg大学、Bremen 大学、Max Planck 研究所,韩国的国家标准研究所、中国气象局(CMA)等。 下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 仪器特点@ 同时在线测量多种温室气体的浓度和同位素丰度,应用方式广泛、多样 1 同时测定CO2、CO、CH4、N2O 的大气浓度,以及CO2 中&delta 13C、水汽中&delta D 和&delta 18O 的丰度。2 可以一路或多路连续进样,测量多种温室气体浓度及同位素丰度;3 可在测量塔不同高度采集样品,进行温室气体(包括水汽和CO2 的同位素)的垂直廓线测量;4 可车载连续监测;5􀁺 连接静态箱进行土壤中温室气体的通量测量;6􀁺 在实验室中批量测量采样瓶或采样袋中的空气样品;7􀁺 标准传递测量:在实验室中,通过测量将高等级标准气的量值关系传递给较低等级的标准气体。8 其他气体成分的测量9􀁺 在中红外谱段有已知吸收光谱的任何气体都可以用本仪器定量测量,如:NH3、碳氟化合物、HF 和SiF4 等。10 根据气体物种不同,最低检测限为1-20ppbv。@ 全自动运行,可遥控,维护成本低、消耗量少1 五合一测量(一台仪器同时测量5 个物种/要素),综合运行成本低2􀁺 日常观测只需要参照气(洁净空气)每天一次检测,无需高等级标准气;3􀁺 无需液氮或深冷除湿;4􀁺 随机携带采样气体干燥器和多进样口5􀁺 全自动运行,并可通过网络遥控运行UoW FTIR 多要素温室气体气体分析仪 中文样本下载链接:http://www.instrument.com.cn/netshow/SH101597/C131047.htm http://www.instrument.com.cn/netshow/SH101597/C131047.htm UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。
  • 红外气体分析仪技术之焦炉煤气脱硫为什么要选择负压脱硫?
    国内外对焦炉煤气的脱硫工艺分为正压脱硫和负压脱硫二种。某公司焦炉煤气净化一开始采用HPF正压脱硫工艺,但脱硫效率低,且正压脱硫需将煤气冷却,送入脱硫塔进行脱硫、脱氰,经过脱硫后,煤气进入硫铵单元,又需对煤气进行预热,煤气经过冷却、预热存在较大的能源浪费,不利于节能降耗生产,对此该公司将正压脱硫工艺改为负压脱硫工艺,采用红外气体分析仪(防爆型)Gasboard-3500对脱硫效果进行监测,项目运行3年来,脱硫效率提高,节能效果显著,具有良好的经济效益和环保效益。 一、正、负压脱硫工艺对比1、正压脱硫工艺 从鼓风机来的约55~60℃的煤气,先进入预冷塔,用循环水冷却至30℃左右,然后进入脱硫塔。预冷塔用冷却水自成循环系统,从塔底排出的热水经循环泵送往冷却器,用循环冷却水换热后进入预冷塔顶部喷洒用于冷却煤气,预冷循环水定期进行排污,送往机械化澄清槽,同时往循环系统中加入剩余氨水予以补充。 从预冷塔来的煤气进入脱硫塔底部与塔顶喷淋的脱硫液逆向接触,脱除H2S、HCN后由塔顶溢出去往硫铵单元。 从脱硫塔底排出的脱硫液经液封槽进入反应槽,再由脱硫液循环泵送出,一部分经过冷却器冷却后与另一部分未冷却液体混合后经预混喷嘴送入再生塔底部,同时在再生塔底部鼓入压缩空气,使脱硫液在塔内得以再生,再生后的脱硫液于塔上部经液位调节器流至脱硫塔循环喷洒使用,上浮于再生塔顶部扩大部分的硫泡沫利用液位差自流入硫泡沫槽,产生的硫泡沫用泵送至离心机离心分离,滤液返回反应槽,硫膏装袋后外销。 脱硫所用成品氨水由蒸氨每班送至脱硫反应槽加入脱硫液循环系统。 2、负压脱硫工艺 电捕来的约25℃煤气进入填料脱硫塔底部,与塔顶喷洒下来的再生溶液逆向接触,吸收煤气中的H2S和HCN(同时吸收煤气中的NH3,以补充脱硫液中的碱源)。脱硫后煤气进入鼓风机单元。脱硫塔底吸收了H2S、HCN的循环液,经脱硫液泵进入再生塔底预混喷嘴(脱硫液温度高时,部分进入板框式换热器进行冷却),与压缩空气剧烈混合,形成微小气泡后进入再生塔底部,沿再生塔上升过程中,在催化剂作用下氧化再生。再生后的脱硫液于再生塔上部经液位调节器进入U型管后,进入脱硫塔顶分布器,循环喷淋煤气。 上浮于再生塔顶部扩大部分的硫磺泡沫利用液位差自流入硫泡沫槽,产生的硫泡沫用泵送至板框式压滤机,滤液进入放空槽后,由放空槽自吸泵送至脱硫塔底继续循环使用,硫膏装袋后外销。脱硫所用成品氨水由蒸氨每班送至脱硫塔底,加入脱硫液循环系统。 3、正、负压脱硫运行指标对比 在同等煤气发生量情况下,采用红外气体分析仪(防爆型)Gasboard-3500对正负压脱硫工艺的脱硫效果进行对比监测,再综合脱硫工艺各方面运行参数,可得出正压脱硫与负压脱硫运行指标如下。 由上表可知,负压脱硫较正压脱硫,脱硫塔入口煤气温度降低了6℃,脱硫液温度降低了5.5℃,脱硫液温度的降低,有利于挥发氨(游离氨)浓度的提高,挥发氨浓度提高了5.2g/L;副盐浓度由300g/L以上降低至250g/L以下,降低了52.8g/L,副盐浓度的降低有利于脱硫效率的提高,脱硫效率由86.3%提高至99.0%,提高了12.7%。 二、正、负脱硫工艺特点对比1、 温度变化 正压脱硫位于鼓风机后,进入脱硫工段的煤气温度约55~60℃,而脱硫反应适宜温度为25~35℃左右,脱硫工段后为硫铵工段,而硫铵工段适宜吸收反应温度为50~55℃,因此煤气经正压脱硫进入硫铵工段需对煤气现冷却再加热,存在较大的能源浪费。 负压脱硫位于电捕后,鼓风机前,进入脱硫工段的煤气约25℃,满足脱硫吸收、再生要求,而经过风机后的煤气直接进入硫铵工段,避免了对煤气冷却和预热,温度变化梯度更加合理,节约了冷能和热能,降低了系统能耗。 2、游离氨浓度 HPF法脱硫是以氨为碱源的湿法氧化脱硫,吸收过程为化学反应,即通过吸收煤气中的氨(或外加氨水),增加氨的浓度提高对硫化氢、氰化氢等物质吸收效率,脱硫液中游离氨的浓度越高越有利于脱硫反应。 正压脱硫经过预冷后煤气温度一般在30℃左右,负压脱硫煤气温度为25℃左右,其脱硫液温度较正压降低5℃左右,脱硫液温度低有利于氨的吸收、溶解,同时避免了正压条件下预冷喷洒液的直接接触吸收煤气中的氨。因此,负压脱硫工艺有效提高了游离氨(挥发氨)浓度,游离氨浓度由正压脱硫的4~6g/L提高至负压脱硫的10~12g/L,达到较高的吸收效率,进而提高了脱硫效率。 3、设备投资 负压脱硫与正压脱硫设备上相比,脱硫工段不再用预冷塔及其配套的循环喷洒泵、换热器等设备,硫铵工段不再用预热器,节约大量设备投资,占地面积减少近80m2。 负压脱硫根据工艺特点,不用反应槽,节省两个约150m3的反应槽,占地面积减少约120m2。 4、环保效益 负压脱硫再生尾气回收至煤气系统内,减轻对大气污染的同时,尾气中的氧气、氨气等有效组分进入脱硫吸收塔内,参与脱硫吸收、解离反应,进一步增强了脱硫效率。 三、负压脱硫经济经济效益 负压脱硫较正压脱硫减少预冷塔、预冷喷洒泵、预冷换热器、反应槽等设备;减少煤气冷却消耗循环冷却水量150m3/h;节省硫铵预热器蒸汽量1t/h(冬季)。因此负压脱硫较正压脱硫节省成本为: 1)降低循环消耗成本:节约循环水量为150m3/h,按0.5元/m3、年运行360天计,则年节约循环冷却水成本为150×24×360×0.5=64.8万元。2)降低蒸汽消耗:节约蒸汽量为1t/h,蒸汽按150元/t、冬季按120天计,则年节约蒸汽消耗成本为1×24×120×150=43.2万元。 3)降低设备投资成本:减少预冷塔、循环泵、换热器、反应槽等设备及工程投资费用约500万元。按设备折旧费用计,年降低投资费用50万元。 则年降低成本为:64.8+43.2+50=158万元。另外,脱硫效率的提高,降低了脱硫后煤气中硫化氢含量,进一步降低燃烧时二氧化硫排放量,环保效益显著。 四、结论 1、负压脱硫较正压脱硫减少预冷系统、反应槽等设备,投资费用低,占地面积小,操作简便。 2、负压脱硫较正压脱硫较好地利用了煤气温度变化梯度,避免煤气经过冷却再加热,降低了循环冷却水及蒸汽消耗成本,经济效益显著。 3、负压脱硫入口煤气温度、脱硫液温度较正压脱硫降低约5℃,挥发氨浓度提高至10g/L以上,提高了对硫化氢的吸收,进而提高了脱硫效率。 4、负压脱硫再生尾气全部并入煤气负压系统,实现了脱硫尾气“零”排放,改善了工作环境,降低了大气污染。 5、负压脱硫较正压脱硫效率显著提高,降低了煤气中硫化氢含量,进而减少燃烧时二氧化硫的排放量,具有显著的环保效益。(来源:微信公众号@工业过程气体监测技术)

炉内气体分析仪相关的方案

  • 布鲁克FTIR气体分析仪在特气分析中最新技术—谱形拟合算法的定性定量
    近几年,随着国内特气行业市场需求的不断增长,各气体厂家对产品的质量控制方法和效率有了进一步的要求,气相分析手段已经广泛应用于各气体生产与质控过程。与此同时,相对于工业化产品生产速度,气相色谱等方式分析效率相对较低、适用性相对较窄的缺点也逐渐体现。各生产商开始寻求更高效、全面的气体分析方法。其中,傅里叶变换红外气体分析法具有效率高,种类全,无耗材等诸多优势,FTIR气体分析仪也成为特气行业炙手可热的分析仪器。
  • 顶空气体分析仪:解密环境监测的利器
    随着工业化进程的加速,环境污染问题日益严重,对大气质量的监测与分析变得尤为重要。而顶空气体分析仪作为一种先进的环境监测设备,正逐渐受到各行业的重视和广泛应用。本文将详细介绍顶空气体分析仪的原理、功能和应用范围,帮助读者全面了解这一利于环保和健康的科技产品。顶空气体分析仪,顾名思义,是用来分析大气中的空气成分及其浓度的仪器。它通过采集环境空气样品,并利用一系列先进的传感器和测量技术,可以准确地测量和分析大气中的各种气体成分,如一氧化碳、二氧化硫、氮氧化物等。这些气体成分的浓度数据对于环境污染的监测和控制起着至关重要的作用。
  • 北京英格海德:利用RGA残余气体分析仪进行真空过程气体表征
    利用Hiden RGA残余气体分析仪可以进行各种真空状态下的残余气体分析和过程、工艺监测。可以实时在线得到实验过程的真实情况,即使反馈处理过程中出现的问题。在等离子体工艺过程中,更是可以有效地表征等离子体产生的过程。

炉内气体分析仪相关的资料

炉内气体分析仪相关的论坛

  • 分析实验室气体分析仪与气体检测仪不同

    1.仪器结构的不同 气体检测仪结构较简单,只包括探头(传感器)及传感器信号转换电路部分。而气体分析仪不仅在内部装有探头(传感器)而且还有一整套气路系统,即将样气引入到仪器内部,并且再引出仪器放空或回收的全套气路系统。 2.检测方式不同 气体检测报警仪利用探头直接暴露在被测的空气中或样气环境中进行检测。而气体分析仪是将被测气体(样气)通过特殊方式引入到仪器内部进行测定,然后再引出仪器外放空。 3.对测定条件的控制方式不同 气体检测报警仪不设有样气工艺技术条件的调整及控制部分,同时它也完全不考虑样气存在的环境条件,直接进行检测。 气体分析仪内部所配套的一整套气路系统及外部配套设备组成了一套较完整的化工工艺流程,气体分析仪内部对样气的工作条件进行全方位调整控制,以达到传感器正常稳定工作的目的,这是气体分析仪能够获得准确测定数据的保证。 4.完成测定全过程的操作方法不同 气体检测报警仪在应用时,只需将仪器放置于被测气氛内,仪器即可显示数值。而气体分析仪必须将样气仔细地引入到仪器内部,再进行工艺技术条件的严格调整,如温度、压力、流量等,只有当操作人员将仪器调整直到实现一个稳定的化工过程后,才能获得准确的测定数据。而在此以前所得到的数据是不正确的,必须弃之不用。 5.在检测过程中,对排除干扰因素考虑的方式不同 气体检测报警仪是将传感器直接置于大环境气氛中测定的,仪器结构设计及在实际使用检测过程中并不考虑大环境气氛中有无干扰测定的因素,并且不具备排除各种干扰因素的设计能力。而气体分析仪在设计选型及使用检测时,必须充分考虑各种影响测定的内部及外部因素,并且,要认真逐一排除,只有这样才能确保检测数据的准确性和真实性。否则,不适当地忽略了某一影响因素,对检测来说都是不被允许的和不能被接受的。 6.数据的准确度不同 气体检测仪只能提供定性分析结果和较为粗略的定量分析数据,这种仪器所显示的数据经不起推敲,不能进行误差分析(因只有分析数据偏离真值很小时才能谈到“误差”),因此,根本不能作为准确的分析数据确定(决定)重要工艺改进调整的措施。而气体分析仪则是一种严格的计量器具,在进行定量分析时,能够提供出十分准确的数据C这种数据可以作为气体生产及安全生产改进和提高的依据,用它来指导及进行生产管理,质量管理及企业管理。甚至于,这种数据可以作为司法刑侦工作的重要依据,利用它来打官司,确定是非界限。

  • 【分享】气体分析仪和气体检测报警仪的不同

    气体分析仪主要是分析气体的种类,气体检测报警仪是检测仪器的种类,遇到有毒气体可以发出警报。下面主要从仪器的结构、检测方式和数据的准确度来区分两种仪器的不同之处。仪器结构不同:不同气体检测报警仪结构较简单,只包括传感器及传感器信号转换电路部分,而气体分析仪不仅在内部装有传感器,而且还有一整套气路系统,即将样气引入到仪器内部,并且再引出仪器放空或回收的全套气路系统。 第二,检测方式不同:气体检测报警仪利用探头直接暴露在被测的空气中或样气环境中进行检测;而气体分析仪是将被测气体通过特殊方式引入到仪器内部进行测定,然后再引出仪器外放空。气体检测报警仪在应用时,只需将仪器放置于被测气氛内,仪器即可显示数值;而气体分析仪必须将样气仔细地引入到仪器内部,再进行工艺技术条件的严格调整,如温度、压力、流量等,只有当操作人员将仪器调整直到实现一个稳定的化工过程后,才能获得准确的测定数据。 第三,数据的准确度不同:气体检测报警仪只能提供定性分析结果和较为粗略的定量分析数据,这种仪器所显示的数据经不起推敲,不能进行误差分析,因此,根本不能作为准确的分析数据确定(决定)重要工艺改进调整的措施。而气体分析仪则是一种严格的计量器具,在进行定量分析时,能够提供出十分准确的数据C这种数据可以作为气体生产及安全生产改进和提高的依据,用它来指导及进行生产管理,质量管理及企业管理。甚至于,这种数据可以作为司法刑侦工作的重要依据,利用它来打官司,确定是非界限。

  • 【求助】奥式气体分析仪的使用

    各位大虾帮忙~~~实验室刚买了个奥式气体分析仪,不知道具体怎么用的。。。主用是如何进气啊,比如说我产生的气体有限,100-200ml在集气瓶中,怎样排空瓶内空气,如何进气,如何测定气体成分呢?在操作中要注意些什么?请各位指教!不胜感激!另外,我买的是六管气体分析器,那个洗气瓶是怎么用的;仪器有两个量气筒,一个直形,一个双球量气筒,到底用哪个啊?操作起来真的麻烦好多,哪位大侠用过的,能否联系一下呢?

炉内气体分析仪相关的耗材

  • KF 气体分析仪装备 6.7209.010
    KF 气体分析仪装备,用于通过溶剂进行冲洗订货号: 6.7209.010KF 气体分析仪附件,用于通过溶剂冲洗管路。
  • 无显示器的 875 KF 气体分析仪 2.875.9050
    无显示器的 875 KF 气体分析仪订货号: 2.875.9050875 KF Gas Analyzer 是一套配置完毕的分析系统。该设备包括一台安装有滴定软件 tiamo full 的计算机和一台 851 Titrando,可自动进行电量法水分测定。通过预先定义的用于在液化气体和永久气体中进行水分测定的方法可简化 875 KF Gas Analyzer 的工作。除了测定气体中的水分含量之外,该系统还可测定液体和固体样品中的水分含量。操控系统时还需要一台显示器和键盘及鼠标。
  • H3860A型便携式红外气体分析仪
    H3860A型便携式红外气体分析仪张祥峰 15300030867测量范围:单组份气体测量,购买时提出气体要求 一氧化碳:0~50.0、0~100.0、0~500、0~1000PPM 单选 原理:不分光红外线分析法 (符合国家公共卫生环境测量标准) 显示:液晶显示屏(带背光 )、(蓝底白字屏和绿底黑字屏,中英文面板可选) 分辩率:0.1ppm 采样:内置高性能隔膜泵,流量1~1.5L/分 线性误差: &le ± 2%F.S 重复性误差: &le ± 1%F.S 满度响应时间:微量跨度漂移: &le ± 2%F.S/4小时。 使用环境: 温度-10℃~+50℃,湿度&le 85%RH。 尺寸:长180× 宽90× 高245(mm) 电源:12VDC,3200mA 内置高性能无记忆可充电电池 重量:约3kg 附件:仪器箱、携带包、说明书、充电器、(内置校零管和电池组) 选购件:微型打印机、RS232软件及电脑连线。(根据需要可提供4-20mA或0-5V输出) 打印机内容:日月时分,数据,定时打印 软件内容:实时数据显示,曲线图,柱状图,历史记录曲线图,历史数据等.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制