热电偶补偿示仪

仪器信息网热电偶补偿示仪专题为您提供2024年最新热电偶补偿示仪价格报价、厂家品牌的相关信息, 包括热电偶补偿示仪参数、型号等,不管是国产,还是进口品牌的热电偶补偿示仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热电偶补偿示仪相关的耗材配件、试剂标物,还有热电偶补偿示仪相关的最新资讯、资料,以及热电偶补偿示仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热电偶补偿示仪相关的厂商

  • 安徽索克菲尼仪表有限公司位于安徽省天长市铜城镇车站南路,我厂从创建以来,主要生产仪表有:陶瓷铂电阻、pt100铂电阻元件、玻璃铂电阻、云母铂电阻、热电阻,铠装热电阻,铠装铂电阻,WZC系类铜电阻元件、铜电阻封装、进口晶片云母铂电阻、铠装铂热电阻、整套热电阻、热电偶、铠装热电偶、一体化铠装热电偶、防爆铠装热电偶、光伏产业用的扩散炉热电偶、烧结炉热电偶、炭素厂用热电偶、钢厂用的热电偶、WSS双金属温度计、全不锈钢压力表、电磁流量计、多路数显表、智能数显表、巡检数显表、雷达液位计、物位计、一体化温度、压力变送器、热电偶补偿导线、补偿电缆及自动化成套仪表等. 品质造就辉煌!期待与您的合作!
    留言咨询
  • 本公司是专业从事仪器仪表(铠装热电偶、耐磨热电偶、铂铑热电偶、K型热电偶、S型热电偶、B型热电电偶、热套式热电偶、耐磨切断热电偶、手柄式铠装热电偶、一体化热电偶、手持式热电偶、防爆热电偶、耐磨热电阻、铠装热电阻、防爆热电阻、端面热电阻、热套式热电阻、手柄式热电阻、一体化现场显示热电阻、装配式热电阻、双金属温度计、压力表、压力变送器、流量计、涡街流量计、电磁流量计、涡轮流量计、管浮子流量计、孔板流量计、液位计等)、电线电缆(控制电缆、电力电缆、电气设备用电缆、硅橡胶电缆、计算机电缆、补偿导线等)生产的大型工控企业,公司拥有自主品牌国家注册资质及丰富的开发和生产电缆及仪表的经验技术,可承接来料加工、图纸加工、样品加工及辅助加工等服务,免费为用户提供技术支持和安装指导,欢迎新老客户前来咨询订购!
    留言咨询
  • 天长市晶耀仪表有限公司是电线电缆、仪器仪表研发、生产、销售、服务于一体的综合型企业。是专业从事仪表、线缆制品的研制、开发、生产和销售的专业化公司。公司,汇集了电线电缆及仪表电子器材行业人才。其主要产品有:热电偶、热电阻、高低温补偿导线、高温电缆、电力电缆、控制电缆、阻燃电缆、硅橡胶电缆、信号电缆、伴热电缆、本安电缆、计算机电缆、橡塑制品、电子器材及自动化仪器仪表成套设备。公司坚持"以高品质的产品质量求生存,以严谨的管理制度求发展,以高效的服务求市场"的经营理念,积极参与国内外市场竞争。公司还积极利用经营出口权,在国际市场开拓方面取得了突破性的进展。部分产品远销东南亚、欧美等38个国家和地区,均获得用户的高度评价。我们坚信,有高效 的企业精神和强有力的执行能力,必将使我公司成为客户和广大员工真正满意的企业。真诚欢迎各界伙伴、中外客商来我公司参观、考察,为振兴民族工业,共创辉煌!
    留言咨询

热电偶补偿示仪相关的仪器

  • 仪器简介:Temp 300 坚固耐用,数据可靠,界面友好,使用方便,数据储存能力高达2,000组数据。仪表还带有USB输出接口,方便连接电脑,进行数据处理。 可选J, K, T, E, R, S, N 和B 型热电偶电极。技术参数:测量范围 Type J:-210℃-1200℃(-346℉ - 2192℉) Type K:-250℃-1372℃(-418℉ - 2501℉) Type T:-250℃-400℃(-418℉ - 752℉) Type E:-250℃-1000℃(-418℉ - 1832℉) Type R:0℃-1768℃(32℉ - 3214℉) Type S:0℃-1768℃(32℉ -3214℉) Type N:-250℃- 1300℃(-418℉ - 2372℉) Type B:200℃-1800℃(392℉ - 3272℉) 分辨率 自动选择量程: 0.1/1℃/℉; -199.9 -999.9℃/° F : 0.1℃/℉; 超量程: 1℃/℉ 精度 J, K, T, E & N: -150℃以下 (-238℉): 读数的± 0.1 %;± 0.4℃(± 1 %;± 0.7℉) -150℃以上(-238℉): 读数的± 0.25 %;± 1℃(± 0.25 %;± 0.7℉) R, S & B: 读数的± 0.1 %;± 1℃(± 0.1 %;± 2℉) LCD 58 x 40 mm,带背光 数据储存 2000组 自动数据储存间隔 1秒-60分钟 最大/最小读数 有 自动关机 17.5分钟(可选) 数据锁定功能 有 稳定提示 有 输入 单通道 储存 -40℃ - 65℃(-40℉ - 149℉);10% - 90% (无冷凝) 电源 3节&lsquo AA&rsquo 1.5 V碱性电池;750小时(不带背光) 尺寸和重量 175 x 97 x 42 mm (长× 宽× 高), 267 g (不带外壳); 180 x 102 x 52 mm (长× 宽× 高), 362 g (带外壳) 接口防护等级(带电极) IEC-529 IP54 防尘防水 CE认证 EN61326-1/A1: 1998 (EU EMC Directive)主要特点:Temp 300 坚固耐用,数据可靠,界面友好,使用方便,数据储存能力高达2,000组数据。仪表还带有USB输出接口,方便连接电脑,进行数据处理。可选J, K, T, E, R, S, N 和B 型热电偶电极。使用方便 &bull 自动校正 &ndash 将电极放入冰水中,按 &lsquo CAL&rsquo 键校正 &bull 按键显示最小/最大温度读数 &ndash 多行同时显示单独温度测量结果和差别 &bull 大屏幕显示,方便读数 用途广泛 &bull 可连接多种温度探头 &bull 3种免提方式* &ndash 用带子悬挂,贴在金属物质表面或放于桌子表面 坚固耐用 &bull IP54 防尘防水等级,密封键盘,ABS 塑料壳体 &bull 橡胶保护套,带支架,可作台式仪表使用 应用领域&bull 化学品 &bull 制造业 &bull 食品和饮料 &bull 工业和汽车
    留言咨询
  • 华盛昌数字测温仪高精度便携式热电偶测温仪DT-612DT-612系列专业测温仪具有单路双路K型热电偶温度测量、℃/℉转换、最大值保持、数据保持等功能、可选丰富的原厂配件,广泛应用于大多数温度常规的测量场合。华盛昌数字测温仪高精度便携式热电偶测温仪DT-612应用可广泛应用于实验室、制造产业、电路板等不同领域高精度温度测量华盛昌数字测温仪高精度便携式热电偶测温仪DT-612特性● K型温度探头测温,分辨率精确到0.1℃● 热电偶温度补偿功能,确保测量的准确性● 读数输出℃/℉/K● 自动关机模式(睡眠模式),以延长电池寿命● 最大数据保持和数据保持● 热电偶探头可更换华盛昌数字测温仪高精度便携式热电偶测温仪DT-612技术指标型号DT-610BDT-612DT-613温度量程-50~1300℃-50~1300℃-200~1372℃分辨率0.1℃误差±0.5%±1℃单温输入√双温输入√√℃/℉转换√√√最大值保持√√√数据保持√√√白色背光√√√尺寸165*76*43 mm重量403 g华盛昌数字测温仪高精度便携式热电偶测温仪DT-612配件使用说明书*1保修卡*19V电池*1K型温度探头(DT-610B*1,DT-612和DT-613*2)包装盒*1
    留言咨询
  • 热电偶馈通广泛用于真空应用中的温度测量,而温度不是直接测量的,而是可以根据热电电压来计算的。由于电导体两端之间的温差引起的电荷分离(EMF),产生了热电压。热电电压(取决于导体材料)几乎与温度梯度成正比。热电偶由一端连接的两种不同的导电材料组成。使用热电偶馈通,热电电压(EMF)可以从腔室内传递到外部指示仪表。高热电电压,耐腐蚀性和线性是选择材料组合的决定性因素。在热电偶中结合了贵金属,贱金属以及合金(适用于不同的应用)。典型的合金是Alumel(镍,铝和锰),Chromel(镍和铬)和康斯坦丁(铜和镍)。某些热电偶馈通类型使用补偿材料(“补偿线”)代替实际的热电偶材料。补偿材料的特点是热电性能理想地适合于相应的热电偶材料。对于这些类型,我们通过脚注明确指出了补偿线的使用(“使用补偿线”)。此外,应注意的是,补偿线和真正的热电偶导体材料之间的接合处的温度不得超过250°C(“最高接合温度为250°C”)。下表列出了典型的ANSI标准化热电偶材料对。热电偶(ANSI代码)极性可测温度范围[°C]&Tcaron 铜康斯坦坦+– -200 … 350&kcedil ChromelAlumel+–-200 … 1250读/写铂13/10%铑*铂*+–0 … 1450&Jcirc 铁君士坦丁+– 0 … 750Ë Chromel康铜+–-200 … 900C**Wolfram 5%**Wolfram 26%**+–0 … 2315
    留言咨询

热电偶补偿示仪相关的资讯

  • 耐高温高压腐蚀的蓝宝石热电偶保护管替代刚玉热电偶保护管和陶瓷热电偶保护套管
    孚光精仪公司欧洲工厂采用全球专利一次成型技术的高纯度蓝宝石热电偶保护管成功下线,一期工程年产能力达到50万米,并被德国热电偶制造商批量订购,成为替代刚玉和陶瓷的热电偶保护套管新型材料。蓝宝石热电偶保护管和蓝宝石热电偶保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石热电偶保护管和蓝宝石热电偶保护套管相比于刚玉热电偶保护管和陶瓷热电偶保护管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域,是替代刚玉热电偶保护管的理想热电偶保护套管。详情浏览:http://www.f-opt.cn/lanbaoshi/lanbaoshiguan.html蓝宝石热电偶保护管已经取代了无法抵御金属扩散的热电偶陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石热电偶保护管和蓝宝石热电偶保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等蓝宝石热电偶由外部密封刚玉保护套管和内部热电偶毛细管组成,又称为蓝宝石热电偶。由于蓝宝石套管,蓝宝石保护套管具有良好的光学透明性和单晶材料的非多孔性,这种蓝宝石套管,蓝宝石保护套管热电偶具有良好的耐高温性,并具有屏蔽环境温度对热电偶影响的能力。蓝宝石套管,蓝宝石保护套管能够承受2000摄氏度的高温和3000bar的压力,非常适合环境恶劣的应用,比如化工,化学,石油精炼,玻璃工业等。蓝宝石套管,蓝宝石保护套管保护套管相比于刚玉陶瓷管具有更好的材料稳定性,可用于重油燃烧反应器,冶金等诸多高温领域。蓝宝石套管,蓝宝石保护套管已经取代了无法抵御金属扩散的陶瓷管,比如,铅玻璃的生产中,Pt热电偶套管会融入玻璃,导致重新生产。目前,蓝宝石套管,蓝宝石保护套管已经成功用于如下领域:半导体制造:刚玉蓝宝石套管高达99.995%的纯度保证生产过程无污染。腐蚀环境制造:浓缩或沸腾的矿物酸,高温反应性氧化物。玻璃和陶瓷工业:替代Pt探针,保证无污染仪器制造:微波消解仪,高温反应炉,实验室测试仪器等光学应用:紫外灯,汽车灯重油反应器:石化等领域能源领域:去除NOx 等
  • 赛默飞收购完成 Life Tech CEO将获$3810万补偿
    美国时间2013年7月23日,据外媒报道,Life Technologies公司在其最终委托书中说,待赛默飞对Life Tech收购完成后,公司董事长兼首席执行官格Greg Lucier有望可获得3810万美元补偿金。  同样,公司其他高管也有望从此收购交易中获得大量的财务收益。  根据该文件,如果收购交易在2014年1月13日完成,Greg Lucier可以获得近660万美元的现金。股东将能够对Greg Lucier及其他高层的补偿方案进行投票,但该公司表示,股东批准实际上只是咨询性质,随着交易的完成,根据若干条件,支付补偿金是它的契约义务。  除了现金支付外,Greg Lucier的补偿方案还包括潜价值为2620万美元的股本,养老金/非合格递延补偿58.8016万美元,额外奖励/福利20.0277万美元,以及450万美元其他补偿。  公司其他高管同样也从赛默飞的收购中受益。总裁和首席运营官Mark Stevenson可以获得总额为2200万美元补偿金 遗传和医学科学总裁Ronald Andrews可以获得880万美元补偿金 首席财务官David Hoffmeister可获得高达970万美元补偿金 全球人力资源高级副总裁Peter Leddy补偿金可达680万美元。  Life Tech还表示,公司还要付给两家投资银行总额5500万美元,其中德意志银行可获得约3000万美元,Moelis & Co.可获得约2500万美元。在被赛默飞收购前,公司聘请这两家银行进行战略审查。(编译:杨娟)
  • 使用功率补偿型DSC对药物多晶型进行高分辨表征
    前言物质在结晶时由于受各种因素影响,使分子内或分子间键合方式发生改变,致使分子或原子在晶格空间排列不同,形成不同的晶体结构。同一物质具有两种或两种以上的空间排列和晶胞参数,形成多种晶型的现象称为多晶现象(polymorphism)。许多结晶药物都存在多晶型现象,同一药物的不同晶型在外观、溶解度、熔点、溶出度、生物有效性等方面可能会有显著不同,从而影响药物的稳定性、生物利用度及疗效,此现象在口服固体制剂方面表现得尤为明显。药物多晶型现象是影响药品质量与临床疗效的重要因素之一。因此,对存在多晶型的药物进行研发以及审评时,应对其晶型分析予以特别关注。多晶型药物中的不同晶型的热力学稳定性不同,不稳定晶型的熔融温度可能显著低于热力学稳定的晶型;而一种晶型熔融后可能结晶形成另一种更稳定的晶型。对于很多药物材料来说,多晶型现象的存在是非常重要的,因为在服用药物后,它们对血液循环中有效成分的摄取,以及药物保质期等方面会产生重大影响。同一药物的某种晶型可能比其它晶型更易溶解或摄取,其释放时间也会有所不同,并可以通过一定类型和水平的特定多晶型来进行控制。另外,某些晶型的储存期可能更长;随着时间的变化,易于溶解的晶型可能转变为不易溶解的晶型,从而导致药物活性的改变。中国药典通则《9015药品晶型研究及晶型质量控制指导原则》中明确说明,当固体药物存在多晶型现象,且不同晶型状态对药品的有效性、安全性或对质量可产生影响时,应对原料药物、固体制剂、半固体制剂、混悬剂等中的药物晶型物质状态进行定性或定量控制。在“药品晶型质量控制方法”一节中,明确晶型种类相对鉴别方法为粉末X射线衍生 (PXRD)、红外光谱 (IR)、拉曼光谱 (Raman)、差式扫描量热 (DSC)、热重 (TG)、毛细管熔点 (MP)、光学显微 (LM)、偏光显微 (LM) 和固体核共振 (ssNMR) 等9种方法。其中,TG方法中新增的热重与质谱联用 (TG-MS) 可以实现不同晶型药品在持续加热过程中的失重量和失重成分以及结晶溶剂和其它可挥发性成分的定性、定量分析。中国药典通则《0981结晶性检查法》规定固态药物的结晶性检查可采用偏光显微镜法、粉末X射线衍射法和差示扫描量热法 (DSC)。其中新增的DSC法可实现对晶态物质的尖锐状吸热峰或非晶态物质的弥散状 (或无吸热峰) 特征进行结晶性检查。当相同化合物的不同晶型固体物质状态吸热峰位置存在差异时,亦可采用DSC法进行晶型种类鉴别。DSC 测量的是加热、冷却或等温条件下样品吸收和释放的热流信号。《化学仿制药晶型研究技术指导原则》(试行)结合我国仿制药晶型研究的现状并参考国外监管机构相关指导原则起草制定,阐明仿制药晶型研究过程中的关注点,涉及的晶型包括无水物、水合物、溶剂合物和无定型等。指导原则明确了可使用热分析法 (如DSC和TG) 和光谱法 (如IR和Raman) 作为药物晶型表征方法和晶型确证方法;晶型控制参照《中国药典》相关通则 (《9015药品晶型研究及晶型质量控制指导原则》和《0981结晶性检查法》) 对晶型进行定性和/或定量分析。珀金埃尔默DSC 8500采用独一无二的功率补偿型设计,测量真实的热流信号。相互独立的轻质双炉体设计,使得 DSC 8500既可以提供药物多晶型测定所需要的极高灵敏度,又可以提供非常卓越的信号分辨率。同时,由于功率补偿型DSC的小炉体设计,提供了快速升降温的可能,从而可以在测试中通过快速升温,抑制低温晶型熔融后的重结晶,进而得到真实的各晶型比例。珀金埃尔默DSC产品,除了在药物晶型研究上的优势,在药物分析与研究方面,还具有如下优势:1灵敏度高,可灵敏检测蛋白变性的微量放热;2量热准确度高,特别适合药品纯度检测;3专利的调制技术,可研究晶型的可逆和不可逆转变;4铂金炉体,特别适用于药物的易分解特性;DSC 8500差式扫描量热仪极高的灵敏度,可以检测很弱的晶型转变过程或者含量很低的晶型成分卓越的分辨率,可以更好地分离多种晶型的熔融峰最快的加热和冷却速率 (最高可达750°C/min)使用铂面电阻测温技术 (PRT) 测量样品温度,准确性和重现性优于热电偶非常稳定的基线性能具备StepScan DSC技术,可以直接分离可逆与不可逆的热过程或热转变最大程度遵从21 CFR Part 11法规实验1某药物材料DSC测试测试条件升温速率:3℃min-1/10℃min-1;样品质量:~3mg;样品盘:标准卷边铝盘;吹扫气;高纯氮气;温度范围:90℃~170℃图1. 每分钟10℃加热速率下药物材料的DSC测试结果图2. 熔融峰放大后在111℃显示出肩峰图1所示为每分钟10°C常规加热速率下药物材料的DSC测试结果。样品显示出单一的熔融吸热峰,起始熔融温度为107.4°C,没有显示出明显的多晶现象。对熔融峰进一步观察,可以在高温侧发现一个很小的肩峰。对这一熔融转变进行放大,如图2所示,该药物样品在111°C附近确实存在肩峰,这是存在多晶型现象的有力标志。利用晶型转变的时间特性,能够对可能存在的多晶型现象进行检验;改变DSC加热速率 (含时间依赖性或速率),可以识别可能存在的多晶型。图3. 每分钟3℃加热速率下药物材料的DSC测试结果以每分钟3℃的低加热速率对该特定样品进行分析,DSC测试结果如图3所示,该药物样品明确显示出多晶型现象。样品在107.2℃发生熔融后随即进行结晶,如109℃ 的放热峰所示。要对紧随多晶熔融转变的结晶峰进行检测和分辨,确实需要如珀金埃尔默DSC 8500这样的具有很高分辨率的功率补偿型DSC仪器。作为对比,本实验也采用了高性能的热流型DSC仪器对该药物多晶型样品进行分析,即便在低加热速率下也无法检测到这三个转变过程 (不稳定晶型熔融、结晶、稳定晶型熔融) 的存在。主要原因是热流型DSC的炉体质量较大 (150g),响应速率远低于功率补偿型DSC。如本研究结果所示,对于很多药物材料来说,具有极高分辨率的DSC仪器是成功且完整地检测到多晶型现象的必要条件。实验2卡马西平多晶型DSC测试测试条件升温速率:10/50/100/150/200/250℃min-1;样品质量:~5mg;样品盘:标准卷边铝盘;吹扫气;高纯氮气;温度范围:100℃~240℃在检测到多晶型存在的情况下,需要对各晶型成分进行定量。使用DSC方法对晶型进行定量的逻辑是:通过将测量得到的晶型熔融峰面积与100%纯净的晶型熔融焓值比较,计算对应晶型在样品中的百分比。实际测试中,由于低温晶型熔融后可能存在重结晶现象,易对高温的熔融峰归属判定产生误导。同时,由于结晶峰与熔融峰相近,会干扰熔融峰面积的计算,难以确定真实的熔融焓值。卡马西平(Carbamazepine)是治疗癫痫病和神经性疼痛的药物,存在多个晶型。某卡马西平样品在常规测试条件(10℃/min)下,其DSC曲线如图4所示。可以看出,低温晶型(晶型III)在熔融后(红色虚框内吸热峰),出现了放热峰(蓝色虚框),该峰对应于熔融部分的重结晶。在更高的温度区间,可观察到晶型I的熔融峰(绿色虚框)。在高温区间检测到的晶型I熔融峰可能来源于原始样品,也可能来源于晶型III熔融后重结晶,亦或是两者都有。因此,在当前的常规测试条件下,难以进行归属。另外,由于晶型III的熔融和重结晶峰部分重叠,也无法准确计算晶型III的熔融焓值。图4 每分钟10℃加热速率下卡马西平的DSC测试结果按照结晶的理论,重结晶是一个动力学控制的过程,重结晶程度与结晶时间关系很大。因此,如果能够通过改变测试条件,缩短熔点不同的两个晶型间的时间跨度,就可以抑制低温晶型熔融后的重结晶。功率补偿型DSC的小炉体设计,使得快速地升降温成为可能,从而为这类体系的分析提供了技术保证。在本例中,使用不同的快速升温速率进行同一种类样品的考察,结果如图5所示。可以看到,随着升温速率的提高,DSC曲线中晶型I的熔融峰面积逐渐减小;在250℃/min的升温速率下,晶型I熔融峰完全消失,这意味着:1在前述慢速升温下得到的DSC曲线中,晶型I完全来自于低温晶型III熔融后的重结晶,原始样品中并没有晶型I的存在;2晶型I的熔融峰消失,表明在当前测试条件下,晶型III没有重结晶,此时量测到的熔融峰完全不受晶型III重结晶放热的干扰,从而可以准确计算纯净的晶型III熔融焓值(109.5J/g)。图5 不同升温速率下卡马西平DSC测试结果基于以上测试结果,继续在快速升温抑制重结晶的条件下测试真实的混合晶型样品,就可以通过前面得到的晶型III熔融焓值,准确计算晶型III和晶型I的比例,如图6所示。图6 卡马西平混合晶型样品在每分钟250℃加热速率下DSC测试结果总结珀金埃尔默功率补偿型DSC 8500既可以提供许多药物材料的多晶型检测所需要的极高灵敏度,又可以提供非常卓越的分辨率。对于新药研发行业来说,多晶型检测非常重要,因为多晶型现象对于药物有效成分进入血液循环的速率有很大的影响,也会影响到药物的储存期。功率补偿型DSC的小炉体设计具有很快的响应时间,从而确保对热转变过程进行很好地检测和分辨。在上述研究中,功率补偿型DSC可以揭示特定药物的多晶型性质,而高性能的热流型DSC仪器则无法检测到该样品的多晶型现象 (结晶过程)。另外,通过功率补偿型DSC实现的快速升温测试,可以抑制药物分子低温晶型重结晶,从而更可靠地判断样品的晶型情况,进而准确计算各晶型相对含量。扫描下方二维码即刻获取相关资料

热电偶补偿示仪相关的方案

热电偶补偿示仪相关的资料

热电偶补偿示仪相关的论坛

  • 【分享】热电偶冷端的温度补偿

    由于热电偶的材料一般都比较贵重(特别是采用贵 金属时),而测温点到仪表的距离都很远,为了节省热 电偶材料,降低成本,通常采用补偿导线把热电偶的冷 端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。www.tcwdyb.com

  • 解析热电偶之冷端补偿方法

    工业热电偶的正确冷端补偿方法,很重要,因为,没有正确选择冷端补偿方法会导致测量精度的正确与否,误差很大,容易出事故,根据现场经验,有的因为冷端补偿方法失误导致产品质量问题可以说是履见不鲜, 哪么什么叫:热电偶的冷端补偿?测量端为热端,通过引线与测量电路连接的端称为冷端,热电偶测量温度时要求其冷端的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将影响严重测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿。 k' z' h6 D2 t: B1 ^; P常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家 标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 '标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。热电偶的冷端补偿通常采用在冷端串联一个由热电阻构成的电桥。电桥的三个桥臂为标准电阻,另外有一个桥臂由(铜)热电阻构成。当冷端温度变化(比如升高),热电偶产生的热电势也将变化(减小),而此时串联电桥中的热电阻阻值也将变化并使电桥两端的电压也发生变化(升高)。如果参数选择得好且接线正确,电桥产生的电压正好与热电势随温度变化而变化的量相等,整个热电偶测量回路的总输出电压(电势)正好真实反映了所测量的温度值。这就是热电偶的冷端补偿原理。但热电阻是不需要冷端补偿的,因为所谓的冷端补偿是指热电偶得热电势是以0度为标准测量,它不需要激励源。而仪表在室温端,这样对于热电偶来讲,它就不是以0度为标准进行测量了,这样就测不准。所以在仪表的电路里,一般都要有冷端补偿电路。热电阻与热电偶得测温原理不一样,它是靠自身阻值随温度变化而变化的原理测温,我们给铂电阻一个电流激励,直接读出两端电压,与仪表所在环境温度几乎没有关系。如果采用四线制测量,仪表与传感器的距离还可以更远。:热电偶冷端的温度补偿 ; 由于热电偶的材料一般都比较特殊,而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳定的控制室内,连接到 仪表端子上。必须指出,热电偶补偿导线的作用只起延伸热电极,使热电偶的冷端移动到控制室的仪表端子上,它本身并不能消除冷端温度变化对测温的影响,不起补偿作用。因此,还需采用其他修正方法来补偿冷端温度t0≠0℃时对测温的影响。在使用热电偶补偿导线时必须注意型号相配,极性不能接错,补偿导线与热电偶连接端的温度不能超过100℃。

  • 【分享】热电偶温度信号的冷端补偿和线性化

    热电偶温度信号的冷端补偿和线性化  摘要:本文介绍了各种热电偶温度信号的冷端补偿和线性化的原理与方法。   关键词:热电偶、线性化、冷端补偿。 一、前言   温度信号的检测和控制,除了利用有源元件外,多数是采用热电阻或热电偶。这里介绍热电偶温度信号的处理。热电偶有着广泛的应用,应用得较多的有S、B、K、T、E热电偶。但是,已有资料介绍N偶也有很大的应用前途。这是由于N偶在高温下抗氧化能力强,长期稳定性好,能承受大幅度的温度冲击等等。由于N偶开发应用较晚,所以没有得到充分的利用。我们相信N偶很快会加入到主要的应用范围中来。 热电偶检测到的温度信号有如下特点: (1)能用到高温的热电偶,信号都较小,如B偶,1800°C时只有13.585mV。即使是信号较大的K偶,在1300°C时,也只有52.398mV。这就意味着对检测到的信号要进行放大。 (2)热电偶分度表中给出的数据是以0°C为参考点。实际应用时,环境常常不是0°C。为热电偶冷端创造一个0°C环境,通常的作法是进行冷端补偿。 (3)热电偶的温度信号非线性很大,尤其是B偶。并且,各种热电偶随温度的升高,在某一温度下,热电势的增加量变小。这就使线性化变得困难。   由于上述原因,热电偶的温度信号调理电路就比较复杂。下边我们主要介绍适用于各种热电偶信号调理电路的冷端补偿和线性化方法。 二、冷端补偿 热电偶的电势差EAB为: 式中, —Seebeck系数; T—热端或工作端的温度; T0—冷端或自由端的温度。 一般使用说明书给出的EAB-T曲线或数据,都是以T0=0°C给出的,因此,实际应用时若T0¹ 0°C应进行修正,称为冷端补偿或应用下式进行修正。 式中,t0为冷端温度。例如,利用K偶进行温度测量,当t0=30°C时,测得EAB(T,t0)=36.29mV,依K偶的分度表查得EAB(t0,0)=EAB(30,0)=1.20mV,则依前式得: mV 查表得904°C。利用热敏电阻进行冷端补偿有时很方便,如图1所示。校准时要将Pt100换成标准电阻100W。校准后,再换上Pt100即可。 利用AD590的冷端补偿电路如图2所示。图中的数据适用于K偶,对其它热电偶,Seebeck系数、R2、V2的值应作相应改变。 点击图片,可能获得更佳效果,: 图1 利用热敏电阻进行冷端补偿 点击图片,可能获得更佳效果,: 图2 利用AD590的冷端补偿电路 三、热电偶温度信号的线性化   热电偶温度信号非线性是比较大的,如B偶,从0°C升高到1800°C,热电势从0mV变化到13.585mV,每100°C热电势增加最大的约为最小的8倍。B偶的最大输出热电势只有13.585mV,而且当温度升高到约1700°C时,该增加值下降。其它热电偶都存在类似的问题,尽管稍有不同。这又给线性化增加了难度。从这一特性出发,热电偶温度信号的线性化主要有如下几种方法。 (1)单反馈法   利用负反馈,可以改善其线性,但是很有限。几种非线稍小的热电偶,可以采用这种方法,特别是在温区要求不宽的情况下。有时,由于在其一温区有精度要求,那么就在该温区对信号进行调理,达到要求的目标;在其它温区可以放宽精度要求,甚至不要求,只作监视用。 (2)折线近似法   这是一种对非线性较大的信号处理的较好的方法。处理得好可以达到较高的精度。这种方法普遍适用于各种热电偶的整个正信号温区。 点击图片,可能获得更佳效果,: 图3 折线近似法   该种方法的电路原理图如图3所示。该电路的工作过程是:当输入的电压信号较低时,IC1中的反相端电压较同相端(A)低得多(同相端的电压大小是根据线性化要求设定的,B点同样),IC1的输出端电压较高,D1截止。当输入信号电压接近IC1的同相端时,IC1的输出逐渐降低,随之,D1逐渐导通,V4逐渐增大,直到V4接近A点电压为止。这就有效地限制了热电偶信号迅速增加,降低了非线性。IC2的工作过程与此类似,不同的是B点电位比A点高。当输入电压在A点电压以下时,D2截止,IC2不工作;只有当输入电压高于A点电压或接近B点电压时IC2才工作。工作过程与IC1相同。所用折线的段数是根据精度要求决定的。对于热电偶信号处理来说,有三段就可以使精度达到0.5%以上。当D1、D2都导通后,可推出: 式中,VF为晶体管发射结的正向压降。 四、完整的热电偶信号调理电路   完整的热电偶信号调理电路,除了前边介绍的冷端补偿和线性化部分外,还应包括放大和输出电路。在前边我们曾说过,热电偶的输出信号较小,尤其是B偶,即或是K偶也不够大。此外,我们前边介绍的线性化电路,也是以信号的衰减为代价的。因此,作为信号调理电路的前级,即为放大级。放大倍数的大小是根据线性化和输出的标准要求决定的。对不同的热电偶放大倍数是不同的。 信号调理电路的最后部分,即为输出信号的标准化处理。这是由用户的要求决定的。可以是电压信号,也可以是电流信号。 五、小结   这里介绍了热电偶信号调理电路,主要介绍的是冷端补偿和线性化。用铂电阻作冷端补偿,简单实用;实践证明,用分段线性化方法,对各种热电偶,包括整个正信号温区,信号处理的精度都可以达到0.5%以上。这里提出的线性化方法也适用于其它非线性信号的线性化处理。

热电偶补偿示仪相关的耗材

  • K型热电偶补偿导线 K型热电偶补偿导线 1米
    K型热电偶补偿导线型号详细资料:1:K型热电偶补偿导线KX-GA-VV:聚氯乙烯绝缘聚氯乙烯护套精密级K分度号热电偶补偿导线KX-GA-VVR:聚氯乙烯绝缘聚氯乙烯护套精密级K分度号热电偶补偿软导线KX-GA-VVP:聚氯乙烯绝缘聚氯乙烯护套铜丝编织屏蔽精密级K分度号热电偶补偿导线KX-GA-VVRP:聚氯乙烯绝缘聚氯乙烯护套铜丝编织屏蔽精密级K分度号热电偶补偿软导线KX-HA-FF:氟塑料绝缘和护套精密级K分度号热电偶补偿导线KX-HA-FFR:氟塑料绝缘和护套精密级K分度号热电偶补偿软导线KX-HA-FFP:氟塑料绝缘和护套铜丝编织屏蔽精密级K分度号热电偶补偿导线KX-HA-FFRP:氟塑料绝缘和护套铜丝编织屏蔽精密级K分度号热电偶补偿软导线KX-HA-FG:氟塑料绝缘硅橡胶护套精密级K分度号热电偶补偿导线KX-HA-FGR:氟塑料绝缘硅橡胶护套精密级K分度号热电偶补偿软导线KX-HA-FGP:氟塑料绝缘硅橡胶护套铜丝编织屏蔽精密级K分度号热电偶补偿导线KX-HA-FGRP:氟塑料绝缘硅橡胶护套铜丝编织屏蔽精密级K分度号热电偶补偿软导线KX-HA-FV:氟塑料绝缘聚氯乙烯护套精密级K分度号热电偶补偿导线KX-HA-FVR:氟塑料绝缘聚氯乙烯护套精密级K分度号热电偶补偿软导线KX-HA-FVP:氟塑料绝缘聚氯乙烯护套铜丝编织屏蔽精密级K分度号热电偶补偿导线KX-HA-FVRP:氟塑料绝缘聚氯乙烯护套铜丝编织屏蔽精密级K分度号热电偶补偿软导线KX-GA-YJV:交联聚乙烯绝缘聚氯乙烯护套精密级K分度号热电偶补偿导线KX-GA-YJVR:交联聚乙烯绝缘聚氯乙烯护套精密级K分度号热电偶补偿软导线KX-GA-YJVP:交联聚乙烯绝缘聚氯乙烯护套铜丝编织屏蔽精密级K分度号热电偶补偿导线KX-GA-YJVRP:低烟无卤绝缘和护套铜丝编织屏蔽精密级K分度号热电偶补偿软导线KX-GA-YDYD:低烟无卤绝缘和护套精密级K分度号热电偶补偿导线KX-GA- YDYD R低烟无卤绝缘和护套精密级K分度号热电偶补偿软导线KX-GA- YDYD P低烟无卤绝缘和护套铜丝编织屏蔽精密级K分度号热电偶补偿导线KX-GA- YDYD RP低烟无卤绝缘和护套铜丝编织屏蔽精密级K分度号热电偶补偿软导线注:上述型号仅列出KX,其他如SC、KC、EX、BC、TX、JX只需改变型号第一项即可,阻燃型补偿导线型号前加ZR,ZR192为进口PFA材料,屏蔽可采用镀锡铜丝屏蔽。 2:本安型热电偶用补偿导线IA-KX-GA-YVP聚乙烯绝缘聚氯乙烯护套铜丝编织屏蔽精密级K分度号本安热电偶补偿导线IA-KX-GA-YVRP聚乙烯绝缘聚氯乙烯护套铜丝编织屏蔽精密级K分度号本安热电偶补偿软导线IA-KX-HA-FFP氟塑料绝缘和护套铜丝编织屏蔽精密级K分度号本安热电偶补偿导线IA-KX-HA-FFRP氟塑料绝缘和护套铜丝编织屏蔽精密级K分度号本安热电偶补偿软导线IA-KX-HA-FGP氟塑料绝缘硅橡胶护套铜丝编织屏蔽精密级K分度号本安热电偶补偿导线IA-KX-HA-FGRP氟塑料绝缘硅橡胶护套铜丝编织屏蔽精密级K分度号本安热电偶补偿软导线注:上述型号仅列出KX,其他如SC、KC、EX、NC、TX、JX只需改变型号第一项即可,阻燃型在型号前加ZR,ZR192为进口PFA材料,屏蔽可采用镀锡铜丝屏蔽。 3:K型补偿电缆KX-GA-VVP聚氯乙烯绝缘和护套铜丝编织总屏蔽精密级K分度号热电偶用补偿电缆KX-GA-VVRP聚氯乙烯绝缘和护套铜丝编织总屏蔽精密级K分度号热电偶用补偿软电缆KX-GA-VPVP聚氯乙烯绝缘和护套铜丝编织分屏加总屏蔽精密级K分度号热电偶用补偿电缆KX-GA-VPVRP聚氯乙烯绝缘和护套铜丝编织分屏加总屏蔽精密级K分度号热电偶用补偿软电缆KX-GA-YJVP交联聚乙烯绝缘聚氯乙烯护套铜丝编织总屏蔽精密级K分度号热电偶用补偿电缆KX-GA-YJVRP交联聚乙烯绝缘聚氯乙烯护套铜丝编织总屏蔽精密级K分度号热电偶用补偿软电缆KX-GA-YJPVP交联聚乙烯绝缘聚氯乙烯护套铜丝编织分屏加总屏蔽精密级K分度号热电偶用补偿电缆KX-GAYJPVRP交联聚乙烯绝缘聚氯乙烯护套铜丝编织分屏加总屏蔽精密级K分度号热电偶用补偿软电缆 KX-HA-FFP氟塑料烯绝缘和护套铜丝编织总屏蔽精密级K分度号热电偶用补偿电缆KX-HA-FFRP氟塑料烯绝缘和护套铜丝编织总屏蔽精密级K分度号热电偶用补偿软电缆KX-HA-FPFP氟塑料绝缘和护套铜丝编织分屏加总屏蔽精密级K分度号热电偶用补偿电缆KX-HA-FPFRP氟塑料绝缘和护套铜丝编织分屏加总屏蔽精密级K分度号热电偶用补偿软电缆KX-HA-FVP氟塑料烯绝缘聚氯乙烯护套铜丝编织总屏蔽精密级K分度号热电偶用补偿电缆KX-HA-FVRP氟塑料烯绝缘聚氯乙烯护套铜丝编织总屏蔽精密级K分度号热电偶用补偿软电缆KX-HA-FPVP氟塑料绝缘聚氯乙烯护套铜丝编织分屏加总屏蔽精密级K分度号热电偶用补偿电缆KX-HA-FPVRP氟塑料绝缘聚氯乙烯护套铜丝编织分屏加总屏蔽精密级K分度号热电偶用补偿软电缆KX-HA-FGP氟塑料烯绝缘硅橡胶护套铜丝编织总屏蔽精密级K分度号热电偶用补偿电缆KX-HA-FGRP氟塑料烯绝缘硅橡胶护套铜丝编织总屏蔽精密级K分度号热电偶用补偿软电缆KX-HA-FPGP氟塑料绝缘硅橡胶护套铜丝编织分屏加总屏蔽精密级K分度号热电偶用补偿电缆KX-HA-FPGRP氟塑料绝缘硅橡胶护套铜丝编织分屏加总屏蔽精密级K分度号热电偶用补偿软电缆 注:1以上基本型号仅列出铜丝或镀锡丝屏蔽方式,其他屏蔽类型型号只需改变屏蔽代号即可,如:P 铜丝编织屏蔽 P1 镀锡铜丝编织屏蔽 P2 铜带绕包屏蔽 P3铝箔绕包屏蔽2 阻燃型在型号前加ZR,钢带铠装电缆型号后加22,钢丝铠装电缆型号后加32 ZR192为进口PFA材料,耐温260℃ 4:本安型补偿电缆IA-KX-GA-FPVP氟塑料绝缘聚氯乙烯护套铜丝编织分屏加总屏蔽精密级K分度号本安型热电偶用补偿电缆IA-KX-GA-FPVRP氟塑料绝缘聚氯乙烯护套铜丝编织分屏加总屏蔽精密级K分度号本安型热电偶用补偿软电缆IA-KX-HA-FPFP氟塑料绝缘和护套铜丝编织分屏加总屏蔽精密级K分度号本安型热电偶用补偿电缆IA-KX-HA-FPFRP氟塑料绝缘和护套铜丝编织分屏加总屏蔽精密级K分度号本安型热电偶用补偿软电缆IA-KX-HA-FPGP氟塑料绝缘硅橡胶护套铜丝编织分屏加总屏蔽精密级K分度号本安型热电偶用补偿电缆IA-KX-HA-FPGRP氟塑料绝缘硅橡胶护套铜丝编织分屏加总屏蔽精密级K分度号本安型热电偶用补偿软
  • K型热电偶补偿导线
    K型热电偶补偿导线 型  号: TT-K-30-SLE 品  牌: 美国OMEGA 价  格: 基本货期: K型热电偶补偿导线TT-K-30-SLE主要技术指标: 测温范围:-200--260℃,表层耐温范围:-276--+260℃ K型热电偶补偿导线TT-K-30-SLE详细技术指标: 介 绍: 测温范围:-200--260℃,表层耐温范围:-276--+260℃ 主要性能:线芯直径为2*0.255mm,负极:红(镍-铬),正极:白(镍-铝合金),绝缘材料:聚四氟乙烯,单位:每卷1000英尺 特点:外表绝缘层为聚四氟乙烯,具有耐水性,耐磨性,柔软度良好,极高精度,多用于线路板制造,电脑,显示器,无尘设备,电子元器件等行业的精密温度测试.   K型系列详细参数 Insulation AWG No. Model Number Type Wire Insulation   Max. Temp   Nominal Size Wt.&dagger lb/1000' Conductor Overall ° F ° C Ceramic** 14 XC-K-14 Solid Nextel Ceramic Nextel Ceramic 2000 1090 .140 x .200 38 20 XC-K-20 Solid Nextel Ceramic Nextel Ceramic 1800 980 .135 x .190 16 20 XT-K-20 Solid Nextel Ceramic Nextel Ceramic 1800 980 .105 x .155 15 20 XL-K-20 Solid Nextel Ceramic Nextel Ceramic 1800 980 .095 x .135 14 24 XC-K-24 Solid Nextel Ceramic Nextel Ceramic 1600 870 .115 x .175 12 24 XT-K-24 Solid Nextel Ceramic Nextel Ceramic 1600 870 .088 x .132 11 24 XL-K-24 Solid Nextel Ceramic Nextel Ceramic 1600 870 .078 x .116 10 Vitreous Silica* 20 XR-K-20 Solid Refrasil Refrasil 1600 870 .115 x .180 14 Silica* 14 XS-K-14 Solid Silica Silica 2000 1090 .140 x .200 35 20 XS-K-20 Solid Silica Silica 1800 980 .105 x .155 12 24 XS-K-24 Solid Silica Silica 1600 870 .088 x .132 10 High Temp. Glass** 20 HH-K-20 Solid High Temp. Glass High Temp. Glass 1300 704 .060 x .105 9 24 HH-K-24 Solid High Temp. Glass High Temp. Glass 1300 704 .055 x .090 5 Glass 20 GG-K-20 Solid Glass Braid Glass Braid 900 482 .060 x .095 9 20 GG-K-20S 7 x 28 Glass Braid Glass Braid 900 482 .060 x .100 9 24 GG-K-24 Solid Glass Braid Glass Braid 900 482 .050 x .080 5 24 GG-K-24S 7 x 32 Glass Braid Glass Braid 900 482 .050 x .085 5 26 GG-K-26 Solid Glass Braid Glass Braid 900 482 .045 x .075 4 28 GG-K-28 Solid Glass Braid Glass Braid 900 482 .045 x .070 3 30 GG-K-30 Solid Glass Wrap Glass Braid 900 482 .045 x .070 3 36 GG-K-36 Solid Glass Wrap Glass Braid 900 482 .045 x .070 2 Teflon Glass 30 TG-K-30 Solid PFA Glass Braid 500 260 .034 x .047 2 36 TG-K-36 Solid PFA Glass Braid 500 260 .028 x .038 2 40 TG-K-40 Solid PFA Glass Braid 500 260 .026 x .035 2 Teflon Neoflon PFA (HighPerformance) 20 TT-K-20 Solid PFA PFA 500 260 .068 x .116 11 20 TT-K-20S 7 x 28 PFA PFA 500 260 .073 x .126 11 22 TT-K-22S 7 x 30 PFA PFA 500 260 .065 x .133 9 24 TT-K-24 Solid PFA PFA 500 260 .056 x .093 6 24 TT-K-24S 7 x 32 PFA PFA 500 260 .063 x .102 6 30 TT-K-30&dagger &dagger Solid PFA PFA 500 260 .024 x .040 2 36 TT-K-36&dagger &dagger Solid PFA PFA 500 260 .019 x .030 2 40 TT-K-40&dagger &dagger Solid PFA PFA 500 260 .017 x .026 2 Teflon Neoflon FEP 20 FF-K-20 Solid FEP FEP 392 200 .068 x .116 11 24 FF-K-24 Solid FEP FEP 392 200 .056 x .092 6 Polyvinyl 24 PR-K-24 Solid Polyvinyl (Rip Cord) 221 105 .050 x .086 5 24 PP-K-24S 7 x 32 Polyvinyl (Polyvinyl) 221 105 .080 x .130 5 ^线轴和线的重量入到整数磅 (不包括包装材料). ^^Overall color clear *护套和导体上有分度号颜色线 **护套和正极线有分度号颜色线 相关技术文章 · 工业热电偶型式、基本参数及尺寸介绍 · 热电偶种类及其工作原理 · 热电偶的结构形式 · 热电偶入门知识 · 热电偶的正确使用 · 传感器的技术参数详解 · 常用热电偶 · 热电偶常见故障及处理 · 电化学知识解释热电偶工作原理 · 热电偶如何选择 · 热电偶基础知识 · 热电偶的选择与安装 · 比较热电偶和热电阻的区别 · 热电偶冷端的温度补偿
  • 快速测温热电偶
    快速测温热电偶一、快速测温热电偶用途和工作原理快速测温热电偶用于测量钢水、铁水及其他高温熔融金属的温度,属消耗式热电偶。它的工作原理是根据金属的热电效应,利用热电偶两端所产生的热电势测量钢水、铁水及高温熔融金属的温度。二、快速测温热电偶的结构快速测温热电偶主要由测温偶头与大纸管构成。偶头主要有正负偶丝焊接在补偿导线上,补偿导线穿嵌在支架上,支架外套有小纸管,偶丝以石英支撑和保护。外装有防渣帽,全部零组件集中装入泥头中并以耐火填充剂粘合成一整体,而不可拆卸,故为一次性使用。三、快速测温热电偶的使用方法1、根据测量的对象和范围,选择不同型号的热电偶和适当长度的保护纸管及适用的测温杆。2、把快速热电偶套装在测温杆杆上并插紧,使二次仪表指针(或数显器)回零,这时说明接触良好,可以进行测量。3、快速热电偶插入高温熔融金属的深度约100mm为宜,测量时不要测到炉壁或渣子上,做到:快、稳、准,当二次仪表得到结果时,应立即提杆,快速热电偶在高温熔融金属中浸渍时间不得超过5秒,否则易烧坏测温杆。4、测温杆从高温熔融金属内提出后,取下使用过的热电偶,并装上新的,停顿几分钟,准备下次测量。不得连测连拆,否则会造成测量不准确和易损坏测温杆。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制