激光干涉比长仪

仪器信息网激光干涉比长仪专题为您提供2024年最新激光干涉比长仪价格报价、厂家品牌的相关信息, 包括激光干涉比长仪参数、型号等,不管是国产,还是进口品牌的激光干涉比长仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光干涉比长仪相关的耗材配件、试剂标物,还有激光干涉比长仪相关的最新资讯、资料,以及激光干涉比长仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光干涉比长仪相关的厂商

  • 华日激光坚持以市场需求引领新产品的研发,为客户提供纳秒、皮秒、飞秒等多种脉冲宽度,红外、绿光、紫外、深紫外等多种波长的激光器产品,所有产品均具备自主产权,同时产品通过欧盟CE质量安全认证,完全满足严苛条件下的工业加工要求,是超精细加工领域的理想光源。同时通过与全球高端激光设备制造商在电子电路、硬脆材料、半导体、新能源、生命科学等领域开展紧密合作,为用户提供全面的激光技术解决方案。
    留言咨询
  • 西安国盛激光科技有限公司成立于2015年(旗下全资子公司陕西国昌熔覆激光科技有限公司),公司建有西安航天研发设计中心、渭南生产基地。国盛激光是一家专业从事自动化激光熔覆设备、高速激光熔覆设备、激光淬火设备、激光焊接设备、3D打印设备的研发、制造、销售于一体的高科技企业。为客户提供结构功能一体化激光增材制造技术的全套解决方案。国盛激光始终重视创新和研发,工程师团队涵盖激光熔覆设备等项目研发、设计、开发、检测、分析、售前售后服务等。凭借庞大的技术资源,雄厚的研发力量,先进的生产技术,快速的交付周期,灵活的技术服务,为客户提供高性价比的产品与服务。
    留言咨询
  • 创可激光,隶属于广州新可激光设备有限公司,13年品牌深耕,其三轴动态技术在光纤、co2和紫外激光打标雕刻系统中实现了无可匹配的刻印质量。销量超20,000台,专利认证超50个,荣获高新技术企业。创可激光致力于高端3D光纤,高功率二氧化碳以及紫外激光打标机的研发、生产与销售。满足市场对先进打标设备的需求。创可激光总部位于中国广州,国内拥有数十家分公司及办事处。并在日本、德国、美国、韩国等三十多个国家建立了代理机构,销售数量过万,品牌影响辐射全球。创可激光有一支专业的研发团队,研发内容涉及软件设计、机械设计、光路设计等多个方面。协助客户完成各种工艺难题与技术攻关。持续为客户提供全套的激光解决方案。超过十年的专业激光制造经验,追求完美细节,苛求品质第一。现正招募全球代理商,建立互动共赢的合作关系。
    留言咨询

激光干涉比长仪相关的仪器

  • KALEO 多波长激光干涉仪模块姓名:沈工(Max)电话:(微信同号)邮箱:【KALEO 多波长激光干涉仪模块简介】Kaleo多波长激光干涉仪是用于光学计量的模块化系统。 它由多种相互兼容的模块组合而成,可让用户搭建一个经济有效,体积紧凑且易于使用的完整光学测试系统。该系统可适应各种测量场景,确保从研发至生产等不同阶段样品的光学品质鉴定。该系统单次采集即可获得待测样品的所有光学特征,包括:波前像差,MTF,PSF等。【关于Phasics】Phasics是一家专注于高分辨率波前传感技术的法国公司。Phasics公司凭借其在测量方面的专业经验与独特的波前测量技术为客户提供全面的高性能波前传感器。 一、 KALEO 多波长激光干涉仪模块主要特点多功能性:覆盖从紫外到红外多个波段的独立解决方案及兼容模块强大独特的波前技术:兼顾高分辨率、高动态范围及纳米级相位灵敏度操作简易:系统紧凑且便于快速对准 非准直光入射 消色差 二、KALEO 多波长激光干涉仪模块应用光学元件及光学系统计量 适配各种应用的测试场景三、KALEO 多波长激光干涉仪模块选用指南可选波前传感器型号SID4 UV / SID4 / SID4-HR / SID4-SWIR / SID4 SWIR-HR / SID4-DWIRR-Cube光源可选波长 (nm)*365 / 405 / 530 / 625 / 740 / 780 / 810 / 850 / 940 / 1050 / 1550 / 3900可选光学镜头 (F值)*0.6 / 1 / 1.6 / 2.5 / 5 / 10可选扩束系统 – 出瞳有效口径(mm)*8 / 15 / 30 / 60 / 130 参考标准镜平面镜或球面镜*更多可选套件可单独定制
    留言咨询
  • 激光干涉仪 400-891-3319
    仪器简介:ML10 Gold 高性能激光干涉仪是机床、三坐标测量机及其它定位装置精度校准用的高性能仪器。由于采用了独特的专利设计及最新的光电子技术,使ML10 Gold 激光干涉仪比市场上其它型号的激光干涉仪具有更高的性能和更先进的任选功能。ML10 Gold 激光干涉仪提供有进行机器位置、几何精度测量的全套光学器件。 ML10 Gold 激光测量系统所有功能都设计与Laser 10 软件配合使用。除了测量和分析诊断功能外,此软件包的标准配置还包括动态测量、旋转轴测量、双轴测量和电子水平仪及千分表程序接口模块。 该激光干涉仪系统由激光头ML10 Gold、环境监测补偿器EC10,计算机接口卡PC10* 或PCM20* 及高精度的光学器件组成。全部器件放在一个配小车的提箱内,一人便可携带全部系统赴异地进行机器精度检定,大大改善了激光干涉仪的便携性。 该激光干涉仪系统通过接口与IBM 兼容的PC 机(包括笔记本计算机)连接,在灵活、直观的软件控制下进行自动测量,既节省了测量时间,又避免了人为误差,并能按国际上通行的标准进行数据分析处理,如ISO230-2、JIS-B6330、VDI3441、VDI2617、ASME B89等并适用中国国家标准GB17421-2000等,以便于按不同标准进行机床精度的评定和比较。技术参数:1.线性测量分辨率: 0.001&mu m2.线性测量范围: 40m(或任选80m)3.线性测量精度: ± 0.7ppm4.最高测量速度: 60m/min5.长期稳频精度: ± 0.05ppm主要特点:ML10 Gold是全球最畅销的用于长度计量的激光干涉仪,其最大的优点是所有测量功能均采用激光干涉原理,性能稳定,使用可靠,功能扩展性强,价格适中.
    留言咨询
  • 双频激光干涉仪是在单频激光干涉仪的基础上发展而来的一种外差式干涉仪。传统单频激光干涉仪采用单频技术,容易受到外界环境干扰,微小的空气湍流都会引起直流电平变化从而影响测量结果,这是单频干涉仪的一个根本弱点。在测试环境恶劣或测量距离较长时,这一缺点十分突出,而双频激光干涉测量仪正好克服了这一缺点。双频干涉仪使用双频激光,其干涉信号是一个频率约为1.5-8 M H z的交流信号,当可动棱镜移动时,双频干涉仪的干涉信号只是使原有的交流信号频率增加或减少了△f,结果依然是一个交流信号。这个交流信号频率的改变取决于可动棱镜位置的变化,不受直流光平和电平变化的影响,因此抗干扰能力强,适合在各种环境条件下开展检测作业。 双频激光干涉测量仪采用外差技术,对环境干扰不敏感,先天具有抗干扰性好,工作稳定的特点,适合在车间生产环境中使用。镭测科技推出的LH3000双频激光干涉仪,基于清华大学精密测试技术及仪器国家重点实验室多年研发的核心技术,拥有自主知识产权,技术指标达到或优于国外产品同等水平。LH3000双频激光干涉仪通过与不同的光学组件结合,可实现对线性、角度、直线度、垂直度、平行度、平面度等几何量的检测,是高精度线性位移测量、数控机床校准、三坐标机校准、光学平台校准的高效率量测工具。 系统组成: LH3000双频激光头及附件 LC-2000环境补偿单元 Leice Measure测量软件、Leice Analysis 分析软件 线性位移测量镜组(选配:角度、直线度、垂直度、平面度测量镜组等) 光学调整附件 三脚架及其他测量附件产品优势: 采用双频激光,测量精度高 紧凑设计,适合外出服务携带 抗干扰能力强,大型机床长距离检测时也能保证稳定精准 自动环境补偿,不同温度、湿度、压力环境中也能精确检测 符合测校国家标准的测量分析软件 自动生成测量数据报表和误差校正补偿文件。 典型频差7±0.5MHz,测速高达2m/s。(欲了解更多单频与双频干涉仪的性能特点和差异,请阅览本网站解决方案栏目中的:双频激光干涉仪)
    留言咨询

激光干涉比长仪相关的资讯

  • 金属加工机床消费增长拉动激光干涉仪需求
    p style="text-align: center "  中国金属加工机床消费、生产和外贸情况/pp  2017年中国金属加工机床消费总额299.7亿美元,同比增长7.5%。其中,金属切削机床消费额184.0亿美元,同比增长7.8% 金属成形机床消费额115.7亿美元,同比增长7.0%。金属加工机床消费总体呈现明显的恢复性增长,同比增速较2016年同期回升了6.1个百分点。/pp  从生产看,2017年金属加工机床总额245.2亿美元,同比增长5.1%。其中,金属切削机床133.5亿美元,同比增长3.6% 金属成形机床111.7亿美元,同比增长7.1%。金属加工机床生产小幅回升,金属成形机床增速仍高于金属切削机床。从增速变化看,金属加工机床同比增速较2016年同期下降0.4个百分点,其中金属切削机床和金属成形机床呈现分化趋势,前者下降2.1个百分点,后者上升1.7个百分点。/pp  从进出口方面看,2017年金属加工机床出口总额32.9亿美元,同比增长11.4%。其中,金属切削机床21.8亿美元,同比增长13.2% 金属成形机床11.1亿美元,同比增长8.0%。2017年金属加工机床进口总额87.4亿美元,同比增长16.3%。其中,金属切削机床72.3亿美元,同比增长18.4% 金属成形机床15.1亿美元,同比增长7.3%。进出口逆差35.9亿美元,同比增长33.5%,增速较2016年同期上升了64.2个百分点。从今年全年贸易逆差的增速变化可以很明显地看出进口强劲回升的势头。/pp  综合上述消费、生产和进出口的数据,中国金属加工机床消费市场呈现“总量趋稳、结构升级”的新特征。2017年国内金属加工机床产量增长回稳,同比增长5.3%。国产机床的消费额占比为70.8%,较2016年同期上升2.7个百分点。国产数控机床消费额占比为74.9%,较2016年同期上升1.7个百分点。未来中国金属加工机床消费市场将呈现温和增长的趋势。/pp style="text-align: center "  金属加工机床消费增长拉动激光干涉仪需求/pp  我国目前金属加工机床正由中低端向高端产品升级,在我国金属加工机床升级过程中,对激光干涉仪需求明显增大,像沈阳机床、北京精雕等一次性购买几十台激光干涉仪,各中小型机床厂需求也很强烈,机床干涉仪在机床导轨定位精度、重复定位精度、反向间隙、俯仰偏摆以及旋转轴精度测量方面有着广泛的应用,也是目前最为有效的检测手段。/ppbr//p
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2 双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1 ~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。

激光干涉比长仪相关的方案

激光干涉比长仪相关的资料

激光干涉比长仪相关的论坛

  • 激光干涉仪的特征及作用

    激光干涉仪是以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。测量长度的激光干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。 激光干涉仪采用一个双光束激光头和一个双通道的处理器,采用飞行采样方式,在测量过程中无须停机采样检测,节约了测量时间和编程时间;利用RENISHAW动态特性测量与评估软件,可进行机床振动测试与分析,滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析。激光干涉仪的激光头和靶标反射镜二件之间只要发生相对位移就能进行测量,测量系统中无须分光镜、所以对光极其方便。 激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。激光干涉仪可用来精确测量和校准机床、三座标测量机和X-Y平台的机械精度,也测量轴的定位精度、重复定位精度及反向间隙,测量轴的角偏、直线度,测量平台的平面度。

  • 【资料】求助--激光干涉仪

    [em10] 用于机床定位精度检测和重复定位精度检测的激光干涉仪什么牌子的好呀?在Renishaw和API之间徘徊,那位前辈能给指点一二?

激光干涉比长仪相关的耗材

  • 全光纤麦克尔逊干涉仪MFI
    全光纤迈克逊干涉仪-MFI Michelson Fiber Interferometer产品介绍:量青光电提供的美国Optiphase公司全光纤迈克逊干涉仪(Fiber Michelson Interferometer)不但可以用来作为精密的测试测量仪器,还可以应用在精密的干涉传感系统。光纤干涉仪内部采用PZ1小尺寸光纤拉伸器(参见PZ1光纤拉伸器产品资料),内置的PZT通过前面板的BNC连接器驱动。全光纤迈克逊干涉仪标准产品的工作波长从1064nm到1550nm。每个光纤干涉仪都具有“零米”光路偏差的设计,用于方便用户根据不同的测试应用来改变光路延迟长度。标准产品的延迟光纤长度为50米,我们能够根据用户的实际要求提供各种定制的光纤干涉仪,请联系我们的销售人员.产品参数:参数单位指标产品型号MFI-10-50MFI-13-50MFI-15-50工作波长nm106413101550调制常数rad/V2.52.01.6两臂光路失配长度(无延迟)m0m0m0m两臂光路失陪长度偏差cm+/-10cm+/-10cm+/-10cm调制器接口BNCBNCBNC光纤类型HI-1060(或指定)SMF-28eSMF-28e光路接口FC/APCFC/APCFC/APC最大功率承受能力mW250250250封装尺寸(长x宽x高)mm260x160x90260x160x90260x160x90重量kg~2.7~2.7~2.7可定制的延迟范围m0.5m~1000m标准产品的延迟长度m50光纤连接器FC/APC产品应用:激光器相位噪声测试激光器频率噪声测试干涉型光纤传感系统模拟科研实验室应用应用列举:1.激光器相位/频率噪声测试(1)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。OPD-4000解调输出电压应用到PZ1光纤拉伸器的BNC接口上,作为PZ1光纤拉伸器的驱动电压。OPD-4000的相位解调输出可以选择数字信号输出或者模拟信号输出,数字信号输出通过PC进行后续处理,模拟信号通过信号分析仪进行分析。2.激光器相位/频率噪声测试(2)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。通过为PZ1型光纤拉伸器BNC接口提供控制电压保持其处于正交偏置(Quadrature Bias)。输出光信号由光接收机接收处理,输出信号进一步处理。3.光纤干涉仪传感器模拟(3)输入光信号代表干涉型光纤传感器的光源。选择合适的延迟光纤线圈,延迟长度作为需要模拟的传感器的长度。输出光信号通过光接收器件到信号分析仪进行处理分析。订货信息:MFI-10-50:1064nm光纤迈克逊干涉仪MFI-13-50:1310nm光纤迈克逊干涉仪MFI-15-50:1550nm光纤迈克逊干涉仪
  • TYDEX太赫兹扫描法布里 - 珀罗干涉仪
    太赫兹扫描法布里 - 珀罗干涉仪太赫兹扫描法布里 - 珀罗干涉仪(TSFPI)设计用于测量窄带THz辐射的波长和强度。 TSFPI可以与脉冲以及连续的窄带THz辐射源一起使用。TSFPI由两个半透明的平行硅镜组成,其中一个安装在电机驱动的线性驱动器上。THz辐射参数的测量是通过移动反射镜的平移(扫描)来完成的,如图2所示。1。图1. TSFPI的原理图。TSFPI可与以下来源一起使用:?回旋管 ?光泵浦亚毫米波激光器 ?返波振荡器 ?自由电子激光器 ?差频THz发生器 ?混频太赫兹发生器 量子级联激光器 ?p-Ge激光器 ?新型太赫兹源。太赫兹扫描法布里-珀罗干涉仪还能够测量宽带太赫兹源的波长和强度,以及根据法布里-珀罗干涉仪透射光谱(图2)过滤太赫兹辐射。TSFPI支持许多镜像转换模式,例如将镜像移动到给定位置,将镜像转换为给定的距离、连续的和循环的转换。镜像转换速度,转换的间隔,开始和结束位置也可以调整。图2.TFP光谱仪测量的镜面间距为500μm的TSFPI透射光谱Menlo Systems TERA K8。图3示出了由TSFPI执行的光泵浦超声波波长激光器的振荡波长的测量结果。 从图中可以看出,相邻TSFPI透射zui大值之间的距离约为216μm(433μm-216μm=217μm 647μm-433μm=214μm 865μm-647μm=218μm),其对应于 一半的激光波长。 此结果与理论TSFPI透射zui大值一致:λ= 2 * d / m,其中d是TSFPI反射镜之间的间距,单位为μm,m是干涉级数,λ是以μm为单位测量的波长。图3.光声探测器Tydex GP-1P与TSFPI反射镜间距的信号幅度。 太赫兹辐射是由光泵浦的亚毫米波激光器产生的,λlas=432μm。规格规格Value工作频率范围THz0,1-15自由光谱范围,太赫兹0,01-1,8毫米镜之间的间距0-9,5间距设置精度,μm± 1.25光轴高度,毫米110自由孔径,毫米52尺寸(长x宽x高),毫米232х151х120质量,公斤5,0主要特征:?TSFPI广泛操作范围,0.1 - 15 THz ?高击穿阈值 ?大光圈,52毫米 ?镜面定位精度高,±1.25μm?易于使用。TSFPI包包括以下内容:?TSFPI干涉仪装置 ?电源和控制装置 ?镜像转换控制软件 ?电缆 ?用户指南。TSFPI以下配件可以单独提供:?光声Golay探测器GC-1P / T / D ?0.1-15 THz范围内指定波长的BPF(带通滤波器) ?低通滤光片(LPF)过滤IR辐射,其截止频率分别为:23.4 THz,23.3 THz,23.1 THz,14.3 THz,10.9 THz,8.8 THz,5.5 THz,4.3 THz,4 THz,3.2 THz ?一组透射率为1%,3%,10%和30%的衰减器 ?TPX和HRFZ-Si镜片。
  • Altechna 干涉滤光片
    干涉滤光片安装直径25.4 mm (+0/-0.2 mm)通光孔径 18 mm表面质量60-40 S-D闭塞带宽容差±20 %Altechna有限公司在250 nm到5000 nm的光谱范围内提供高质量的标准和定制的干涉滤光片。我们还可以提供专为生物医学仪器设计的生物医学带通滤波器,包括化学分析仪和酶标仪。这些带通滤波器包括标准或自定义匹配滤波器。我们可以提供的荧光滤光片包括诸如陡坡,深度阻挡(达到OD 6),最小光谱串扰,高透射率和环境耐久性等特征。1)通常,干涉滤光片被用作天体物理学,临床化学,材料分析,质量控制和生成中的波长选择器Altechna计量实验室应用以下产品检验:目视检查 - 根据MIL 13830和ISO 10110标准进行表面质量评估尺寸 - 测量几何尺寸,如直径,厚度等透射率(分光光度计,激光)*平坦度(干涉仪)波前畸变(干涉仪)平行度(测角仪,干涉仪)*(...)使用的设备带通滤光片带宽(FWHM),nm中心波长,nm峰透射,%产品编号UV20254201-IF-0254UV16280151-IF-0280UV10352351-IF-0352VIS10405351-IF-0405VIS10510451-IF-0510VIS10515501-IF-0515VIS10532551-IF-0532VIS10633551-IF-0633VIS10650501-IF-0650VIS10670551-IF-0670NIR10795501-IF-0795NIR10830701-IF-0830NIR10850701-IF-0850NIR10880701-IF-0880NIR10940701-IF-0940NIR101064701-IF-1064NIR101550501-IF-1550UV15248121-IF-0248UV10313351-IF-0313UV12350351-IF-0350UV12394451-IF-0394VIS10410351-IF-0410VIS20426501-IF-0426VIS8436351-IF-0436VIS10442501-IF-0442VIS10486601-IF-0486VIS10488451-IF-0488VIS10520501-IF-0520VIS10522501-IF-0522VIS10525501-IF-0525VIS10542501-IF-0542VIS10546501-IF-0546VIS10578501-IF-0578VIS10595501-IF-0595VIS10630551-IF-0630VIS10660501-IF-0660VIS10680451-IF-0680NIR10702451-IF-0702NIR10710451-IF-0710NIR10780701-IF-0780NIR10789451-IF-0789NIR10805701-IF-0805NIR10808701-IF-0808NIR20904701-IF-0904NIR10980551-IF-0980定制你可以根据您的需求定制这个产品。如果您没有找到适合您的应用,请与我们联系,以便定制解决方案。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制