化学量加热分析

仪器信息网化学量加热分析专题为您提供2024年最新化学量加热分析价格报价、厂家品牌的相关信息, 包括化学量加热分析参数、型号等,不管是国产,还是进口品牌的化学量加热分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化学量加热分析相关的耗材配件、试剂标物,还有化学量加热分析相关的最新资讯、资料,以及化学量加热分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

化学量加热分析相关的厂商

  • 400-801-5339
    自1957年以来,德国林赛斯在热分析和热物性领域不断推陈出新,提供了先进的设备,可靠的服务和完善的解决方案。 我们始终坚持以产品创新和客户满意度为第一导向。“客户至上、品质第一、探索创新”的理念让林赛斯在前沿科研机构和工业企业中享负盛名。多年来,一直为热分析研究领域提供优质的仪器。 林赛斯热分析业务涉及多个应用领域的设备研发,包括在聚合物、化工、无机建筑材料和环境分析行业的产品性能检测。完全适用于固体、液体和熔液等不同状态样品的热物性分析。 林赛斯公司因技术领先而得以不断发展壮大。我们以高标准、高精度和严要求来研发热分析仪器。创新驱动和高精确度让我们成为热分析领域倍受客户信赖的一流生产商。 针对热分析仪器发展领域现存的前沿研究方向和高精准度需求,林赛斯不吝大力投资,始终坚持着“客户利益至上”的服务理念。
    留言咨询
  • 400-601-1369
    德国耐驰仪器制造有限公司(NETZSCH Scientific Instruments Trading (Shanghai) Ltd.)是世界著名的分析仪器制造厂商之一,其产品主要包括热分析仪器、导热分析仪与树脂固化监测仪三大类。在热分析仪器领域,耐驰公司拥有60余年的软、硬件研制及应用经验,其产品覆盖了热分析的各个分支领域,从差热、热重到热机械、热膨胀及热质热红联用,我们都能提供一系列不同型号不同配置的具有高精度高稳定性与优异性价比的仪器,温度范围上至高温2800℃,下及低温-180℃。耐驰树脂固化监测仪采用美国麻省理工大学技术,包括介电法、超声波法等一系列仪器,广泛应用于热固性树脂、油漆、涂料、复合材料与电子材料等领域的研发、质控与工艺优化。耐驰公司在导热分析仪领域同样处于世界领先地位,针对不同应用提供了一系列的导热测试仪,包括激光法、热流法、热板法、保护热流法与热线法等各种原理,其测试温度范围为-150℃...2000℃,导热率范围为0.005...1500W/(m*k)。作为驰名世界的仪器供应商,耐驰公司在全球二十余个国家设有分公司和代表处。在德国总部与美国设有多个研究实验室,专为国际市场提供应用及技术支持。实验室每年都发表聚合物、陶瓷、金属等研究领域的技术年鉴和图谱集。耐驰仪器公司于1996年进入中国,凭借其仪器性能上的优势,强大的技术支持,完善的售前、售后服务,在国内的用户不断增加。耐驰公司现已在上海、北京、广州、成都、西安、沈阳、济南、武汉等地设立了办事处和维修站,在上海设有技术服务中心与应用实验室。德国耐驰仪器制造公司以其雄厚的实力和可靠的品质,愿与您共创美好的前程。
    留言咨询
  • 南京凯迪高速分析仪器有限公司是一家集科研、生产及销售为一体的专业化科技企业。专业生产各类多元素分析仪,碳硫分析仪,炉前碳硅分析仪,高频红外碳硫分析仪,炉前铁水质量管理仪,炉前铁水分析仪,合金分析仪,矿石分析仪,不锈钢分析仪,有色金属分析仪,红外碳硫分析仪,五大元素分析仪,金属元素分析仪,电脑碳硫分析仪,元素分析仪,三元素分析仪,铁水质量管理仪,铁水在线分析仪,铁水碳硅分析仪,热分析仪,碳硅分析仪,炉前快速分析仪器,红外碳硫仪,钢铁分析仪,钢铁成分分析仪,智能电脑碳硫联测分析仪,定硫仪,碳硫仪,定碳仪,化验设备,分析仪器,实验设备,化验设备,生铁化验仪器,碳硫高速分析仪,五金分析仪器,五金化验仪,高速分析仪器,三元素检测仪,微机元素分析仪,微机碳硫分析仪,铁合金分析仪,铜合金分析仪,铝合金分析仪,铝合金化验仪器,锌合金分析仪,镁合金分析仪,不锈钢分析仪器,矿石成分分析仪器,矿石化验仪器,铁矿石化验仪器,矿石分析仪器,矿石成分分析仪器,铝矿石分析仪器,铝土矿分析仪器,镁矿分析仪器,铝矿石化验仪,锌矿石分析仪器,锌矿石化验仪器,磁铁矿化验仪器,磁铁矿品位分析仪,镍矿石品位分析仪,铁矿石品位分析仪,矿石品位分析仪器,镁矿化验仪器,磁铁矿分析仪器,铁矿石分析仪器,矿石元素分析仪器,铁矿分析仪器,锌矿化验设备,铁矿化验设备,镁矿化验仪器,矿石品位分析仪器,铁矿石品位分析仪,镍矿石品位分析仪,矿石元素测定仪,矿石化验设备,采矿分析仪器,开矿化验仪器,精矿粉分析仪器,矿粉分析仪器,铁矿粉分析仪,铁粉化验仪器,铝矿石分析仪,铜矿石分析仪,铁矿石分析仪,微量元素分析仪,现场分析仪器,焦炭分析仪,铸造分析仪,黑色金属分析仪,光谱仪,分光光度计,金相显微镜,元素分析,元素化验,制样设备等金相仪器。其产品广泛应用于冶金,铸造,采矿,建筑,机械,电子,环保,卫生,化工,电力,技术监督、质量监督及大专院校等部门对钢铁分析、冶金化验、铸造分析、化工设备、矿石分析等一系列产品的分析,深受用户喜爱。可测定生铁、铸铁、球铁、普碳钢、合金钢、合金铸铁、不锈钢、各种矿石、有色金属中碳、硫、锰、磷、硅、镍、铬、钼、铜、钛、锌、钒、镁、稀土等多种材料中各种化学成份的百分含量 。与传统法比较,其速度和精度已有了极大提高,常规的炉前控制元素检测速度达到了"读秒"水准. 仪器测量范围广、精度高,高、中、低档齐全,并能接受用户特殊定货。
    留言咨询

化学量加热分析相关的仪器

  • 日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。
    留言咨询
  • 日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。
    留言咨询
  • 日立分析仪器正式将“New STA系列” TG-DSC热分析仪引入中国内地市场。本系列具备令人惊叹的基线稳定性[1]和高灵敏度测量能力,包括STA200、STA200RV和STA300三款,分别为普通型号、适用于试样实时观察的型号,以及高温型号。热分析仪是指在程序控温等条件下,测量物质物理性质与温度或时间关系的仪器。根据测量方法的不同,热分析仪有测量重量变化的“热重法(TG)”、测量温度变化的“差热分析(DTA)”,以及测量热量的“差示扫描量热法(DSC)”等诸多种类,被广泛应用于塑料、复合材料、医药品等有机材料,陶瓷、合金等无机材料行业,适合从研究开发到质量管理、故障分析等多种的场景。近年来,随着材料和素材的高功能化、复合化,热分析仪的热性能的要求也多样化了。在高性能的电子产品的故障分析中,为了进行极微量的试验和成分的测量,需要支持高灵敏度的测量的高基线稳定性。另外,汽车、食品相关领域等利用的复合材料是由不同的材料组合而成,因此除了单次测得多个数据的能力,复合型分析的需求也日益增长。一、 高水准TG基线稳定性日立New STA系列继续采用高灵敏度 “数字水平差动型天平”[2],这一结构在日立原有的热分析仪中就有不俗表现。New STA系列更是新增了能够确保天平部位温度恒定的新结构,消除了受加热炉温度变化影响而导致的微小重量误差,让基线稳定性水平远超日立原有产品。在加热炉内未放置试样的状态下,从室温加热至1,000℃,重量变动幅度仅在10μg以下。二、 划时代的TG-DSC同时测量装置日立原有的热分析仪以热重法-差热分析(TG-DTA)方式进行同时测量,但由于DSC比DTA更能够精确地定量试样的热量变化,现在业界对热重法-差示扫描量热法(TG-DSC)同时测量的需求不断上升,日立为满足客户需求,实现了TG-DSC的同时测量。New STA系列通过同时测量质量变化和热量变化,实现了复合型的定量分析。三、 多项改进带来新的可能New STA系列对选配件试样观察系统(Real View )进行了功能升级,现具备数字变焦、画面编辑、长度测量、颜色分析等诸多实用功能。此外,该系列具备重新设计的气流路径,气体置换性能大幅提升;还标配Mass Flow Controller[3],气氛控制和其操作性能也登上了一个新台阶。[1] 基线稳定性:热重法(TG)测定时,抑制因温度变化导致的天平结构热膨胀所引起的重量变动,或对该过程进行测量。[2] 数字水平差动型天平:一侧为天平的倾斜测量部件,另一侧采用配置了试样和标准试样的天平结构,将试样和标准试样各自的重量进行数字化处理,以提升性能的热重法(TG)测量。[3] Mass Flow Controller:加热炉内对气流进行程序控制的产品。
    留言咨询

化学量加热分析相关的资讯

  • 梅特勒托利多邀您免费参加热分析网络研讨会
    会议名称:纯度的热分析测定法 会议时间:2014年03月06日14:30开始,持续约2小时 会议主讲人:李焱 现任梅特勒托利多热分析仪器部技术应用顾问,长期从事热分析仪器的应用研究工作,有丰富的实践经验,熟悉DMA、DSC、TGA、TMA等热分析仪器在各行业的应用。 会议内容简介: 差式扫描量热法(DSC)是一种应用最广泛的热分析技术,其中有机物质的纯度测定是一种被大家所熟知的方法。该方法是基于范特霍夫方程的低共熔体系熔点降低的原理。可以非常准确的测定出90~100 mol%范围内的纯度。纯度测定经常被用于化学品和制药行业,以及食品和塑料行业的添加剂检测中。 本次研讨会中,我们将会讨论有关DSC纯度测定的基本原理,并向大家介绍一些感兴趣的应用。 环境配置:只要您有电脑、外加一个耳麦就能参加。(需要进行音频交流的用户需准备麦克) 报名地址:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/936
  • 4月19日~21日!之量科技参加第21届全国化学热力学和热分析学术会议
    会议预告会议时间:2024年4月19日-21日会议地点:中国天津(天津生态城世贸希尔顿酒店)主办单位:中国化学会化学热力学与热分析专业委员会会议背景“第21届全国化学热力学和热分析学术会议”围绕多学科交叉发展推动下的化学热力学与热分析暨盐湖与盐业化学化工科技创新,全面展示我国近两年取得的最新研究成果,深入研讨化学热力学和热分析学科所面临的机遇、挑战和未来发展方向。作为浙仪旗下实验室事业群成员,仰仪科技、之量科技共同参加本届大会(展位号:9号),诚邀各位嘉宾莅临展台,与我们探讨交流。仪器推荐——热流法导热仪 HFM 510A基于稳态热流法原理设计,具备高精度、高效率、重复性好等特点,可以精准测量膨胀珍珠岩、泡沫玻璃、气凝胶等建筑绝热材料的导热系数,主要应用于保温材料、隔热材料等领域。仪器推荐——自动氧弹量热仪 ATC 300A高度自动化的燃烧热值测量仪器,测试时间快、测试范围广,能够高效准确地测试各种可燃物的燃烧热值,主要应用于电力、煤炭、冶金等领域。仪器推荐——差示扫描量热仪 DSC-40A基于塔式热流法原理设计,通过测量材料内部热转变相关的温度及热流信息,对材料的各种化学特性进行计算,如玻璃化转变温度、冷结晶、相转变、熔融、结晶等,主要应用于高分子材料等领域。仪器推荐——绝热加速量热仪 TAC-500A在实验室条件下模拟潜在热失控反应的专业仪器,助力化工工艺研发、工艺优化与放大、化学品热危险性评估、燃爆事故调查与分析以及热动力学研究等,主要应用于精细化工、含能材料等领域。
  • 什么是热分析(TA)及热分析实验技巧
    热分析(thermal analysis,TA)是在程序控温和一定气氛下,测量试样的某种物理性质与温度或时间关系的一类技术。常用的热分析术语1)热重thermogravimetry, TG;热重分析 thermogravimetric analysis, TGA在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。2)差热分析differential thermal analysis,DTA在程序控温和一定气氛下,测量试样和参比物温度差与温度(扫描型)或时间(恒温型)关系的技术。3)差示扫描量热法differential scanning calorimetry,DSC在程序控温和一定气氛下,测量输给试样和参比物能量(差)[热流量(差)、热流速率(差)或功率(差)] 与温度或时间关系的技术。a. 热流型(heat-flux) DSC按程序控温改变试样和参比物温度时,测量与试样和参比物温差相关的热流量与温度或时间的关系。热流量与试样和参比物的温差成比例。b. 功率补偿型(power-compensation) DSC在程序控温并保持试样和参比物温度相等时,测量输给试样和参比物热流速率差与温度或时间的关系。4)温度调制式差示扫描量热法modulated temperature differential scanningcalorimetry, MTDSC 或 MDSCMDSC 是由 DSC 演变的一种方法,该法是对温度程序施加正弦扰动,形成热流量和温度信号的非线性调制,从而可将总热流信号分解成可逆和不可逆热流成分。即在传统线性变温基础上叠加一个正弦振荡温度程序,最后效果是可随热容变化同时测量热流量。利用傅立叶变换可将热流量即时分解成可逆的热容成分(如玻璃化转变、熔化)和不可逆的动力学成分(如固化、挥发、分解)。5)联用技术multiple techniques在程序控温和一定气氛下,对一个试样采用两种或多种分析技术。6)热重曲线thermogravimetric curve, TG curve由热重法测得的数据以质量(或质量分数)随温度或时间变化的形式表示的曲线。曲线的纵坐标为质量 m (或质量百分数),向上表示质量增加,向下表示质量减小;横坐标为温度 T 或时间 t ,自左向右表示温度升高或时间增长。7)微商热重曲线derivative thermogravimetric curve, DTG curve以质量变化速率与温度(扫描型)或时间(恒温型)的关系图示由热天平测得的数据。当试样质量增加时,DTG 曲线峰朝上;质量减小时,峰应朝下。8)差热分析曲线differential thermal analysis curve, DTA curve由差热分析测得的记录是差热分析曲线(DTA 曲线)。曲线的纵坐标是试样和参比物的温度差(Δ T ),按以往已确定的习惯,向上表示放热效应(exothermic effect),向下表示吸热效应(exothermic effect)。9)差示扫描量热曲线differential scanning calorimetry curve, DSC curve图示由差示扫描量热仪测得的输给试样和参比物的能量(差)与温度(扫描型)或时间(恒温型)的关系曲线。曲线的纵坐标为热流量(heat flow)或热流速率(heat flow rate),单位为 mW(mJ/s);横坐标为温度或时间。按热力学惯例,曲线向上为正,表示吸热效应;向下为负,表示放热效应。热重分析、差热分析和差示扫描量热分析是在催化研究领域应用较多的热分析技术。热分析技术1、 热重法原理:热重法(TG)是测量试样的质量随温度或时间变化的一种技术。如分解、升华、氧化还原、吸附、解吸附、蒸发等伴有质量改变的热变化可用 TG 来测量。TG 测量使用的气体有:Ar、Cl2 、CO2 、H2 、N2 、O2 、空气等气体。热重曲线:热重分析得到的是程序控制温度下物质质量与温度关系的曲线,即热重曲线(TG 曲线)。图1:TG与DTG曲线2、 差热分析原理:差热分析仪一般由加热炉、试样容器、热电偶、温度控制系统及放大、记录系统等部份组成,其基本原理见图 2。将样品和参比放在相同的加热或冷却条件下,同时测温热电偶的一个端插在被测试样中,另一个热端插在待测温度区间内不发生热效应的参比物中,因此试样和参比物在同时升温或降温时,测温热电偶可测定升温或降温过程中二者随温度变化所产生的温差(ΔT),并将温差信号输出,就构成了差热分析的基本原理。由于记录的是温差随温度的变化,故称差热分析。按以往已确定的习惯,向上表示放热效应(exothermic effect),向下表示吸热效应(endothermic effect)。图2:热电偶和温差热电偶差热曲线DTA 曲线的记录曲线如图 3。图3:典型DTA曲线3、差示扫描量热法原理:差示扫描量热法(DSC)就是为克服差热分析在定量测定上存在的这些不足而发展起来的一种新的热分析技术。它测量与试样热容成比例的单位时间功率输出与程序温度或时间的关系,通过对试样因发生热效应而发生的能量变化进行及时的应有的补偿,保持试样与参比物之间温度始终保持相同,无温差、无热传递,使热损失小,检测信号大。图4:功率补偿DSC示意图差示扫描量热曲线差示扫描量热曲线(DSC 曲线)与 DTA 曲线十分相似,这里不再重复。固体催化剂表面酸碱性表征对于许多化学反应,催化剂的选择和它的转化率与其固体表面酸性活性中心的数量、强度密切相关。因此,对催化剂酸/碱性的评价是非常重要的。固体催化剂表面酸碱性的测量目前主要是利用碱性气体吸附-色谱程序升温热脱附技术,但是在吸附质有分解的情况下,此法准确性差。然而,若利用碱性气体吸附-热重程序升温热脱附技术则可以弥补这一缺陷。同样,采用酸性气体吸附-热重或差热程序升温热脱附技术可以实现对固体催化剂表面碱性的表征。热分析实验技巧1 、升温速率的影响快速升温易产生反应滞后,样品内温度梯度增大,峰(平台)分离能力下降;DSC 基线漂移较大,但能提高灵敏度、峰形较大;而慢速升温有利于DTA、DSC、DTG相邻峰的分离;TG相邻失重平台的分离;DSC 基线漂移较小,但峰形也较小。对于 TG 测试,过快的升温速率有时会导致丢失某些中间产物的信息。一般以较慢的升温速率为宜。对于 DSC 测试,在传感器灵敏度足够、且不影响测样效率的情况下,一般也以较慢的升温速率为佳。2 、样品用量的控制样品量小可减小样品内的温度梯度,测得特征温度较低些也更“真实”一些;有利于气体产物扩散,使得化学平衡向正向发展;相邻峰(平台)分离能力增强,但 DSC 峰形也较小。而样品量大能提高 DSC 灵敏度,有利于检测微小的热量变化,但峰形加宽,峰值温度向高温漂移,相邻峰(平台)趋向于合并在一起,峰分离能力下降;且样品内温度梯度较大,气体产物扩散亦稍差。一般在 DSC与热天平的灵敏度足够的情况下,亦以较小的样品量为宜。3、 气氛的选择3.1 动态气氛、静态气氛与真空根据实际的反应模拟需要,结合考虑动力学因素,选择动态气氛、静态气氛或真空气氛。静态、动态与真空气氛的比较:静态下气体产物扩散不易,分压升高,反应移向高温;且易污染传感器。真空下加热源(炉体)与样品之间只通过辐射进行传热,温度差较大。且在两者情况下天平室都缺乏干燥而持续的惰性气氛的保护。一般非特殊需要,推荐使用动态吹扫气氛。若需使用真空或静态气氛,须保证反应过程中释出的气体无危害性。3.2 气氛的类别对于动态气氛,根据实际反应需要选择惰性(N2 、Ar、He)、氧化性(O2 、air)、还原性与其他特殊气氛等,并作好气体之间的混合与切换。为防止不期望的氧化反应,对某些测试必须使用惰性的动态吹扫气氛,且在通入惰性气氛前往往须作抽真空-惰性气氛置换操作,以确保气氛的纯净性。常用惰性气氛如N 2 ,在高温下亦可能与某些样品(特别是一些金属材料)发生反应,此时应考虑使用“纯惰性”气氛(Ar、He)气体密度的不同影响到热重测试的基线漂移程度(浮力效应大小)。为确保基线扣除效果,使用不同的气氛须单独作热重基线测试。3.3 气体的导热性常用气氛的导热性顺序为:He N2 ≈ air O2 Ar选择导热性较好的气氛,有利于向反应体系提供更充分的热量,降低样品内部的温度梯度,降低反应温度,提高反应速率;能使峰形变尖变窄,提高峰分离能力,使峰温向低温方向漂移;在相同的冷却介质流量下能加快冷却速率;缺点是会降低DSC灵敏度。若采用不同导热性能的气氛,需要作单独的温度与灵敏度标定。3.4 气体的流量提高惰性吹扫气体的流量,有利于气体产物的扩散,有利化学反应向正反应方向发展,减少逆反应;但带走较多的热量,降低灵敏度。对于需要气体切换的反应(如反应中从惰性气氛切换为氧化性气氛),提高气体流量能缩短炉体内气体置换的过程。不同的气体流量,影响到热重测试的基线漂移程度(浮力效应)。因此对TG测试必须确保气体流量的稳定性,不同的气体流量须作单独的基线测试(浮力效应修正)。4 、坩埚加盖与否的选择坩埚加盖的优点:a. 改善坩埚内的温度分布,有利于反应体系内部温度均匀。b. 有效减少辐射效应与样品颜色的影响。c. 防止极轻的微细样品粉末的飞扬,避免其随动态气氛飘散,或在抽取真空过程中被带走。d. 在反应过程中有效防止传感器受到污染(如样品的喷溅或泡沫的溢出)。坩埚盖扎孔的目的:a. 使样品与气氛保持一定接触,允许一定程度的气固反应,允许气体产物随动态气氛带走。b. 使坩埚内外保持压力平衡。坩埚加盖的缺点:a. 减少了反应气氛与样品的接触,对气固反应(氧化、还原、吸附)有较大碍。b. 对于有气相产物生成的化学反应,由于产物气体带走较慢,导致其在反应物周围分压较高,可能影响反应速率与化学平衡(DTG峰向高温漂移),或对于某些竞争反应机理可能影响产物的组成(改变TG失重台阶的失重率)。了解了加盖的目的、优缺点,那么具体做实验时,应如何决定呢?下面简单介绍几种情况:1. 对于物理效应(熔融、结晶、相变等)的测试或偏重于DSC的测试,通常选择加盖。2. 对于未知样品,出于安全性考虑,通常选择加盖。3. 对于气固反应(如氧化诱导期测试或吸附反应),使用敞口坩埚(不加盖)。4. 对于有气体产物生成的反应(包括多数分解反应 )或偏重于TG的测试,在不污染损害样品支架的前提下,根据反应情况与实际的反应器模拟,进行加盖与否的选择。5. 对于液相反应或在挥发性溶剂中进行的反应,若反应物或溶剂在反应温度下易于挥发,则应使用压制的Al坩埚(温度与压力较低)或中压、高压坩埚(温度与压力较高)。对于需要维持产物气体分压的封闭反应系统中的反应同样如此。5 、DSC 基线DSC基线漂移程度的主要影响因素是参比端与样品端的热容差异(坩埚质量差、样品量大小)、升温速率、样品颜色及热辐射因素(使用Al 2 O 3 坩埚时)等。在实验中,参比坩埚一般为空坩埚。若样品量较大,也可考虑在参比坩埚中加适量的惰性参比物质(如蓝宝石比热标样)以进行热容补偿。在比热测试时,对基线重复性的要求非常严格。一般使用Pt/Rh坩埚,参比坩埚与样品坩埚质量要求相近,基线测试、标样测试与样品测试尽量使用同一坩埚,坩埚的位置尽量保持前后一致。TG 热重法TG/FTIR热重法/傅立叶变换红外光谱法TG/GC热重法/气相色谱法TG/MS热重法/质谱分析TG-DSC热重法-差示扫描量热法TG-DTA热重法-差热分析参考文献[1] 刘振海,白山 立子,分析化学手册(第二版),第八分册,化学工业出版社,北京,2000.[2] 辛勤,固体催化剂研究方法,科学出版社,北京,2004.[3] 辛勤,罗孟飞,现代催化研究方法,科学出版社,北京,2009.

化学量加热分析相关的方案

化学量加热分析相关的资料

化学量加热分析相关的试剂

化学量加热分析相关的论坛

  • 《化学药品对照品图谱集—热分析》 已于8月正式出版

    《化学药品对照品图谱集—热分析》 已于8月正式出版

    热分析可测量药物在加热或冷却过程中发生的晶型转化、熔融、蒸发、脱水等物理变化或热分解、氧化等化学变化。热分析方法具有用量少、灵敏、快速的优点。药物分析中最常用的热分析方法是差示扫描量热法(DSC)和热重分析法(TGA),两者经常联合使用,样品的热特征信息可互为补充。《化学药品对照品图谱集—热分析》汇集了中国食品药品鉴定研究院发放的600多个常用化学对照品的TGA和DSC图谱,每个品种还配合给出了英文名、分子式、分子量和CGS号等信息。是药学工作者使用的工具书和参考书及帮助药物热分析初学者入门的资料书。本书由梅特勒-托利多与中国食品药品鉴定研究院合作编撰,所有样品均源自中国食品药品鉴定研究院的化学药品对照品,测试仪器采用梅特勒-托利多的TGA/DSC1同步热分析仪。http://ng1.17img.cn/bbsfiles/images/2014/11/201411051638_522062_271_3.png《化学药品对照品图谱集—热分析》本书通过新华书店和各相关网站(如当当网)发行(书价258元/本)我们向您介绍《化学药品对照品图谱集—热分析》一书的内容概要并免费提供2则药物的热分析测试分析:http://cn.mt.com/cn/zh/home/supportive_content/handbooks/po/lab/CN_TA_Chemical_control_sample_Atlas_publish.html品对照品图谱集—热分析》本书通过新华书店和各相关网站(如当当网)发行(书价258元/本)

  • 热分析应用

    "热分析"这个词具有广泛的含义,根据国际热分析和量热协会组织(1CTAC)的定义,热分析是指在程序温度下,测量物质的物理性质与温度关系的一类技术。热分析技术包括热重分析(TG)、离析气体检测(EGD)、离析气体分析(EGA)、放射热分析、热离子分析;差热分析(DTA)、差示扫描量热(DSC)、热机械分析(WA)、热声计、热光学计、热电子计、热电磁计等。   随着各种技术的相继问世,热分析已在各个领域中得到应用。从矿物、天机物、金属、陶瓷到聚合物、电子材料、有机物、药物、食品和生物器官,热分析被应用于每一个研究领域,并逐渐扩展到工业生产和质量控制中。   本文概述了1997-1998年热分析方法的进展与应用;所选文献多为某一领域的综述性文献。 1.热分析仪器、技术与方法   关于热分析领域新仪器和方法的发展与应用已有数篇综述[1-6],其总的发展趋势是新技术的进步,应用领域的延伸;样品重量的减少,扩散和渗透到生产线,使用计算机和机器入。在DSC,DTA领域的一个进展是调制式示差扫描量热仪、热分析仪(modulated DSC, modulated DTA)的出现[7,8]。它在传统DSC线性加热或冷却基础上叠加了一个正弦的温度加热速率,再利用傅里叶转换不断地对调幅热流进行计算,从而得到比传统DSC更多的信息,如总热流、调幅热流、可逆热流、不可逆热流及热容。同时具有高灵敏度和高分辨率,弥补丁传统DSC不能同时具备高灵敏度和高分辨率的不足。MDESC已经在高分子表征的几个方面被证实有特殊用途,包括将复杂转变分离成易解析的部分,提高检测微弱转变的灵敏度,由一个实验过程直接测量热流和比热变化。在食品方面,比如冰冻食品的加工和储存。冷冻食品的脆性,蛋白质的变性等方面都有应用。   由热分析仪与其它仪器的特长和功能相结合,实现联用分析,扩大分析内容,是现代热分析仪发展的一个趋势。已有商品化的各类联用量热仪,比如热重分析仪与叮红外分析仪,色谱仪,质谱仪的联用等。另外值得一提的是同时联用技术。它是在程序控温下,对同一试样同时采取两种或多种分析技术进行分析,其优点是显而易见的。近期发展的有紫外-可见光示差扫描热卡量热仪(DPC)、微调制热分析仪及微热机械仪等。微调制热分析仪、微热机械是原子力显微镜与微量调制热分析及热机械分析技术相结合的结果。将传统的AFM的探针用极微小的热电阻取代,同时用于加热及温度测量,以AFM分析显示材料的形貌、相应位置的热传导及热扩散区域分布和物理性质的变化。显微镜分析与热分析、热机械分析相结合为其在诸如材料科学、制药学、催化剂、薄膜、电子成分、法医科学及生物体系等领域的应用及研究提供了有力的手段。   在最近的二十年、光声及光电技术被引入量热研究,用于浓缩材料的热性质研究和各种材料、结构的热波探测[9]。在制药工业应用的反应量热仪可以通过中央个人电脑控制16个反应参数并由屏幕进行监测[10]。在微反应器中用小型化的量热仪监视热物理反应的可能性已经讨论[11]。用于测定燃料燃烧热的热弹量热仪其两个发展方向是测量及数据处理的高度自动化和无水热弹量热仪的发展[12]。动力学量热法是基于温度调制方法和绝热方法发展起来的,可以得到动力学热容数据。这是与材料的动力学相关的一个基本量,Jeong对其进展进行了综述[13]。动力学量热仪已被用于过冷液体的慢弛豫研究。自由模式动力学研究方法用于DSC研究中,提供了一种可靠的数学表达式来描述化学反应[14]。Marison对生物反应量热仪进行了综述[15]。滴定量热仪被主要应用于四个主题的研究[16]:(1)水溶液中的配对焓和溶质-溶质相互作用参数;(2)离子表面活性剂形成胶束的解体;(3)蛋白-配体相互作用[17];(4)高分子吸附剂上被吸附物的吸附。滴定量热还被用于某些反应热的测定[18]。 2.热分析方法的应用 2.1 材料,化工和炸药推进剂  DSC被用于研究无机玻璃的结构松弛过程[19],铁酸盐不锈钢结构变化[20]、金属氧化物和玻璃的热力学和化学结构[21]以及多孔材料相转变[22]、材料防火性测试[23]及气体性质研究[24]等。此外,DSC非常适合热硬化性粉末涂料性质的测定,二者被认为是完美的搭配[25]。热分析方法还被用于黑色物质(碳、焦碳和活性炭)的分析[26],研究有机添加剂对水泥水合特性的改变[27,28]等。热分析方法被认为是研究高能材料特别是推进剂稳定性的最重要最有前途的工具之一,被用于推进剂反应性、反应机理、储存时间以及炸药安全性等研究[29-32]。 2.2 有机化学  在有机化学,尤其是物理有机化学领域,热分析方法得到了广泛的应用。一方面被用于反应机理的研究,例如不同构型己二醇的乙酰化反应的量热研究[33],有机随机网状物中的向列型相到各向同性相的转变[34]。利用热分析方法可以测定反应的生成焓、活化能以及晶格能、张力能等热力学数据。例如系列卤化有机铵的标准摩尔生成焙和品格能[35]、含氢键的柔性有机网络的客体键合的平衡、动力学和能力学研究[36]及非平面环共扼分子的共振和张力能[37]等。Belichmeier提供了一种由DSC曲线测定有机反应活化能的简单而有效的方法[38]。另一方面,热分析仪被用于合成条件的控制。例如,用差示扫描量热仪可以方便地控制反应条件,实现杂环的合成[39]。热分析方法还被用于新合成产物的表征[40,41]以及多组份有机物质的纯度测定[42]。 2.3 高分子聚合物  在高分子领域,DSC、DTA已成为表征合成高分子的常规手段[43-47]。另一方面,还被用于高分子性质研究,如聚酯的热力学[48]、高分子填充物和有机酸的相互作用[49]、富有稀土化合物的高分子的性质[50]、氧化诱导时间[51]、细菌共聚多酯的性质[52]、工业乳剂的聚合[53]及聚合物上一些无机和有机离子的离子交换热化学[54]等。利用光差示扫描量热计还可以检测高分子的聚合效率[55]。 2.4 物理化学  量热技术,尤其是浸入和流体吸附量热法,气体吸附微量量热法在表面化学领域有着广泛的应用[56-59]。已被用于评价不同碳材料的化学性质(表面性质、亲水/疏水性、酸/碱性)和物理性质(表面积、孔径分布等)[60],研究金属纤维,真空蒸发膜和单晶的吸附性质[61],基于PEO,LiI和高表面无机氧化物的复合固态电解液的热性质[62]等。量热技术的发展对热力学的贡献是显而易见的[63-65]。它被用于超声实验[66]、薄膜反应热力学和动力学[67]、表面活性剂在固液界面的吸附和热力学[68]、无机阴离子的交换萃取和吸附反应热[69]、荷电金属氧化物/电解液界面的离子吸附的热效应[70]、混合物界面测定[71]、有机液体的热可逆性凝胶化的结构研究[72]、硝酸钠和高氯酸钠溶液在298.15K水-有机混合相中的热化学[73]以及工业中重要的聚合物和胶体在水分散中溶胶-凝胶转变[74]等。DSC是研究固体热性质的最惯用的直接测定方法。它被广泛用于计算无定性材料结晶过程的动力学参数[75]、玻璃态结晶氰基金刚烷的亚稳态[76]、无定型材料的低温性质[77]、液晶的高压性质[78]以及热容的测定[79-81]。由扫描和控压扫描量热仪可测定有机液体和聚合物在宽的压力和温度范围内的热物理性质[82]。热分析方法还是研究相平衡及相图的有力工具[83-85]。 2.5 生物化学  热分析法在生物化学领域得到了广泛的应用,并发展了专门的生物微量量热仪。热分析法被用于研究模型DNA三联体和四联体的稳定性和结构及其与小配体的相互作用[86]、脂双分子层的斜中间相的相转变[87]、测定胰岛素敏感性[88]、抗体分子剖析[89]、药物-DNA相互作[90]、肽和磷脂双分子膜的相互作用[91]、淀粉酶和相关酶的DSC,ITC[17]、蛋白质稳定性的热力学[92]、肌球蛋白和微丝蛋白的DSC研究[93]及酵母生长抑制研究[94]等。 2.6 制药、食品营养及环保  在制药领域使用DSC、TGA及TM(热显微镜)进行药物多形性和热分析[95]、药物定量控制和多形系统描述[96]、制药技术中的液晶系统分析[97]等。热分析方法还被用于食品营养领域[98-100],如热带植物生产的淀粉的物理性质和分子特点[101]、食物中蛋质、糖、脂等大分子的DSC研究[102]、并且是人体能量平衡、营养状态的评价手段之一[103]。在环保领域进行了铬对土壤中有机物质生物降解影响的量热分析[104],利用热分析结合萃取和重液分离部分确定了空气悬浮微粒中碳元素和可溶、难溶有机物的总量[105]。

  • 热分析技术在药物分析中的应用进展

    热分析技术在药物分析中的应用进展热分析技术是研究物质在加热或冷却过程中产生某些物理变化和化学变化的技术。自1887年Lechatelier提出差热分析至今已发展成为一门专门的热分析技术。因其具有方法灵敏、快速、准确等优点,该技术及其分析仪器也得到快速发展。不久Sadtler的DTA标准图谱集,热分析专著《Thermal analysis》也相继面世。热分析技术在药物分析领域也广泛应用,如化学药品的鉴别、理化常数测定、纯度考查、稳定性考察以及近年来对中药活性成分的研究、中药材真伪品的鉴别、中药制剂质量分析等。目前,一些发达国家已把热分析方法作为控制药品质量的主要方法之一,美国药典23版与英国药典1993年版均已收载了热分析方法。1 热分析技术的方法分类1.1 差热分析(differential thermal analysis,DTA)  DTA是最先发展起来的热分析技术。当给予被测物和参比物同等热量时,因二者对热的性质不同,其升温情况必然不同,通过测定二者的温度差达到分析目的。以参比物与样品间温度差为纵座标,以温度为横座标所得的曲线,称为DTA曲线。1.2 差示扫描量热法(differential scanning calorimentry, DSC)  DSC是在DTA基础上发展起来的一种热分析方法。由于被测物与参比物对热的性质不同,要维持二者相同的升温,必然要给予不同的热量,通过测定被测物吸收(吸热峰)或放出(放热峰)热量的变化,达到分析目的。以每秒钟的热量变化为纵座标,温度为横座标所得的曲线,称为DSC曲线,与DTA曲线形状相似,但峰向相反。1.3 热重分析(thermogravimetry,TGA)  TGA是一种通过测量被分析样品在加热过程中重量变化而达到分析目的的方法。即将样品置于具有一定加热程序的称量体系中,测定记录样品随温度变化而发生的重量变化。以被分析物重量(%)为纵座标,温度为横座标的所得的曲线即TGA曲线。其它尚有导数热重量分析、热机械分析(TMA)、质谱差示分析等。2 热分析技术在药物分析中的应用  热分析技术常用于新药研究中。药物分析中应用最多的是将TGA与DSC联合使用。热分析技术可用于判断药物的熔点,确定药物的结晶水,测定药物的纯度,处方及辅料筛选等。2.1 药品熔点的判断  熔点是衡量药物质量的重要指标之一。确定药物的熔点需确定这个药物是熔融同时分解还是熔点,再确定其熔融同时分解或熔点的具体温度。如果采用历版中国药典收载的毛细管测定法,很难作到准确判断。如采用DSC与TGA相结合进行测定,则可对其作出准确的判断。80年代初重庆市药品检验所曾用DSC和TGA确定磷酸氯喹的熔点,1986年杨腊虎又用DSC测定九种熔点标准品物质的熔点。2.2 药品的纯度测定  利用热分析技术测定药品纯度的理论依据是范德霍夫方程,即药品熔点的下降与杂质存在的克分子分数成正比。采用逐步加热程序技术(step heating programming technique)可扩大测定范围简化测定过程并缩短测定时间。但此方程的适用条件为被测药物不能熔融同时分解,并药物与共存杂质之间不得形成固溶剂。当不需要得到药物的准确纯度时,可采用与对照品同时测定DSC或TGA曲线,通过分析热分析曲线来确定药物的纯度。文献报道了用热分析技术测定药物的纯度和用DSC测定硝苯地平的纯度。2.3 药物的多晶型分析  不同晶型的药物具有不同的生物利用度,因而具不同疗效。区别药物的晶型,过去通常采用红外分光光度法和X-射线衍射法。后来常用DSC或DTA分析法。用热分析技术不仅可区别同一药物的不同晶型,而且还可提供其热力学变化过程,为选择转晶条件提供依据。如对甲苯咪唑、多沙唑喹、法莫替丁、头孢新酯等的多晶型研究。徐坚等还用热分析技术研究了甲氧氯普胺两种晶型的互变条件及各自的溶解热。2.4 差向异构体的分析  不少的药物存在差向异构体,同一药物不同的差向异构体之间,其生物利用度不同。侯美琴等报导了用DTA和DSC分析双炔失碳的差向异构体,测定出其中α体的纯度,并为其制剂的剂量调整提供依据。2.5 药物中结晶水与吸附水的确定  确定药物分子中有无结晶水和结晶水的个数,过去常用卡氏水份测定法或在一定条件下测定干燥失重来决定。这些方法很难区分是分子中的结晶水还是吸附水。采用DSC-TG技术则可解决此问题。2.6 药物制剂中活性成份分析  热分析技术可用于药物制剂中活性成分的定性分析、定量分析和药物与辅料间的相互作用以及处方的设计。1980年有人报道不经分离直接用DSC技术测定磺胺类药物、硝基呋喃类药物以及解热镇痛类药物的胶囊剂和片剂。近年有文献报道用DSC考察了制剂中,活性成份间及活性成份与辅料间是否发生反应,即通过观察各活性成份、辅料以及制剂的DSC曲线的差异,发现是否出现新峰,以达到考察它们间是否相容,可否进行配伍的目的。2.8 药物的稳定性研究  汤启昭利用热分析技术研究了葡萄糖酸亚铁固体的稳定性,并与气相色谱分析结合,提高了热分析的研究水平;武凤兰用热分析技术研究了固体药物对乙酰氨基酚的分解动力学。

化学量加热分析相关的耗材

  • --请选择-- 热分析耗材 样品盘
    我公司专业生产DSC差示扫描量热仪,SDTA差热分析仪,TGA热重分析仪等各种热分析仪专用的铝制、氧化铝、不锈钢、金属镍、铂金和石英材质的样品盘/坩锅,且最小壁厚可达到0.1~0.3mm;适用于美国PE,美国TA(原杜邦),德国耐驰NETZSCH,瑞士梅特勒Mettler,法国塞塔拉姆SETARAM,日本岛津Shimadzu,日本Rigaku,日本精工SII,德国布鲁克AXS等,并提供来样来图加工定制,本公司是国内唯一一家引进进口工艺加工生产的坩埚生产厂家,专供出口,非国内其他厂商的不良产品。样品盘分类:为确保样品与传感器之间高效率的热交换,请选用优质的、适合温度范围的样品盘/坩锅做实验,从而达到最佳的实验效果。1.不锈钢样品盘/坩锅适用温度范围为室温到300℃2.金属铝样品盘/坩锅适用温度范围为室温到550℃3.金属镍样品盘/坩锅适用温度范围为室温到700℃4.氧化铝、铂铑合金样品盘/坩锅可以使用到1800℃5.石墨、钨样品盘/坩锅可以使用到2400℃主要特点:★铝样品盘和样品盖:适用于非挥发性固体样品,例如聚合物和药物,通常用于聚合物、热塑性材料和热固性材料的聚合物熔化、结晶及玻璃化转变的研究;样品皿为卡口式,但并未密封。★为了避免样品盘/坩锅和样品反应可以使用惰性样品盘/坩锅,如铂铑合金样品盘/坩锅。★铜制或铂铑样品盘/坩锅可以起到催化剂效应,也多用于大多数材料的TGA分析。★高压样品盘:整个实验样品在样品盘/坩锅的密封环境中进行,抑制了挥发性物质的挥发;密封防止溶剂蒸发或将挥发反应产物包含在内,从而消除汽化热的干扰。★高质量的样品盘/坩锅可以帮助扩大DSC的应用范围,使用大体积的样品盘/坩锅放入更多的样品可以测定微弱的热效应,想获得好得分辨率可以使用轻质、热传导性好的样品盘/坩锅。氧化铝坩埚介绍:我公司氧化铝坩埚采用高纯氧化铝粉为原料,结合现代先进的烧成工艺, 专业生产热分析用氧化铝氧化锆陶瓷小坩埚,确保产品使用中具有以下四大特点,很好地满足各类热分析实验的需要。1.热传导性高:样品和坩埚间热量传递速度快, 以保证两者间存在着极小的温差, 温度分布均匀。2.结构性能稳定:高纯度粉体配合精密控制的高温烧结工艺,形成致密,均匀的微观晶相结构,确保在使用过程中不出峰,与分析样品不易发生物理,化学反应。3.超高温稳定性 使用温度范围广,最高工作温度可达到1750度。4.重复利用率高:水洗或10%的盐酸洗涤,烘干,可反复多次加以利用,不影响实验结果。
  • 铝坩埚/液体/固体/热分析坩埚/DSC坩锅
    品牌:久滨型号:JB名称:铝坩埚产品概述:氧化铝坩埚采用高纯氧化铝粉为原料,结合现代先进的烧成工艺,专业生产热分析用氧化铝氧化锆陶瓷小坩埚,确保产品使用中具有以下四大特点,很好地满足各类热分析实验的需要。1.热传导性高:样品和坩埚间热量传递速度快,以保证两者间存在着极小的温差,温度分布均匀。2.结构性能稳定:高纯度粉体配合精密控制的高温烧结工艺,形成致密,均匀的微观晶相结构,确保在使用过程中不出峰,与分析样品不易发生物理,化学反应。3.超高温稳定性使用温度范围广,*高工作温度可达到1800度。4.重复利用率高:水洗或10%的盐酸洗涤,烘干,可反复多次加以利用,不影响实验结果。实验效果:1.不锈钢样品盘/坩锅适用温度范围为室温到350℃2.铝制样品盘/坩锅适用温度范围为室温到600℃3.氧化铝样品盘/坩锅可以使用到1800℃
  • 梅特勒-托利多仪器热分析坩埚
    材 质:99.5%高纯氧化铝规格型号:XCGG-8045尺 寸:¢8.0X4.5,壁厚:0.5mm适用仪器:METTLER-TOLEDO热分析仪器热分析坩埚:本公司采用高纯氧化铝粉为原料,结合现代先进的烧成工艺, 专业生产热分析用氧化铝/氧化锆陶瓷小坩埚,确保产品使用中具有以下四大特点,很好地满足各类热分析实验的需要。  1.热传导性高:样品和坩埚间热量传递速度快, 以保证两者间存在着极小的温差, 温度分布均匀。  2.结构性能稳定:高纯度粉体配合精密控制的高温烧结工艺,形成致密,均匀的微观晶相结构,确保在使用过程中不出峰,与分析样品不易发生物理,化学反应。  3.超高温稳定性: 使用温度范围广,Z高工作温度可达到1750度。  4.重复利用率高:水洗或10%的盐酸洗涤,烘干,可反复多次加以利用,不影响实验结果。  配套仪器厂商  北京光学仪器厂、上海天平仪器厂、德国耐弛公司、法国SETARAM公司、美国TA公司、德国Linseis公司、梅特勒-托利多公司、日本岛津公司、日本精工  产品分为多个系列,各大系列产品长年备有现货,也可制做特殊尺寸异形小坩埚满足客户个性化需求。0.1:材料解决方案电绝缘,热膨胀,硬度,导热系数等。对于任何其他要求,我们建议将材料与加工各种材料的经验相匹配。0.2:支持产品开发从提供样品到批量生产,我们将为您提供服务服务,我们还可以提供有关设计,交货日期的建议,以使客户的产品更好。0.3:快速交货我们内部拥有各种各样的材料和工具,这使得我们能够快速加工并交付给您。0.4:质量保证XMCERA的技能是通过严格的质量保证来控制和建立的,基于 ISO9001:2015 ,我们承诺提供满足客户需求的产品。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制