激光自准直仪

仪器信息网激光自准直仪专题为您提供2024年最新激光自准直仪价格报价、厂家品牌的相关信息, 包括激光自准直仪参数、型号等,不管是国产,还是进口品牌的激光自准直仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光自准直仪相关的耗材配件、试剂标物,还有激光自准直仪相关的最新资讯、资料,以及激光自准直仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光自准直仪相关的厂商

  • 本公司是一家专业从事激光产品研发的高科技公司,拥有雄厚的技术设计和生产能力,终身致力于为国内外客户提供品质优良、性能出众、价格有竞争力之产品。目前已开发出多种半导体激光产品,其中激光标线器是一种方便实用的标线工具。可广泛用于作服装钉钮点光源定位、裁布机裁布辅助标线、缝纫机/裁剪机/钉钮机/自动手动断布机辅助标线定位、裁床裁剪对格与对条、电脑开袋机标线等等。方便快捷、直观实用。。  产品主要包括:半导体激光器、激光准直光源、激光平行光管、激光标线仪、光学透镜、实验室教学光源、激光功率计等。  半导体激光器主要包括绿光(532nm)系列激光器、红光(635nm、650nm、780nm)系列激光器和红外(808nm、850nm、980nm)系列激光器。  激光准直光源主要包括:D-系列(点状光斑)激光器、L-系列(一字线)激光器、S-系列(十字线)激光器、T1-系列(功率可调)激光器、T2-系列(频率调制)激光器,P-系列(平行光管)激光器,B-系列激光标线仪。其中D-系列激光器光束发散度可达0.1mrad;L-系列激光器线宽最小可达0.3mm;调制(T2)激光器调制范围0-10KHz。P-系列激光平行光管口径可达40mm,光束发散度可达0.02mrad。  激光功率计可标定532nm、635nm、650nm、780nm、808nm、850nm、980nm、1100nm各波段,工作同时可监测电流。  我公司激光产品及光学产品可广泛应用于科研、工业、勘探、测量及医疗等领域。可以根据用户的特殊要求设计加工专用激光器及光学系统,也可以提供激光系统应用和特殊用途的批量供应。“团结、自信、坚韧、进取”是我们的企业宗旨,我们将一如既往地为用户提供高品质的产品。
    留言咨询
  • 华日激光坚持以市场需求引领新产品的研发,为客户提供纳秒、皮秒、飞秒等多种脉冲宽度,红外、绿光、紫外、深紫外等多种波长的激光器产品,所有产品均具备自主产权,同时产品通过欧盟CE质量安全认证,完全满足严苛条件下的工业加工要求,是超精细加工领域的理想光源。同时通过与全球高端激光设备制造商在电子电路、硬脆材料、半导体、新能源、生命科学等领域开展紧密合作,为用户提供全面的激光技术解决方案。
    留言咨询
  • 北方光科激光技术(北京)有限公司成立于2009年,是一家集专业研发、生产、销售激光设备于一体的智能激光技术企业。公司生产的自主品牌“昂泰科”激光设备,涵盖激光熔覆、激光焊接、激光切割、激光打孔、激光打标和激光清洗等激光加工领域。公司设备受到国内外客户一致好评,远销俄罗斯、印度、奥地利等国家。 北方光科专注为客户提供工程机械、煤矿、化工、石油、能源科技等各行业的工艺配套解决方案。高速激光熔覆技术主要用于提高零件表面的耐磨、耐腐蚀、耐高温、及抗氧化等性能,从而达到表面改性或修复的目标,满足了对材料表面特定性能的要求。可实现对平板类、圆柱类及异形类工件的激光修复,为企业降低成本、节约材料、优化加工系统。公司激光设备产品系列从20w至8000w均可为广大企业专机定制,解决企业由复杂的工序转换成自动化生产加工提高工作效率。公司拥有一支优秀的管理团队,从企业创新到发展,核心团队始终保持凝聚力,积极进取。作为国内最早从事矿山行业智能化,信息化的一个群体,积累了丰富的技术及管理经验。
    留言咨询

激光自准直仪相关的仪器

  • 一, ELWI-GER 3000自准直仪易于调整、测量和记录,自准直仪利用光学对准和ELWI-GER3000测量系统,实现直线度和“平面度”的二维精确快速测量。该柔性系统适用于技术面、线性导轨的对准和控制,以及大型部件和轨道系统的曲率测量。产品特点同时保持X和Y方向的直线度不限位置使用无源反射器能够在真空中使用小巧紧凑,提供检查服务长距离测量高达 100m比先前版本快10到100倍比其他自准直仪精确5到20倍分辨率 0.1μm / m 精度高达 0.5 μm / m 缩放功能,便于对齐11英寸触摸屏IP 65,坚固轻便电池运行8小时通过智能手机进行数据传输和远程控制可以通过局域网和无线局域网进行数据传输带有文档跟踪的自动协议带有附加元件的自动距离检测用电子水准仪进行转角测量产品应用无需电脑,直接进行直线度评估机械工程线性导轨和轨道工厂、铁路和隧道建设技术参数测量方法:在倾度计算法中,镜座上或线性导轨架上的测量镜以等距的步长放置在测试对象上。通过高度差的求和(积分),确定并显示直线度。该方法以尽可能低的测量不确定性获得高的精度。在高度法中,反射器也可以通过合适的底座或线性导轨或移动轴(机床工作台、导线等)连接,放置在任何位置。测量并直接显示与理想直线(光轴)的偏差。调整过程可以实时执行。软件在坚固的IP65平板电脑上进行直观的一触式操作图:触摸屏显示器(过程控制)1.附加转角测量装置的测量值2.显示下一个测量位置3.测量数据的图形或表格4.打开表格和图形参数的侧面菜单5.激活平均数6.切换图形/表格视图7.结束当前测量8.启动时间控制的自动装置9.选择前一个/下一个测量位置10.保存当前测量位置的测量值11.测量的评估和报告的创建12.标记下一个测量位置评估,ISO 1101 包含菜单指南和报告的图形评估。图形评估、菜单指南和报告1.返回上一个窗口2.结束测量3.把报告另存为.pdf格式4.报告预览5.调整日志数据6.图形和评估的配置技术规范(直线度标准*) ELWIMAT GER 3000直线度(倾度计算法)直线度/对准(高度计算法)AKF46/40AKF140/40AKF300/65200-13 K46-4,8 K90-5 K200-13 K300-20 K自由度编号2 x Angle2 x Angle2 x Angle2 x Angle2 x Position;1 x Distance尺寸长度/m0 – 30 – 100 – 200,6 - 500,2 - 5**0,3 - 10**0,6 - 50**2 - 100**视场/mm***1...151...151...151…5010…20010…30010…80020…1000再现性R ****1.5 μm/m0.5 μm/m0.25 μm/m0.25 μm/m5 μm/m3 μm/m1.5 μm/m1 μm/m准确度、线性度 0,1 % of value + 2R 0,5 % of value + 2R焦距/mm461403002004690200300交流传感器重量/kg0,81,12,91,50,70,91,51,6交流传感器尺寸? 40 f8;107 x 62 x 110mm3? 65 f8? 40 f8? 40 f8;107 x 62 x 110mm3接口/原型USB 3.0、LAN、HDMI、RS232 / JSONUSB 3.0、LAN、HDMI、RS232/ JSON推荐反射器Magnetic mirror D50、Mirror D65D80Reflectors P-/ R-/ D-3000订购编号801 331801 333801 337802 335802 331802 332802 334802 335 交付范围交流传感器,11英寸触摸模块,软件ELWI-GER,电源,传感器电缆,遥控器选项:软件应用程序,USB零模型电缆脚踏开关,各种反射器,安装配件 *根据应用/要求配备相应的传感器/反射器***根据工作距离(测量长度)和反射器类型而定**取决于单反射镜或双反射* * * *取决于其他环境条件二, WECL100 无线式光电自准直仪 658nm (样机免费试用)(Wireless Electronic Autocollimator)光电自准直仪是一种测量反射镜片的微小转角的设备。通过不同的安装方法,可以对机 械部件和导轨的直线度、垂直度、平行度、平面度、转角等进行高精度测量。 瑞荧仪器的 WECL100 光电自准直仪采用了全新的设计理念,尺寸小巧,极具性价比。 采用了内置电池和无线连接方案,一方面可避免线缆应力对测量的干扰,另一方面方便 用户在调装过程中,随时通过手机或平板电脑读取结果。WECL100 无线式光电自准直仪 658nm (样机免费试用),WECL100 无线式光电自准直仪 658nm (样机免费试用)通用参数工作距离0-10米通光口径22mm波长658nm激光等级Class 2R分辨率0.1 urad重复性1 urad示值漂移1 urad(25°℃,2h)量程(x,y轴)-3500~+3500 urad示值误差任意300 urad内:5 urad任意3000 urad内:15 urad准确度土5 urad(-1500~+1500 urad)±15 urad (-3500~+3500 urad)标准JJG 202-2007光电自准直仪3级采样速率10 Hz充电电压5v电池工作时间5hours通讯方式WIFI客户端Windows/Android工作温度15~ 40 ℃模拟输出0~2.5V双通道尺寸51x310mm重量1250g自准直仪,是一种利用光的自准直原理将角度测量转换为线性测量的一种计量仪器。它广泛用于小角度测量、平板的平面度测量、导轨的平直度与平行度测量等方面。它是一种利用光的自准直原理测量平直度的仪器。当狭缝光源位于物镜的焦平面上时,光线将通过物镜折射为平行光束,再经由一垂直于光轴的平面反射镜将光束循原路反射回来。若是平面反射镜有偏斜,则放射光束聚焦后成的像,将偏离狭缝光源的原始位置。通过目镜读数,可测出反射镜对光轴垂直面的微小倾角。其内部结构如下图所示:自准直仪内部结构图。三, 激光分析自准直仪 350-1600nmDUMA光电激光分析自准直仪利用最新的成像技术为我们提供集聚焦自准直仪和光束轮廓仪于一体的专用仪器。自准直仪将准直仪和光束轮廓仪的功能组合在一个单元中。我们的精密激光器分析自准直仪(LAAC)将自准直仪的功能与激光束轮廓相结合产生入射激光束的精确角度定向及其发散角的测量。为了增加功能性,该系统在滑动尺上内置5xND(ND2, ND64,ND200, ND1000, ND100000)过滤器,显著增加了系统的动态范围。过滤器覆盖VIS范围,用于633nm波长的激光器。我们的精密LAAC具有内置调整功能,例如:快速对准激光,调整云台旋钮以及启用非常的增强校准程序。自准直仪应用是测量反射镜相对于自准直仪光轴的角度激光分析自准直仪 350-1600nm,激光分析自准直仪 350-1600nm产品特点用于检测和测量小角度偏差0.01秒分辨率动态范围大内置激光器用于粗对准功能齐全的软件套件允许您记录和记录您的测量结果通过USB端口连接到计算机精心设计的全合一装置产品应用LAAC的应用主要涉及到小角度信号的检测和测量位移。例如:入射激光束的测量。镜面角度的测量。相对于激光方向的机械轴测量。激光束轮廓和发散角的测量。直线工作台的直线度测量。旋转阶段的表征。楔角、棱镜角和多边形角的测量。反射面平行度的测量。表面平整度的测量。光学装置的校准。机器校准。CD/DVD ROM对齐。热稳定性测量。振动分析。瞄准孔瞄准技术参数参数技术规格激光器类型连续或脉冲响应波长350 – 1600 nm (在望远镜模式下)增益控制1 – 24 dB快门速度39 µ sec to 20 secFoV自准直仪±25’ (V) x ±40’ (H)FoV望远镜和光束轮廓仪±50’ (V) x ±1°20’ (H)通光孔径36 mm分辨率0.01 sec精确度1.0 sec相机(宽光谱范围)2.4 MegaPixels, 12 bit光源LED-650, optional: 1060nm.Special order 1310/1600 nm用于校准的回复反射器Ø 64mm N.W 280g Thread Ø 16mm ,5°光束发散测量低至 0.2 mRad 或更高视线保持与聚焦功能成正比±2.5 sec最小聚焦距离小于30cm内置粗瞄准激光指针638nm power 1.0mW Class 2 laser product,IEC60825-1同步软件、硬件(外部触发信号*)接口USB3.0曝光控制通过GUI编程外壳尺寸(长x宽x高),单位:mm230 x 135 x 160电源~2.5瓦(通过USB 3.0接口)重量(典型)2.5kg,含电缆四,DUMA激光自准直仪,LOD-PRO-20: 横向偏移装置Pro版业界最通用的钻孔瞄准装置。利用相对旋转潜望镜消除光学视差距离。将视线之间平行度保持在10秒弧以上。基于超稳定单片设计。DUMA激光自准直仪,LOD-PRO-20: 横向偏移装置Pro版,DUMA激光自准直仪,LOD-PRO-20: 横向偏移装置Pro版产品应用&bull 瞄准孔位于瞄准器和激光设备之间&bull 检查直线导轨的平行度&bull 检查旋转滚筒的平行度&bull 调整折叠激光共振腔技术参数参数值视差消除距离高达0.5 米 最大值:中心到中心的距离– 200 mm通光孔径标准 – 38 mm, 镜面尺寸 – 42 mm平行度最大偏差10 弧秒技术整体式潜望镜设计波长从深紫外(UV)到远红外( FIR)潜望镜的旋转角度360°折叠式潜望镜,不带底座275 mm折叠式潜望镜,带底座370 mm
    留言咨询
  • MRC激光自准直系统 400-860-5168转2255
    MRC公司的激光领域的产品主要是光束自准直系统,已获得ISO 13485认证。产品特点及优势:体积小,可无需电脑控制精度高,采用实时的模拟信号处理大口径(可支持镜片达4英寸)真空兼容支持低频率激光 主要应用:光路准直激光微加工光纤耦合泵浦探测 MRC公司的自准直系统有三个部分组成:一、控制系统:控制系统 (包括控制器,放大器,电源)完全被集 中到一个简洁紧凑的外壳中。它可由一个普通标准的12V 电源驱动。下图分别是:外壳顶部的薄膜按键和连接插座、外壳左侧的电源输入和输出插座、外壳右侧的输入插座和滑动开关。 二、压电转向镜:MRC公司提供了4种型号的转向镜。1. 转动镜 PKS 型号相比之下,转动镜 PKS 的倾斜角度比PSH 型号小。它的倾斜角度是 ±0.5 毫弧度。它可使大直径的激光通过。在粗调转动镜的零点位置时,也可由手动调节。 2. 转动镜 PSH 型号转动镜 PSH有比较大的倾斜角度。它的倾斜角度是±1 毫弧度。它也可由手动调节。为达到高谐振频率,这个型号配备了一个强弹簧并附加平衡体来优化效果。标准转动镜选用 1' ' 光镜,但它也可在利用适配器的情况下配备其他较大的光镜。 3. 转动镜 P4S30 转动镜P4S30 适合用于更大的光镜系统( 光镜 1' ' )和更大的倾斜角度。相对于含 2个压电叠层的 PKS和PSH 来说,P4S30 含有4个压电叠层 ,由此整个装置更加稳固。也因此拥有更高的共振频率。 因为个特性,P4S30 能用在带宽很大的系统当中,另外 P4S30 的倾斜角度更加宽大,它的光镜倾斜角可达到 ± 2 毫弧度, 也就是说它的光线倾斜度可达 ± 4 毫弧度. 三、探测器:MRC公司提供了3种型号的探测器。1. 标准四象限光电探测器 2. 高光强探测器- -四象限光电二极管可探测光强变化范围巨大许多激光系统中的激光光强不是固定的,而且它的变化范围时常非常大,或者激光光强变化需要有一定模式, 而这个模式变化范围非常大。新制的高光强探测器有完全不受光强变化的性能,它的信号感应敏感度完全能自动调节来配合光强的变化。激光系统的光强变化范围可以 1000 倍,我们的探测设备不会受其影响,也不需添加任何光学滤波片。信噪比(S/N)在整个光强变化范围内根本无明显变化。这个型号的探测器使我们的稳定系统的功能达到其超大的准确性,确保客户的激光系统的运行达到较佳状态。优 点 :• 激光可变化范围/光强范围10 3• 信号噪比使用标准四象限光电探测器低 3.红外线---紫外探测器对于光长在红外或紫外的激光系统,我们可提供以下特制四象限光电二极管来满足不同光线范围和不同探测感应区面积的需求。性能表如下: 4.PSD 探测器波长范围:320-1100nm 感光面积:9*9mm2PSD探测器和标准四象限探测器的区别在于,在PSD的整个感应区范围内,每个点都可被利用为激光稳定点的位置。因为在这个感应区范围内,电压和方位成线性比例。也就是说方位的变化也直接是电压的变化。利用这一特性,PSD 探测器相比于标准四象限探测器具有一个很大的优点。四象限探测器的激光稳定点一般必须选择在探测器的中心点,而使用 PSD 时,你可定义 PSD 感应范围内的任何一点作为激光稳定点。从而简化了手动调试工作。因为你只需要添加一个简单的外加电源,输出一个电压信号,可以通过对这个外加电压高低的调节,轻松地调节或改变方位的位置。由此轻松调节或改变激光稳定点的位置。
    留言咨询
  • API光电自准直仪 400-860-5168转0809
    仪器简介:API光电自准直仪是测小角度偏差的双轴精密电子装置。系统可测量线性轴的直线度和旋转轴的重复性及精度,与垂直光学器件共同使用可测量两正交轴的垂直度。系统软件对每一步的操作都进行提示,角度数据实时显示。测量结果可以直接拷贝为图形文件。与大多数光电自准直仪调试时间较长不同,API光电自准直仪可视红光与软件实时显示组合一起使得API的光电自准直仪的调整在几分钟内就可以完成。技术参数:1. 分辨率:0.1秒 2. 范围:± 400秒 3. 距离:15米(49.2英尺) 4. 精确度:± 1秒可选± 0.2秒主要特点:1. 测量小角度偏差 2. 测量旋转轴的定位重复性和精确度 3. 可视激光源快速对准
    留言咨询

激光自准直仪相关的资讯

  • 市场监管总局批准启用激光小角度副基准装置
    近日,市场监管总局批准启用由北京航天计量测试技术研究所和中国航空工业集团公司北京长城计量测试技术研究所分别研制建立的两项“激光小角度副基准装置”。 激光小角度副基准装置是国家平面角基准的重要组成之一,可复现和保存平面角单位,并作为激光小角度基准装置的备份,可为激光小角度测量仪、自准直仪、光学角规等小角度器件进行量值传递,满足航空航天用激光陀螺、精密机床用高精密导轨、芯片制造用光刻机等高精尖领域的小角度量值计量需求,对航空航天、高端装备制造、精密光学器件、集成电路等领域高质量发展发挥基础性作用。 北京航天计量测试技术研究所建立的激光小角度基准装置突破了400mm超精密殷钢正弦臂、大口径空心角隅棱镜研制瓶颈,以及双频激光干涉差动测角等关键技术,实现了0.001"超高精度角度测量分辨力,相当于地球上的观察者能够看清400公里外空间站上宇航员手中的铅笔芯。中国航空工业集团公司北京长城计量测试技术研究所建立的激光小角度副基准装置实现了超高分辨力小角度量值复现,具有微小角度的测量能力,其分辨力近似一个圆周的1亿3千万分之一对应的角度量值,准确度可以达到0.03″,相当于一根100公里长的圆棒,一端抬高15毫米对应的角度量值。 当前,我国测量仪器产业正在高速向国际领先水平发展,激光小角度副基准装置的建立有助于解决当前面临的大量小角度精密测量和准确度评价问题,将为我国小角度测量技术的发展提供有力的计量支撑,并推动高精度大范围自准直仪、激光小角度测量仪等高端测量仪器加速实现国产化。
  • 激光干涉测量:“聆听”宇宙的声音
    激光干涉测量助力空天探索 在空天探索领域,空间引力波探测是当前国际研究热点,作为人类观测宇宙的新窗口,引力波将为人类探索早期黑洞合并、超新星爆发等宇宙结构形成过程提供观测手段,对探索宇宙起源与演化具有重要的意义。为了探测中低频段的空间引力波,国内外研究人员计划在相距数十万乃至数百万千米的空间轨道上建立超高灵敏度星间激光干涉系统,该方法的本质是将现有的激光干涉超精密测量技术应用到外太空去,突破地面探测臂长的限制,摆脱地面各种干扰源对精密测量的影响。其关键技术是测量相距数百万公里的两个测试质量之间的间距变化,主要包括:测试质量与卫星平台之间的间距变化、两个卫星平台之间的间距变化,前者涉及到测试质量的多个自由度精密检测,探测灵敏度需要在1 mHz~1 Hz频段达到~1 pm/Hz1/2(平动)以及~1 nrad/Hz1/2(转动)水平。揭秘空间引力波探测的原理 空间引力波探测任务需要实现对测试质量皮米量级的平动测量以及纳弧度量级的转动测量,关键技术单元包括:激光外差干涉、差分波前传感以及高精度相位测量三部分,如图1所示,通过测量两测试质量之间的平动转动,获得其间距变化信息,从而探测引力波信号。图1面向空间引力波探测的激光外差干涉多自由度超精密测量技术示意图激光外差干涉 激光外差干涉测量原理如图2所示,频率相近的两束激光(测量光频率f1,参考光频率f2)合束后,合成波(频率为f1+f2)会存在一个包络,其频率为|f1-f2|,这一包络频率也被称为外差频率。 当测试质量在沿测量光传播方向上运动状态改变、或者引力波来临时,干涉仪的测量臂光程发生变化,表现为外差干涉信号的相位波动,即图2中紫色虚线部分。以经典迈克尔逊干涉结构为例,外差干涉信号相位的一个周期变化对应位移变化半波长(光程变化一个波长),有 其中,λ为激光输出波长,L为测试质量的等效位移,φ为外差干涉信号的相位变化。图2 激光外差干涉原理示意图差分波前传感 差分波前传感是一种基于激光波前相位比较的高精度角度测量方法,测量原理如图3所示。测量光与参考光合束后入射至四象限探测器表面,两束光满足干涉条件产生外差干涉信号,照射在探测器四个象限后会分别产生四路干涉信号。当测量目标平动时,四路外差干涉信号相位发生相应波动,与采用普通光电探测器的原理相一致;当测量目标转动时,测量光的波前相对参考光发生偏离,由于四象限探测器具有一定的空间间距,导致四路外差干涉信号的相位波动并不相同,通过对比不同象限的干涉信号相位差异,可以反演得到测量目标在水平方向和竖直方向上的转动角度,有 其中,θh为水平转动角,θv为垂直转动角 ФA/B/C/D为不同象限的外差干涉信号相位变化 kh/v为比例系数,由光束参数以及四象限探测器的几何参数共同决定,实验中常用偏摆镜配合自准直仪进行标定。图3 差分波前传感和四通道拍频信号波形示意图高精度相位测量 高精度相位测量可以通过锁相放大器或者相位计来实现,其基本原理如图4所示,外差干涉信号转化为电信号后与本地时钟(或外部参考)及其正交信号混频,低通滤波后分别得到Q信号(quadrature)和I信号(in-phase),计算I/Q反正切值并作相位解包裹运算得到相位差,Q信号作为相位误差信号反馈至本地可调时钟,更新本地时钟输出频率从而保持与输入外差干涉信号频率一致,形成锁相环路。图4 相位测量基本原理[1]国内外干涉仪研究进展LISA LISA (Laser Interferometer Space Antenna)是于1992年发起的一项探测1 mHz~1 Hz频段引力波信号的科学研究计划,这是最早开始、也是目前国际上发展最成熟的空间引力波探测计划,其中一项关键技术是实现测试质量的超高灵敏度多自由度测量。 2012年,德国汉诺威大学的Marina Dehne等人设计搭建了一套用于验证测试质量干涉仪噪声源及其消除技术的激光外差干涉测量系统,分析了多个噪声源(激光频率、激光强度、激光指向漂移、温度、偏振态、移频驱动边带、杂散光等)对相位读出的影响,并研究了多种噪声消减数据处理方法,在空间引力波探测目标频段成功实现了~1 pm/Hz1/2的超精密位移测量。 图5给出了LISA激光干涉平动转动测量技术发展时间线,该计划从提出开始,经历地面模拟论证、噪声源探索、技术卫星验证、光路布局优化测试等,距今已经开展了三十余年,其中用于测试质量多自由度测量的激光外差干涉技术灵敏度已经突破1 pm/Hz1/2和1 nrad/Hz1/2。目前光学干涉平台布局处于优化设计阶段,激光外差干涉超精密测量技术是否能够实现百万公里距离的两测试质量之间的皮米级平动测量并成功探测到宇宙深处的引力波,这仍然需要时间来给出答案。图5 激光干涉平动转动测量技术发展时间线(LISA)太极&天琴 2008年,我国科学家开始探讨中国的空间引力波探测计划,并于2012年正式成立了空间引力波探测工作组,2014年提出基于“日心”轨道和“地心”轨道两个独立的探测方案,即太极计划和天琴计划[2-3]。目前两者均形成了较为完备的星间激光干涉测量方案。 同LISA一样,太极和天琴于2019年分别发射了太极一号和天琴一号技术验证卫星,所搭载的光学干涉平台如图6所示,前者采用殷钢材料制作光学干涉平台基座、后者则采用光粘的方式来提高干涉装置的热稳定性,两者都包含有前端光程参考干涉仪和测试质量测量干涉仪。测试实验最新结果表明,空间激光干涉仪可以实现毫赫兹频段皮米量级的超精密位移测量,标志着我国在空间引力波探测中用于测试质量的激光外差干涉测量技术研究正逐渐走向国际前列。图6 我国空间引力波探测技术验证卫星激光干涉平台(a)太极一号[2](b)天琴一号[4] 其他 2021年,美国德州农工大学提出了一种一体式外差干涉仪,将分光镜波片等关键镜组胶粘成一个整体,提升干涉仪稳定性,并通过抽真空、被动控温、噪声建模消减等措施最终实现了33 pm/Hz1/2@0.1 Hz的平动测量。 2022年,清华大学谈宜东团队提出了一种用于测试质量五自由度测量的偏振复用双光束干涉仪,光路设计如图7所示,包含参考干涉仪(RHI)、双光束干涉仪(DBHI)和偏振复用干涉仪(PMHI),初步实验在10 mHz~1 Hz频段实现了优于10 pm/Hz1/2 以及20 nrad/Hz1/2的平动转动灵敏度测量。图7 偏振复用双光束激光外差干涉五自由度测量系统星辰宇宙,未来可期 “此曲只应天上有,人间难得几回闻”,如果说引力波是携带着浩瀚宇宙信息的乐曲,那么激光干涉超精密测试技术就是用来“听曲”的最灵敏的传声筒。在空间引力波探测领域,我国的激光外差干涉多自由度超精密测量技术相比于欧美LISA团队仍处于跟跑阶段,但未来有希望实现并跑甚至领跑。而且,空间引力波探测中涉及的外差干涉技术,可以对长度量进行高精度、大量程的超精密测量,可扩展应用于下一代高速、超精密二维或三维运动台的精确定位与运动控制,进而支撑我国超精密加工制造、IC 装备及尖端航空航天科技的发展,对于国民经济和工业建设有着重要的实际意义[5]。全文下载:空间引力波探测中的激光干涉多自由度测量技术.pdf参考文献:[1]Schwarze T S.Phase extraction for laser interferometry in space: phase readout schemes and optical testing[D]. Hannover: Institutionelles Repositorium der Leibniz Universität Hannover, 2018.[2] Luo Z R, Wang Y, Wu Y L, et al. The Taiji program: A concise overview[J]. Progress of Theoretical and Experimental Physics, 2021(5), 05A108.[3] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical & Quantum Gravity, 2015, 33(3): 035010.[4]Luo J, Bai Y Z, Cai L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013.[5] 谈宜东, 徐欣, 张书练. 激光干涉精密测量与应用.中国激光,2021,48(15) : 1504001.作者简介 谈宜东,清华大学精密仪器系,长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。 主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等项目40余项。在Nature Communications, PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表 SCI 论文 100余篇,授权发明专利36项,在国际会议Keynote/Plenary/Invited报告40余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。课题组介绍 清华大学精密仪器系激光技术与精密测量应用课题组,在激光器件及其物理效应、精密测量应用等方面开展了大量的工作,构成了从基础器件的设计和发明,到物理现象和效应的发现,进而在发现基础上的仪器发明,直至仪器的推广和应用这一较为完整的体系。先后研制了双折射-塞曼双频激光器及其双频激光干涉仪,实现了成果转化,成规模应用于国家02专项以及中芯国际、吉顺芯等公司进口光刻机干涉仪的替换;基于激光回馈原理的无靶镜纳米测量干涉仪,用于国家多个重点型号工程,包括:高分四号、一号以及激光聚变点火等。课题组还开展了远距离激光侦听、激光回馈调频连续波绝对测距、生化检测、pm量级灵敏度的激光干涉超精密测量技术(引力波专项)等研究。
  • 【好光机卓立造】看卓立汉光如何打磨出高质量光学精密机械产品
    光机产品质量的检验方法是否正确关系产品质量的好坏,看卓立汉光光机产品出厂前如何严把质量关?卓立汉光自1999年成立以来,不断深耕细作,我们从研发生产光学精密机械产品起步,目前公司的电控位移台、手动位移台、光学调整架等产品已经形成产品系列化,规格多元化,国内多家科研单位、激光加工设备厂商、光纤设备厂商在使用我们的产品。“好光机,卓立造”我们坚持从设计、零件选型、制造、装配、检验、包装、运输、直到售后服务做好质量保证,就是要让您 “付有所值”。公司的产品出厂前均按照国家标准、行业标准、或企业标准(部分高于上述同类标准)进行检验,我们根据 ISO9001 :2015 国际质量管理体系的要求,对于产品的技术指标负责,我们所使用的检测仪器定期送至国家计量单位进行校准。卓立汉光所使用的测量仪器和实验仪器:名称检验精度或范围厂家国别说明5维激光干涉仪长度方向:0.02μm角度:0.1"美国成品检测三坐标测量仪(也称三次元测量仪)系统分辨率:0.078μm测量精度:2.8μm+L/300合资(瑞典)零件检测、成品检测平面度检测仪0.01~0.001mm/m中国成品检测振动频率检测仪0.06~1000Hz中国成品检测安规综合测试系统漏电流:0.01mA接地电阻:0.01Ω英国成品检测(电子类)数显测微自准直仪0.1"中国成品检测齿轮双面啮合综合检查仪1μm中国零件检测万能工具显微镜1μm中国部分成品及零件检测洛氏硬度计20~70HRC中国部分成品及零件检测机械振动台加速度:10g;频率:10~80Hz中国成品检测高低温循环实验箱-40~150°C中国成品检测常规检测设备:包括000级大理石测试平台、万用表、示波器、光栅尺及数显表、万能角度尺、卡尺、刀口尺、卓立汉光可检测项目(部分)1、零件检测项目卓立汉光零件检测中除了常规检测手段外,针对 FA 工业品中的若干系列,如 :CXP 系列、SIN 系列、TBR 系列、XYR 系列电动滑台,核心零件采用 :洛氏硬度计、齿轮双面啮合综合检查仪、三坐标测量仪等进行检测,确保零件质量。检测零件检测项目检测范围检测设备常规机加工零件物理尺寸及图纸要求所有产品常规检测设备关键机加工零件有关键指标的基准面、定位面的精度等所有产品三坐标测量仪蜗轮蜗杆材料TBR系列、TBG系列等第三方检测机构蜗轮蜗杆硬度TBR系列、TBG系列等洛氏硬度计蜗轮蜗杆啮合精度限TBR系列齿轮双面啮合综合检查仪丝杠物理尺寸及图纸要求所有产品常规检测设备丝杠同轴度限CXP系列、SIN系列、XYR系列抽检三坐标测量仪、齿轮双面啮合综合检查仪导轨及轴承物理尺寸及图纸要求所有产品常规检测设备导轨及轴承基准面、定位面精度所有产品三坐标测量仪、常规检测设备常规外购零件物理尺寸及图纸要求所有产品常规检测设备关键外购零件有关键指标的基准面、定位面的精度等所有产品三坐标测量仪2、成品检验项目卓立汉光成品检测中除了常规检测手段外,针对 FA 工业品中的若干系列,如 :CXP 系列、SIN 系列、TBR 系列、XYR 系列电动滑台,新增:微步能力、微步运动时重复定位精度、微步运动时回程间隙、静态平行度、背隙等指标的检测,确保成品更符合工业设备使用要求。检测项目直线及升降滑台旋转、摆动滑台及对位平台检测设备行程所有产品所有产品常规检测设备重复定位精度所有产品所有产品常规检测设备微步运动重复定位精度限CXP系列/激光干涉仪回程间隙所有产品所有产品常规检测设备背隙CXP系列、KA系列、PA系列TBR系列、TBG系列推力计、千分表微步运动回程间隙限CXP系列/激光干涉仪运动性能(包括速度、加速度等)标称该技术指标的产品标称该技术指标的产品常规检测设备精度(绝对定位精度)CXP系列、KA系列、PA系列限TBR系列、DDR系列激光干涉仪微步能力限CXP系列/激光干涉仪或千分表运动直线度标称该技术指标的产品/激光干涉仪或自准直仪运动平行度标称该技术指标的产品/激光干涉仪或自准直仪静态平行度标称该技术指标的产品标称该技术指标的产品千分表或三坐标检测仪俯仰CXP系列、KA系列、PA系列/激光干涉仪或自准直仪偏摆CXP系列、KA系列、PA系列/激光干涉仪或自准直仪端面(轴向)跳动/限旋转滑台千分表径向跳动/限旋转滑台千分表最大净转矩/限TBR系列扭力扳手、测试工装

激光自准直仪相关的方案

激光自准直仪相关的资料

激光自准直仪相关的论坛

  • 激光功率调节的方式方法及光谱分辨率等光谱仪配置测试标准

    请教各位老师,关于光谱仪的参数配置我有几点疑问。1、我在某厂家拉曼光谱仪激光功率调节的参数描述中看到,仪器采用的是激光多级衰减片,16级,以方便针对不同样品调整激光功率。不同级别的衰减片是否对应的是比如0.1%到100%的激光强度衰减?除了使用衰减片进行调节之外,还有其他的功率调节方法吗?2、光谱分辨率、光谱重复性、灵敏度这几项各自所用的检验标准是否每个厂家都基本一样?

  • 激光粒度仪测试结果准确性的判断?

    我在欧美克还有马尔文的激光粒度仪器上对粉体的粒度进行测试,但是结果相差比较大,虽然有些粉体厂家已经告诉一些粉体的粒度,但是这个数值也不一定准确~另外我问过一些技术人员,听他们说从SEM图像上观察到的颗粒尺寸并不能作为激光粒度的参考,所以想问到底怎么来判定哪个的测试结果更准确些呢?另外不同的激光粒度测试仪所测出的粒度不同,那么对于这么大的不确定性,是不是说激光粒度仪测试的粒度只能进行对比测试,比如说测试不同条件下制备不同粉体颗粒尺寸的相对大小,而不能定量的确定每种条件下粒度的实际值?

  • 激光测距仪的应用与使用

    激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。它是提高高坦克、飞机、舰艇和火炮精度的重要技术装备。激光测距仪利用红外线测距或激光测距的原理测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c =299792458m/s 和大气折射系数n 计算出距离D。由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。当然,也有脉冲式测距仪,需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。建筑行业有一种手持式的激光测距仪,用于房屋测量,其工作原理与此相同。激光测距仪使用时需要注意的问题:激光测距仪不能对准人眼直接测量,防止对人体的伤害。同时,振动仪一般激光测距仪不具防水功能,所以需要注意防水。最新的美国里奥波特激光测距仪,由于在美国当地主要适用于户外狩猎爱好者,所以制作之处的优势即是可以防水防雾,配有丛林树木枝叶涂彩。激光器不具备防摔的功能,数字风速仪所以激光测距仪很容易摔坏发光器。    激光测距仪维护:   ① 经常检查仪器外观及时清除表面的灰尘脏污、油脂、霉斑等。   ② 清洁目镜、物镜或激光发射窗时应使用柔软的干布。严禁用硬物刻划,以免损坏光学性能。  ③ 本机为光、机、电一体化高精密仪器,使用中应小心轻放,严禁挤压或从高处跌落,以免损坏仪器。

激光自准直仪相关的耗材

  • 激光分析自准直仪 350-1600nm
    总览DUMA光电激光分析自准直仪利用最新的成像技术为我们提供集聚焦自准直仪和光束轮廓仪于一体的专用仪器。自准直仪将准直仪和光束轮廓仪的功能组合在一个单元中。我们的精密激光器分析自准直仪(LAAC)将自准直仪的功能与激光束轮廓相结合产生入射激光束的精确角度定向及其发散角的测量。为了增加功能性,该系统在滑动尺上内置5xND(ND2, ND64,ND200, ND1000, ND100000)过滤器,显著增加了系统的动态范围。过滤器覆盖VIS范围,用于633nm波长的激光器。我们的精密LAAC具有内置调整功能,例如:快速对准激光,调整云台旋钮以及启用前所未有的增强校准程序。自准直仪应用是测量反射镜相对于自准直仪光轴的角度技术参数产品特点用于检测和测量小角度偏差0.01秒分辨率动态范围大内置激光器用于粗对准功能齐全的软件套件允许您记录和记录您的测量结果通过USB端口连接到计算机精心设计的全合一装置产品应用LAAC的应用主要涉及到小角度信号的检测和测量位移。例如:入射激光束的测量。镜面角度的测量。相对于激光方向的机械轴测量。激光束轮廓和发散角的测量。直线工作台的直线度测量。旋转阶段的表征。楔角、棱镜角和多边形角的测量。反射面平行度的测量。表面平整度的测量。光学装置的校准。机器校准。CD/DVD ROM对齐。热稳定性测量。振动分析。瞄准孔瞄准技术参数参数技术规格激光器类型连续或脉冲响应波长350 – 1600 nm (在望远镜模式下)增益控制1 – 24 dB快门速度39 µsec to 20 secFoV自准直仪±25’ (V) x ±40’ (H)FoV望远镜和光束轮廓仪±50’ (V) x ±1°20’ (H)通光孔径36 mm分辨率0.01 sec精确度1.0 sec相机(宽光谱范围)2.4 MegaPixels, 12 bit光源LED-650, optional: 1060nm.Special order 1310/1600 nm用于校准的回复反射器Ø64mm N.W 280g Thread Ø16mm ,5°光束发散测量低至 0.2 mRad 或更高视线保持与聚焦功能成正比±2.5 sec最小聚焦距离小于30cm内置粗瞄准激光指针638nm power 1.0mW Class 2 laser product,IEC60825-1同步软件、硬件(外部触发信号*)接口USB3.0曝光控制通过GUI编程外壳尺寸(长x宽x高),单位:mm230 x 135 x 160电源~2.5瓦(通过USB 3.0接口)重量(典型)2.5kg,含电缆结构图示:
  • WECL100 无线式光电自准直仪 658nm (样机免费试用)
    (Wireless Electronic Autocollimator)光电自准直仪是一种测量反射镜片的微小转角的设备。通过不同的安装方法,可以对机 械部件和导轨的直线度、垂直度、平行度、平面度、转角等进行高精度测量。 瑞荧仪器的 WECL100 光电自准直仪采用了全新的设计理念,尺寸小巧,极具性价比。 采用了内置电池和无线连接方案,一方面可避免线缆应力对测量的干扰,另一方面方便 用户在调装过程中,随时通过手机或平板电脑读取结果。技术参数工作距离0-10米通光口径22mm波长658nm激光等级Class 2R分辨率0.1 urad重复性1 urad示值漂移1 urad(25°℃,2h)量程(x,y轴)-3500~+3500 urad示值误差任意300 urad内:5 urad任意3000 urad内:15 urad准确度土5 urad(-1500~+1500 urad)±15 urad (-3500~+3500 urad)标准JJG 202-2007光电自准直仪3级采样速率10 Hz充电电压5v电池工作时间5hours通讯方式WIFI客户端Windows/Android工作温度15~ 40 ℃模拟输出0~2.5V双通道尺寸51x310mm重量1250g自准直仪,是一种利用光的自准直原理将角度测量转换为线性测量的一种计量仪器。它广泛用于小角度测量、平板的平面度测量、导轨的平直度与平行度测量等方面。它是一种利用光的自准直原理测量平直度的仪器。当狭缝光源位于物镜的焦平面上时,光线将通过物镜折射为平行光束,再经由一垂直于光轴的平面反射镜将光束循原路反射回来。若是平面反射镜有偏斜,则放射光束聚焦后成的像,将偏离狭缝光源的原始位置。通过目镜读数,可测出反射镜对光轴垂直面的微小倾角。其内部结构如下图所示:自准直仪内部结构图。图中激光光源自2处狭缝释放,经3处分光棱镜反射后,通过1处透镜得到准直光输出。准直输出光被远处的反射镜反射回系统内部,并在CCD上成像。如果反射镜完全垂直光束,CCD上的成像点将会出现在正中央,表明反射镜相对光束的角度正好为90°,如果CCD上的成像点有一些偏离,表明反射镜相对光束的角度距离完全90°有一点偏差。筱晓光子的这款光电自准直仪采用了全新的设计理念,尺寸小巧,极具性价比。它采用了内置电池和无线连接方案,一方面可避免线缆应力对测量的干扰,另一方面方便用户在调装过程中,随时通过手机或平板电脑读取结果。
  • 爱特蒙特自准直仪
    爱特蒙特自准直仪• 5 Arcmin分辨率• 经济的设计• ?-20螺孔,用于安装到光学台式接线柱爱特蒙特光学生产的自准直仪是一款较精密的仪器,由消色差物镜、光源、分划板、分光镜、目镜等组成;分划板图案为十字交叉型,投影在反射表面上,反射回来的光束被转向,通过分光镜,到达校准目镜;在目镜处可测量从垂直反射面反射来的光的偏移角。本品有多种用途,比如测量极其微小的角度,以及校准和准直各种光学仪器和元气件;其它应用包括如测量小偏斜和振动等。本款自准直仪有个?-20的螺孔,可通过此孔固定在光具座和定位设备中,也可固定在V型槽或安装环上(管外镜为1.85英寸);管形灯组件由精密分划板和长寿命镜片灯组成。本品结构紧凑,功能多样,可作为光学仪器的光源使用,也可作为光学测试配件使用。如果作为后者,本品将会安装在V形槽或卡环中并固定在光具座或实验台上。产品信息角度容差(弧分)产品编码±55 Off-AxisGradations: 5#03-658技术数据
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制