土壤膨胀定仪

仪器信息网土壤膨胀定仪专题为您提供2024年最新土壤膨胀定仪价格报价、厂家品牌的相关信息, 包括土壤膨胀定仪参数、型号等,不管是国产,还是进口品牌的土壤膨胀定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤膨胀定仪相关的耗材配件、试剂标物,还有土壤膨胀定仪相关的最新资讯、资料,以及土壤膨胀定仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

土壤膨胀定仪相关的厂商

  • 400-860-5168转4535
    湘潭经航仪器仪表有限公司是一家拥有行业经验数十年的技术人员组成的专业性研究生产型企业,专注研发制造热工实验传导、热物理性能分析检测仪器,材料热分析、热膨胀收缩分析,玻璃、耐火材料实验测试仪器,陶瓷实验室成套检测仪器及装置(日用陶瓷、建筑陶瓷、工程陶瓷、多孔陶瓷、电子陶瓷、电瓷等),公路水泥、混凝土、土壤理化检测仪器及装置。塑料、橡胶、高分子复合材料功能检测仪器。建筑节能、绝热(保温)材料检测仪器及试验装置。实验室研磨、制样设备。程控箱式电炉、真空气氛电炉及特种电炉烘烤设备。新型电子综合试验机。新型专用分析检测仪器。教学实验室仪器。并且致力于与各大院校,研究机构合作研发行业非标设备。公司秉承企业创立初衷做细做精的原则,助力推动仪器行业技术发展。
    留言咨询
  • 顶合嘉(北京)国际贸易有限公司的主要产品有:元素分析仪、样品前处理设备(如:酸纯化器、酸蒸清洗器、球磨机、磨样机、电热板、熔样机、压片机、镶样机等)、力可仪器用备件、德国埃尔特仪器用备件、日本堀场仪器用备件、美国热电仪器用备件、美国PE仪器用备件、美国利曼仪器用备件、美国瓦里安仪器用备件、美国安捷伦仪器用备件、日本岛津仪器用备件、日本日立仪器用备件、有机元素分析仪备件、德国斯派克仪器用备件。 顶合嘉是中国进口标准物质领域的一面旗帜,所提供的标准样品范围如下:工业用化学性能标准样品 一、地质标准样品:包括矾土、红柱石、硬石膏、钙长石、锑矿、文石、重晶石、玄武石、硼砂、菱镁矿、铝矿、粘土、辉绿岩、铜矿、白云石、橄榄石、长石、萤石、辉长岩、金矿、花岗岩、石墨、铁片、铁矿、瓷土、金伯利岩、石灰石、锰矿、钼矿、镍矿、铌矿、贵金属矿、淤泥、磷酸盐、辉岩、金红石、沙岩、沉积物、页岩、板岩、土壤、钨矿、钛矿、锌矿、锆、钽矿、云母等 二、原材料标准样品:碳酸钙、水泥、煤、煤灰、焦炭、铜矿、焊料、玻璃、铅、锰、钼、镍、多元素氧化物、耐火材料、锆石、硅石、炉渣、矿渣、钢渣、污泥、钨粉、润滑油、催化剂等。 三、气体标准样品:铁基、有色金属等 四、铁合金标准样品:硼铁、铬铁、锰铁、钼铁、镍铁、磷铁、铌铁、钛铁、钨铁、矾铁、锆铁、硅铁。 五、铁基化学标样:纯铁、碳钢、低合金、硬质钢、硫化钢、高硅钢、钙钢、铅钢、钨钢、锰钢、工具钢、不锈钢、高合金钢、铸铁等。 六、有色金属化学标准样品:铝合金、钛合金、铬、铜、铜合金、白铜、黄铜、青铜、铅合金、镁合金、镍合金、锡、钛、钨合金、锌合金、锆合金等。 七、铁基光谱标准样品:纯铁、碳钢、低合金钢、铅钢、铋硒钢、钨钢、钙钢、钼钢、硅钢、镁钢、工具钢、镍钢、马氏体钢、高合金钢、17-4PH钢、不锈钢、铸铁等。 八、铝基光谱标准样品:纯铝、铝合金、铜合金、镁合金、锰合金、硅合金、锶合金、钛合金、锌合金等。 九、铜基光谱标准样品:铜、铬合金、铍钴合金、铜合金、锰合金、镁合金、白铜、镍合金、磷合金、黄铜、青铜、荧光铜合金等。 十、镍基光谱标准样品:镍、钴铬合金、钴铝合金、铬铁合金、铬钼合金、铬锰合金、铬铌合金、铬钛合金、铬钨合金、镍合金等。 十一、 其它光谱标准样品:镉、钴合金、铅合金、稀土镁、镁合金、钼、锡合金、钛合金、锌合金、钴合金、金、银合金等。 十二、 光谱控样(SUS):铝合金、钴合金、铜合金、黄铜、铅合金、镁合金、镍合金、锌合金、钛合金、铁合金、铸铁、钢、不锈钢、荧光玻璃等。 十三、 X荧光光谱仪用专用标准样品。 工业用物理性能标准样品 一、颗粒度标准样品:大小、数量 二、表面粗糙度、表面耐磨性标准样品 三、断裂韧度(陶瓷、金属)、维氏、努氏硬度、次生铁素体数量标准样品 四、磁矩标准样品。 五、冲击标准试样块 六、粘稠度、密度标准样品 七、热值测定标准样品 八、热膨胀、热导系数测定标准样品 九、各种光学性能测定用标准样品 食物和农产品、海产品标准样品 一、营养成分标准样品 二、微量元素标准样品 三、化肥标准样品 四、小麦硬度标准样品 这些产品全部原装进口,带有原产地证书。如果您对上述标准样品感兴趣请和我公司联系,我们将竭诚为您提供全方位服务。
    留言咨询
  • 目前是我国最大的土工实验室仪器制造企业,同时兼做公路仪器。公司主要产品有三轴仪系列、土工试验室微机数据采集处理系统、固结仪系列、剪力仪系列、击实仪系列、光电仪系列、沥青公路试验仪系列。
    留言咨询

土壤膨胀定仪相关的仪器

  • 土壤自由膨胀率测定仪WX-2000产品简介:土壤自由膨胀率测定仪适用于粘土的自由膨胀率,自由膨胀率为松散的烘干土粘在水中和空气中分别自由堆积的体积之差与在空气中自由堆积的体积比,以百分数表示,用以判定无结构的松散土粘在水中的膨胀特性。 本仪器符合交通部JTJ-2000标准要求。用于测定石料在液体中的膨胀率,广泛适用于各科研单位、学校、矿山、冶金,铁路,交通等部门。土壤自由膨胀率测定仪WX-2000技术参数:★无颈漏斗★量土杯★搅拌器★量表:量程5mm、精度0.001mm的千分表★水槽:160×160×130mm★试样规格:圆柱体Φ50~60mm,高度约等于直径 正方体边长为50~60mm,两端面应平行且磨平★外形尺寸:500×500×150mm土壤自由膨胀率测定仪试验:★取代表性风干土样碾碎,使其全部通过0.5mm筛。混合均匀后,取约50g放入盛土盒内,移如烘箱,在105~ll0℃温度下烘至恒温取出,放在干燥器内冷却至室温。 ★将无颈漏斗装在支架上,漏斗下口对正量土杯中,并保持距杯口l0mm距离,如图所示。 ★从干煤器内取出土样,用匙将土样倒入杯中,盛满后沿杯口刮平土面,再将量土杯中土样倒入匙中,把量土杯按图所示仍放在漏斗下口正中处。将匙中土样一次倒入后移开漏斗,用平口刀垂直于杯口轻轻刮去多余土样(严防震动),称记杯中土质量。 ★按本规程3规定,称取二个试样,进行平行测定,两次质量差值不得大于0.1g。 ★将A筒置于试验台上,注入蒸馏水30mL,并加入5mL5%的分析纯氯化钠溶液,然后将土杯中的土样倒入量简内。 ★用搅拌器搅拌量简内悬液,搅拌器应上至液面下至底,搅拌10次(时间约10s),取出搅拌器,将搅拌器上附着的上粒冲洗入量筒,并冲洗量筒内壁,使量筒内液面约至50ml。刻度处。 ★量筒中土样沉积后约每隔5h记录一次试样体积,体积估读全0.1 mL。读数时要求视线与土面在同一平面上,若土面倾斜,取高低面读数的平均值。当两次读书差值不大于0.2 mL时,即认为膨胀稳定。用此稳定读数计算自由膨胀率。 ★WX-2000土壤自由膨胀率测定仪按下列公式计算土样的自由膨胀率: FS=V-V0/V0 X 100 式中:FS一自由膨胀率,%,计算至1%; V-土样在量筒中膨胀稳定后的 体积,mL; VO-量土杯容积,mL,即干土自由堆积体积。★使用后立即擦拭干净,放于干燥处。点击搜索:多功能电动击实仪
    留言咨询
  • DLPY-DW低温膨胀系数测定仪,低温膨胀仪一、概述: 该仪器适用于测量从低温(-30℃)至180℃之间金属材料,陶瓷、釉料、耐火材料、塑料以及其它非金属材料等随温度变化发生的体积变化(膨胀和收缩)。仪器参考标准:GB/T1036-2008《塑料线性膨胀系数的测定-石英膨胀计法》,GB/T2572-2005 纤维增强塑料平 均线膨胀系数试验方法。二、主要技术参数: 1、温度范围:-30~180℃2、测定变形范围:±2.5mm。3、位移传感器灵敏度0.1um,自动校正量程;4、控温精度:±1℃;5、计算机自动计算膨胀系数、体膨胀、线膨胀量; 6、自动计算补偿系数并自动补偿,也可人工修正; 7、试样尺寸:Ф6~10×50mm、10×10×50mm,方形、圆形样品均可;8、电源:220V,2KW;9、自动控温、记录、存储、打印数椐,打印温度-膨胀系数曲线。所有试验操作均由计算机界面完成,操作方便易学并提供全套软件。经销商含16%税含运费报价名称单位数量单价(元)合价(含16%专票) 低温膨胀仪台14300043000电脑台120002000合计45000
    留言咨询
  • 低温膨胀仪 400-860-5168转1037
    仪器简介:经特殊改装的对开(蛤壳状)管式炉包围烧结石英样品架和顶杆,样品架可以放置长50mm(2”)和直径10mm(3/8”)的样品,N型样品/控制热电偶可以监测样品的温度,可调节接触压力、高精度的LVDT(±2.54mm的线性范围)监测样品长度的变化。对于低温操作,不锈钢的低温部件放置在样品架上方,然后合上蛤壳状炉子。低温储存池,有一个从池子底部出来的垂直传输管;低温储存池则坐落在炉子的上方。小的杜瓦瓶(包括在标准配置中)用来手动向低温储存池传输和发送液氮,液氮会充满低温管并冷却样品(样品不浸泡在冷却液中,如液氮)直到达到设定的样品温度,Orton控制仪开始以设定的升温速率加热样品,至最高温度500℃。在低温测试时,有机玻璃罩子将测试头(LVDT系统)盖住,向罩子内通干燥的惰性气体,防止测试头结冰、结霜。技术参数:Orton低温膨胀仪是专门为测量从低温(-170℃)至500℃之间陶瓷、玻璃、金属、复合材料、水泥、矿物质以及聚合物随温度变化发生的体积变化而设计的。 在移除特殊设计的低温部件后,这个膨胀仪可以测定室温至1000℃之间的膨胀系数,就是一台Orton的DIL 2010 STD膨胀仪,Orton的低温膨胀仪实际上就是在一台台式仪器上有两个膨胀仪的功能。技术指标:温度范围:-170~500℃或室温~1000℃最大样品体积:长50mm,直径10mm样品架和顶杆:石英升温速率:1~30℃/分钟LVDT的移动范围:0.1"(2.54mm)LVDT的移动分辨率:0.0000009”( 0.00002 mm 或 0.02um)主要特点:1. Orton玻璃膨胀计,操作简单,只需把样品放置在相应的样品槽中即可。只需对操作者进行简单的培训即可; 2. 采用LVDT跟踪,数据的重复性好,重复性为±0.004 PLC; 3. 样品尺寸大小可调; 4. 软件界面直观,友好。软件功能包括:温度或时间区域内比较、线性增长百分数的比较、膨胀系数的差值或平均值、玻璃化转变温度的计算、玻璃膨胀软化点的计算、a-b石英转变温度的计算、任何温度范围内的膨胀系数的计算
    留言咨询

土壤膨胀定仪相关的资讯

  • 电池膨胀行为研究:圆柱电芯膨胀特性的表征方法
    圆柱电芯的膨胀力主要源于电池内部的化学反应和充放电过程中的物理变化。在充电过程中,正极上的活性物质释放电子并嵌入负极,导致正极体积减小,负极体积增大。同时,电解液在充电过程中发生相变及产气副反应,也会造成一定的体积变化。这些因素共同作用,使得圆柱电芯在充放电过程中也会产生膨胀力。随着充放电次数的增加,这种膨胀力逐渐累积,导致电芯的尺寸发生变化。这种尺寸变化不仅会影响电池的外观和使用寿命,还可能对电池的安全性产生影响。因此,准确表征圆柱电芯的膨胀力对于优化电池设计、提高电池性能和安全性具有重要意义。表征圆柱电芯膨胀行为的方法电池的膨胀行为分为尺寸上的膨胀量和力学上的膨胀力测量。目前,对于软包电池、方壳电池膨胀行为的测量表征,已有较多研究和相应的测试手段及设备,在此不再赘述。但对于圆柱型电池的膨胀行为研究相对较少,也没有较好的商业化膨胀力评估手段。目前在文献资料中,常见的圆柱电芯膨胀行为的表征手段主要有以下几种:1、估算法如图1和图2所示,有研究表明圆柱型电池的膨胀变化与电池的SOC和SOH状态具有一定的相关性。但该方法建立在圆柱型电池的膨胀在整个圆周上是均匀的。图 1 单次充放电过程中,圆柱型电池的可逆膨胀变化图 2 电池老化过程中,圆柱型电池的SOH变化与不可逆膨胀之间的关系直接测量法通过在圆柱电芯外部施加压力,通过贴附应变片测量应变,该方式计算复杂,无法直观体现膨胀力。2、影像分析法影像分析法是一种无损检测方法,如利用CT断层扫描、中子成像、X射线、超声波等影像技术观察电芯内部的形变情况,通过分析影像的变化来测算电芯尺寸变化。这种方法适用于多种类型的圆柱电芯,且对电芯无损伤。然而,影像分析法需要使用昂贵的专业设备,且测量精度易受到设备性能和操作人员经验的影响。3、薄膜压力法一般需解剖圆柱电池,在电芯内部嵌入薄膜压力传感器或压敏纸的方式,从而获得圆柱电芯在不同方位上的膨胀力分布情况。但薄膜压力传感器精度一般较低,成本高;而压敏纸分析,具有滞后性。该测试均为破坏性测试。表征圆柱电芯膨胀行为存在的问题有研究表明,圆柱型电池电池实际的膨胀是明显偏离预期的均匀膨胀,在周长上会形成膨胀和收缩的区域,这取决于圆柱型电池的卷芯卷绕方向。因此,使用体积变化来研究老化或预测SOC需要特别谨慎,因为膨胀会因测量位置而显著不同,测量结果可能因测量方法而有偏差。电弛膨胀测试解决方案电弛自主研发的电池膨胀测试系统,高度集成了温控、充放电、伺服控制、高精度传感器等模块,并提供企业级系统组网功能。该系统可对多种电池种类和电池形态的电池进行膨胀行为测试,包括碱金属离子电池(Li/Na/K)、多价离子电池(Zn/Ca/Mg/Al)、其他二次金属离子电池(金属-空气、金属-硫)、固态电池,以及单层极片、模型扣式电池(全电池、半电池、对称电池、扣电三电极)、软包电池、方壳电池、圆柱电池、电芯模组。同时,可为不同形态电池提供定制化夹具,开展手动加压、自动加压、恒压力、脉冲恒压、恒间距、压缩模量等不同测试模式的研究。本产品还可方便扩展与电池产气测试、内压测试、成分分析的定制集成。为锂电池材料研发、工艺优化、充放电策略的分析研究提供了良好的技术支持。参考文献Jessica Hemmerling, 2021. Non-Uniform Circumferential Expansion of Cylindrical Li-Ion Cells—The Potato Effect. Batteries, 7, 61.
  • XRD冷热台助力我国零膨胀钛合金特殊材料研发
    在航空航天、微电子器件、光学仪器等精密仪器设备中应用的结构部件,对尺寸稳定性有极为严苛的要求。由于温度升高或降低而导致的材料形状变化对其功能特性和可靠性有着很大影响。因此,具有近零热膨胀性能的钛合金在需要高尺寸稳定性的结构中具有极高的应用价值。例如,美国国家航空航天局已针对太空望远镜所需的超高稳定性支撑结构,使用这类钛合金制造了镜体支架。在激光加工领域,已有使用这种材料制造的光学透镜筒体,解决了透镜焦点热漂移的问题。这类材料特殊的热膨胀性能与其内部αʺ马氏体物相的各向异性热膨胀行为有关。但是,现有的通过冷加工工艺获得的低热膨胀系数限制于单相马氏体相区,即使用温度上限通常小于~100℃,限制了其在工程领域的广泛应用。近期东莞理工学院中子散射技术工程研究中心王皓亮博士在冶金材料领域的TOP期刊《Scripta Materialia》上发表题目为《Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb》的研究论文。论文介绍了在宽温域线性零膨胀钛合金特殊热膨胀性能形成机理方面取得的新的进展。论文第一作者为东莞理工学院机械工程学院王皓亮博士,通讯作者为机械工程学院孙振忠教授,共同通讯作者为比利时鲁汶大学Matthias Bönisch博士,合作作者有中国散裂中子源殷雯研究员和徐菊萍博士等。王皓亮博士主要从事金属材料物相晶体结构、微观组织及应力分析;钛合金固态相变及功能性研究;高等级耐热钢焊接接头蠕变失效预测研究。1.拉曼光谱在材料研究中的应用(图1.Ti22Nb合金通过析出纳米尺寸第二相获得的宽温域零膨胀性能)研究人员利用中子衍射技术表征材料微观结构的巨大优势,配合使用XRD冷热台(变温范围 -190℃到600℃ ,温控精度±0.1℃,文天精策仪器科技(苏州)有限公司)实现测试样品的温度变化,精确鉴定了线性零膨胀Ti22Nb钛合金中的物相组成,证实了依靠溶质元素扩散迁移形成的等温αʺiso相也具备调控热膨胀系数的功能。相对于冷加工材料,该研究中通过机械+热循环处理获得的双相复合材料,其低热膨胀行为的作用范围被拓宽至300℃。结合其他原位X-ray衍射和EBSD/TKD电子显微表征技术,在纳米到微米尺寸范围内全面分析了材料微结构要素,澄清了热循环过程中纳米尺寸αʺiso相的形成路径,揭示了微观晶格畸变/相变应变、晶体学取向参量和宏观热膨胀系数的之间的定量关系,为设计具有较宽使用温度范围的低/负热膨胀钛合金提供了新的途径,是从理论研究向技术和产品层面跃进的重要依据和前提。 (图2.(a)不同状态Ti22Nb合金中子衍射谱线,(b)原位升降温XRD谱线(c)母相及析出相衍射峰强度随温度演化规律)(图3.原位升降温XRD测试)图4.原位XRD冷热台
  • 淬火/变形膨胀仪(相变仪)在上海大学正式投入使用
    世界最先进的相变仪产品—德国巴赫公司的DIL805淬火/变形膨胀仪,已于2006年11月23日在上海大学顺利验收,并正式投入使用。DIL805相变仪外观雍容华贵、工艺制作精美、性能先进可靠、操作及其方便,处处绽放着顶尖级仪器的品位,备受用户的青睐。我们相信该仪器必将成为我国钢铁及合金研究领域最得力的助手。 有关此产品的详细介绍,请登陆www.esum.com.cn或电话咨询:010-84831960。

土壤膨胀定仪相关的方案

土壤膨胀定仪相关的资料

土壤膨胀定仪相关的试剂

土壤膨胀定仪相关的论坛

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Nech用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

  • 请教,有没有可以检定DMA和热膨胀议的地方?

    不知道有没有可以检定DMA和热膨胀仪的地方?我们单位是个检测中心,所有的仪器都要进行计量检定,找了中国计量院,可他们只能检TGA和DSC,DMA和热膨胀仪都检不了,请教大家,有没有可以检这两台仪器的地方?谢谢了!

  • 热膨胀仪(干涉计法)

    关于有关顶杆热膨胀仪的几个问题作者美国安特公司的王恒博士1.如果想达到更高的准确度,应该用非接触干涉膨胀仪。干涉膨胀仪的优点是,光学非接触、绝对测量、测量准确度高。但造价昂贵、仪器结构及操作都很复杂、温度不容易超过1000℃,对样品形状及表面要求苛刻,不适用于材料的烧结过程的研究。一般,为建立一级热膨胀标准的权威机构采用非接触干涉膨胀仪为主要手段。请注意一下,干涉计本身的测长很准,但组装在膨胀仪上后,因为与样品有关的热系统的关系,对于样品的随温度变化的真正伸长量的测量准确度会随温度升高而下降。比如在日本计量所作的双路差频干涉计和在美国西海岸的Precision Mesurement and Instrument Corp作的迈可耳逊干涉计,其本身的位移变化量可测到1nm到3nm左右,但用在热膨胀测量应用上,因热系统的各部份的热变形等原因,“零点漂移”在几百度时就达到了30至50nm,属于随机误差,不能修正的。请见国际热物理杂志Internation1 J. Thermophys. Vo1 23, No.2,2002年3月的文章“Development of a Laser Interferometric Dilatometer for Measurment of Thermal Expansion of Solid in Temperature range 300 to 1300K”d在的549页关于干涉仪的零漂的3.2节中的图4中,在300 to 1300K的温度范围内的零漂达到了50nm。这是不能修正的,必须考虑在误差分析内。因此,对于干涉法热膨胀仪来讲,伸长量的测量准确度受系统的热稳定性影响而不能达到干涉计本身的测长准确度的。商品化的干涉膨胀仪的最高温度是700℃。2.作为最传统的热膨胀仪的测量手段的顶杆法热膨胀仪的优点是,使用容易、结构简单适用各种形状的样品等。缺点是,属于接触、相对测量方法,需要用标准样品对系统定标,测长准确度低,但可达到很高温度,适用于材料的烧结过程的研究。顶杆法热膨胀仪结构特点是,用比样品长几倍的顶杆与试样接触,把试样的长度变化传递给加热炉外的与其接触的位移传感器。这样,在顶杆上存在从高温(试样)到室温(位移传感器)的温度变化,整体的热稳定性或者说“热环境”与干涉膨胀仪的情况比,就“差”了更多,温度超高越严重,这是自然引起而不可避免的。这是不能用标准样品的定标来完全消除的。这将导致位移传感器读数的波动,在有些情况下,甚至导致测量结果的突变。在文章“Examination of Thermal Expansion Uniformity of Glassy Carbon as a Candidate Standard Reference Material For Thermal Expansion Measurements”中的第94页第一段,指出对于玻璃碳材料的测量,第一次的测量结果不可靠而必须取消,在高温段和低温段的数据也要取消。即使顶杆法热膨胀仪的位移传感器本身测量准确度能达到了0.1微米以下,对试样的热膨胀量引起的真正伸长量测量准确度也很难说达到0.1微米。日本计量所曾把一个双路差频干涉计组装到一台顶杆法热膨胀仪的位移测量的头部作过实验,表明了这一点。当时的课题是考核顶杆法热膨胀仪的特性。就好比是用微伏电压表接一般的热电偶测温,尽管电压表可以读到微伏,但在毫伏读数以下对测温已没有任何意义了。3.LVDV本身的测量位移量的准确度达不到nm量级(1)目前最好螺旋测微仪的准确度是±1微米。Netzsch用于标定LVDT的是螺旋测微仪,所有的被定标的仪器的测量准确度不可能超过用于定标的仪器的测量准确度,所以即使用最好的螺旋测微仪定标,其热膨胀仪的LVDT也不可能得到优于1微米的准确度。离开准确度,来谈灵敏度是没有实际意义的。在日本计量所考核Netzsch的DIL402时,为了修正LVDT的读数,正是基于这个道理,用双路差频干涉计而不用螺旋测微仪。(2)LVDT的线性度用双路差频干涉计对Netzsch 的DIL402的LVDT的考察的结果表明,当位移量为105.23微米时,LVDV的读数与干涉计的读数的偏差达到0.69微米。因此,线性度实际上为0.66%之大,已排出了热效应的影响。而在NETZSCH的所有产品中,并没有对线性度进行修正的。这也说明了所谓nm量级读数的不正确性,是没有意义的。(3)在TN105中提到的其它因素,如对电压、温度、处理电路等极其敏感,易引起漂移,等等,其nm量级的读数在噪声之中。需要经常进行定标等。4.采用数字位移传感器在顶杆热膨胀仪上,比LVDV有很多的优点,请见TN105数字位移传感器的0.5微米的测长分辨率(也可以说准确度),对于顶杆热膨胀仪来讲,具有实际的意义,完全满足顶杆热膨胀仪的各种应用场合。5.对于低膨胀(如10-7/K)量级的材料在有限的温度范围内(如几十度)内的热膨胀的高精度的测量,顶杆热膨胀仪不适用,应采用非接触绝对的干涉热膨胀仪,并用阶梯等温的加热方式。我们接到过超低膨胀(如10-7/K)的材料在有限的温度范围内的高精度的测量的课题,比如说,一组10-7/K的量级的玻璃,要求分辨出不同成份、工艺下对热膨胀的影响。曾用Netzsch的DIL402和双路差频干涉膨胀仪进行了研究,同时也对DIL402的测量误差进行分析。结果表明,干涉膨胀仪能在10℃的温度间隔内,分辨到1.5X10-8/K,这里的分辨指的是在可能 的最大测量误差范围(或者说是极限误差,3σ程度)外。如果最大测量误差大于1.5X10-8/K,就不能说分辨到1.5X10-8/K。而DIL402的结果(加热范围为300℃,已得到足够的膨胀量),对于所有的材料都没有给出意义的分辨,因所测的各种材料的热膨胀率都在其测量误差范围内,即在12X10-8/K(最大误差,3σ)的误差带内。作为这一课题的附带结果再次表明,Netzsch关于达到1.25nm/digit的测长sensitivity的声称是没有实际意义的。如果有意义的话,已达到了干涉热膨胀仪的测长精度,而为什么实际的测量误差却是干涉热膨胀仪的测量误差的10倍?!有任何问题,欢迎随时交流。

土壤膨胀定仪相关的耗材

  • 上海楚柏分馏头(具环形膨胀管)
    上海楚柏为您提供各种规格的分馏头(具环形膨胀管),产品列表如下:(详细的价格请联系我们的玻璃器皿销售经理)。编号 名称 规格型号    单位V02023401 分馏头(具环形膨胀管) 柱内径15mm柱身700mm全长800mm上口24/29 下塞24/29  套V02023402 分馏头(具环形膨胀管) 柱内径15mm柱身1300mm全长1400mm上口24/29 下塞24/29  套V02023403 分馏头(具环形膨胀管) 柱内径20mm柱身700mm全长800mm上口24/29 下塞24/29   套V02023404 分馏头(具环形膨胀管) 柱内径20mm柱身1300mm全长1400mm上口24/29 下塞24/29  套V02023405 分馏头(具环形膨胀管) 柱内径25mm柱身700mm全长800mm上口24/29 下塞29/32   套V02023406 分馏头(具环形膨胀管) 柱内径25mm柱身1300mm全长1400mm 上口24/29 下塞29/32 套Truelab提供的化学玻璃仪器采用优质玻璃原料,由专业技师加工而成。烧器类采用硬质95料或GG-17高硅硼玻璃,抗化学腐蚀防离子污染,耐骤冷骤热性好。量器类刻刻度精密、透明度高。Truelab提供的玻璃仪器种类多,规格全,欢迎新老客户选购。上海地区自车送货上门。上海楚柏实验室设备有限公司为您提供实验室整体解决方案(实验室设计、实验室家具、仪器、耗材、试剂等&hellip &hellip )
  • 上海楚柏分馏头(具蛇形膨胀管)
    上海楚柏为您提供各种规格的分馏头(具蛇形膨胀管),产品列表如下:(详细的价格请联系我们的玻璃器皿销售经理)。编号名称 规格型号   单位V02023301分馏头(具蛇形膨胀管) 柱内径15mm柱身700mm全长900mm上口24/29 下塞24/29  套V02023302 分馏头(具蛇形膨胀管)柱内径15mm柱身1300mm全长1500mm上口24/29 下塞24/29  套V02023303 分馏头(具蛇形膨胀管) 柱内径20mm柱身700mm全长900mm上口24/29 下塞24/29   套V02023304 分馏头(具蛇形膨胀管) 柱内径20mm柱身1300mm全长1500mm上口24/29 下塞24/29  套V02023305 分馏头(具蛇形膨胀管) 柱内径25mm柱身700mm全长900mm上口24/29 下塞29/32  套V02023306 分馏头(具蛇形膨胀管) 柱内径25mm柱身1300mm全长1500mm上口24/29 下塞29/32  套Truelab提供的化学玻璃仪器采用优质玻璃原料,由专业技师加工而成。烧器类采用硬质95料或GG-17高硅硼玻璃,抗化学腐蚀防离子污染,耐骤冷骤热性好。量器类刻刻度精密、透明度高。Truelab提供的玻璃仪器种类多,规格全,欢迎新老客户选购。上海地区自车送货上门。上海楚柏实验室设备有限公司为您提供实验室整体解决方案(实验室设计、实验室家具、仪器、耗材、试剂等&hellip &hellip )
  • 热膨胀芯(TEC)光纤跳线
    热膨胀芯(TEC)光纤跳线特性热膨胀芯增大了模场直径(MFD),便于耦合不仅更容易进行自由空间耦合,还能保持单模光纤的光学性能工作波长范围:980 - 1250 nm或1420 - 1620 nm光纤的TEC端镀有增透膜,以减少耦合损耗库存的光纤跳线:2.0 mm窄键FC/PC(TEC)到FC/PC接头2.0 mm窄键FC/PC(TEC)到FC/APC接头具有带槽法兰的?2.5 mm插芯到可以剪切的裸纤如需定制配置,请联系技术支持Thorlabs的热膨胀芯(TEC)光纤跳线进行自由空间耦合时,对位置的偏移没有单模光纤那样敏感。利用我们的Vytran® 光纤熔接技术,通过将传统单模光纤的一端加热,使超过2.5 mm长的纤芯膨胀,就可制成这种光纤。在自由空间耦合应用中,光纤经过这样处理的一端可以接受模场直径较大的光束,同时还能保持光纤的单模和光学性能(有关测试信息,请看耦合性能标签)。TEC光纤经常应用于构建基于光纤的光隔离器、可调谐波长的滤光片和可变光学衰减器。我们库存有带TEC端的多种光纤跳线可选。我们提供两种波长范围:980 nm - 1250 nm 和1460 nm - 1620 nm。光纤的TEC端镀有增透膜,在指定波长范围内平均反射率小于0.5%,可以减少进行自由空间耦合时的损耗。光纤的这一端具有热缩包装标签,上面列出了关键的规格。接头选项有2.0 mm窄键FC/PC或FC/APC接头、?2.5 mm插芯且可以剪切熔接的裸光纤。?2.5 mm插芯且可以剪切的光纤跳线具有?900 μm的护套,而FC/PC与FC/APC光纤跳线具有?3 mm的护套(请看右上表,了解可选的组合)。我们也提供定制光纤跳线。更多信息,请联系技术支持。自由空间耦合到P1-1550TEC-2光纤跳线光纤跳线镀有增透膜的一端适合自由空间应用(比如,耦合),如果与其他接头端接触,会造成损伤。此外,由于镀有增透膜,TEC光纤跳线不适合高功率应用。清洁镀增透膜的接头端且不损坏镀膜的方法有好几种。将压缩空气轻轻喷在接头端是比较理想的做法。其他方法包括使用浸有异丙醇或甲醇的无绒光学擦拭纸或FCC-7020光纤接头清洁器轻轻擦拭。但是请不要使用干的擦拭纸,因为可能会损坏增透膜涂层。Item #PrefixTECEnd(AR Coated)UncoatedEndP1FC/PC (Black Boot)FC/PCP5FC/PC (Black Boot)FC/APCP6?2.5 mm Ferrule with Slotted FlangeScissor CutCoated Patch Cables Selection GuideSingle Mode AR-Coated Patch CablesTEC Single Mode AR-Coated Patch CablesPolarization-Maintaining AR-Coated Patch CablesMultimode AR-Coated Patch CablesHR-Coated Patch CablesStock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesThermally-Expanded-Core (TEC) Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch Cables耦合性能由于TEC光纤一端的纤芯直径膨胀,进行自由空间耦合时,它们对位置的偏移没有标准的单模光纤那样敏感。为了进行比较,我们改变x轴和z轴上的偏移,并测量自由空间光束耦合到TEC光纤跳线和标准光纤跳线时的耦合损耗(如右图所示)。使用C151TMD-C非球面透镜,将光耦合到标准光纤和TEC光纤。在980 nm 和1064 nm下,测试使用1060XP光纤的跳线和P1-1060TEC-2光纤跳线,同时,在1550 nm下,测试使用1550BHP光纤的跳线和P1-1550TEC-2光纤跳线。通过MBT616D 3轴位移台,让光纤跳线相对于入射光移动。下面的曲线图展示了所测光纤跳线的光纤耦合性能。一般而言,对于相同的x轴或z轴偏移,TEC光纤跳线比标准跳线的耦合损耗低。而在x轴或z轴偏移为0 μm 时,标准跳线与TEC跳线的性能相似。总而言之,这些测试结果表明,TEC光纤对光纤位置的偏移远远没有标准光纤那样敏感,同时还能在zui佳光纤位置保持相同的耦合损耗。请注意,这些测量为典型值,由于制造公差的存在,不同批次跳线的性能可能有所差异。测量耦合性能装置的示意图。上图显示了用于测量耦合性能的测试装置。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。11550BHP标准光纤和P1-1550TEC-2热膨胀芯光纤之间的耦合性能比较图。损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2= Pi x (1.5μm)2= 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber:Area = Pi x (MFD/2)2= Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber:7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71mW(理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18mW(实际安全水平)SMF-28 UltraFiber:8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW(理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210mW(实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / GlassInterfaceaTypeTheoretical DamageThresholdbPractical SafeLevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2a.所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。b.这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。c.这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。MFD定义模场直径的定义模场直径(MFD)是对在单模光纤中传播的光的光束尺寸的一种量度。它与波长、纤芯半径以及纤芯和包层的折射率具有函数关系。虽然光纤中的大部分光被限制在纤芯内传播,但仍有极小部分的光在包层中传播。对于高斯功率分布,MFD是指光功率从峰值水平降到1/e2时的直径。MFD的测量通过在远场使用变孔径法来完成MFD的测量。在光纤输出的远场处放置一个通光孔径,然后测量强度。在光路中放置连续变小的通光孔径,测量每个通光孔径下的强度水平;然后以功率和孔径半角(或数值孔径)的正弦为坐标作图得到数据。使用彼得曼第二定义确定MFD,该数学模型没有假设功率分布的特定形状。使用汉克尔变换可以从远场测量值确定近场处的MFD大小TEC光纤跳线,980 nm - 1250 nmItem #Fiber TypeOperating WavelengthMode Field DiameteraAR CoatingbMax AttenuationcNAdCladding/Coating DiameterConnectorsJacketTECStandardTECStandardP1-1060TEC-21060XP980 - 1250 nm12.4 ± 1.0 μm6.2 ± 0.5 μm850 - 1250 nm≤2.1 dB/km @ 980 nm≤1.5 dB/km @ 1060 nm0.070.14125 ± 0.5 μm /245 ± 10 μmFC/PC (TEC) to FC/PC?3 mmFT030-YP5-1060TEC-2FC/PC (TEC) to FC/APCP6-1060TEC-2?2.5 mm Ferrule (TEC) to Scissor Cut?900 μm在1060 nm下的模场直径典型值。光纤跳线只有TEC端镀有增透膜。zui大衰减指定为没有终端且没有膨胀的光纤。由于MFD较大,光纤热膨胀芯端的数值孔径偏小。光纤TEC端的值为计算所得。产品型号公英制通用P1-1060TEC-2TEC光纤跳线,980 - 1250 nm,镀增透膜,FC/PC(TEC)到FC/PC,2 mP5-1060TEC-2TEC光纤跳线,980 - 1250 nm,镀增透膜,FC/PC(TEC)到FC/APC,2 mP6-1060TEC-2TEC光纤跳线,980 - 1250 nm,镀增透膜,?2.5 mm插芯(TEC)到裸纤,2 mTEC光纤跳线,1460 nm - 1620 nmItem #Fiber TypeOperating WavelengthMode Field DiameteraAR CoatingbMax AttenuationcNAdCladding/Coating DiameterConnectorsJacketTECStandardTECStandardP1-1550TEC-21550BHP1460 - 1620 nm19.0 ± 1.0 μm9.5 ± 0.5 μm1050 - 1620 nmRavg 0.5 dB/km @ 1550 nm0.060.13125 ± 1.0 μm /245 ± 15 μmFC/PC (TEC) to FC/PC?3 mmFT030-YP5-1550TEC-2FC/PC (TEC) to FC/APCP6-1550TEC-2?2.5 mm Ferrule (TEC) to Scissor Cut?900 μm在1550 nm下的模场直径典型值。光纤跳线只有TEC端镀有增透膜。zui大衰减指定为没有终端且没有膨胀的光纤。由于MFD较大,光纤热膨胀芯端的数值孔径偏小。光纤TEC端的值为计算所得。产品型号公英制通用P1-1550TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,FC/PC(TEC)到FC/PC,2 mP5-1550TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,FC/PC(TEC)到FC/APC,2 mP6-1550TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,?2.5 mm插芯(TEC)到裸纤,2 m
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制