宏基因组分析

仪器信息网宏基因组分析专题为您提供2024年最新宏基因组分析价格报价、厂家品牌的相关信息, 包括宏基因组分析参数、型号等,不管是国产,还是进口品牌的宏基因组分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合宏基因组分析相关的耗材配件、试剂标物,还有宏基因组分析相关的最新资讯、资料,以及宏基因组分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

宏基因组分析相关的厂商

  • 上海锐翌是一家专业从事基因科技及健康服务的国家高新技术企业,依托高通量测序技术平台,专注于人体微生物组前沿技术和研究成果在基础科研领域的突破,以及在医学上的转化应用,在大肠癌早筛早诊、感染微生物宏基因组检测等精准医疗领域开发检测技术及应用方案,致力于为医疗机构提供疾病早期检测和健康综合管理服务。
    留言咨询
  • 400-860-5168转5108
    浙江迪谱诊断技术有限公司‍‍‍‍是一家国家高新技术企业‍‍,位于杭州临平国家级经济开发区,由国际化优秀团队共同组建,以创新型诊断技术服务于生命健康领域的公司。迪谱诊断通过强化制造能力、着重应用开发、深化专科联盟、加强数据建库、注重渠道建设、协同行业合作,致力于实现高端分子诊断设备及其创新型诊断试剂盒的研发生产、NMPA注册与临床应用,开发与建立遗传病、药物基因组学、肿瘤、传染病、健康管理等领域的专家联盟,推动高端基因检测技术应用标准、临床应用共识及指南的制定。其一核心平台核酸质谱DP-TOF在遗传病筛查、慢病精准用药指导、肿瘤防治、多重感染以及健康管理等领域有广阔的应用前景。为院内自行开展项目提供包括心血管疾病合理用药基因检测、精神类疾病合理化用药基因检测、肿瘤化疗用药基因检测、遗传性耳聋基因检测、遗传性易栓症基因检测、肿瘤/心脑血管易感基因检测等从样本、本地化检测结果到可视化报告的临床分子检测全套解决方案,具有显著的卫生经济学效益。其二核心平台纳米孔单分子测序完美结合一代测序长读长和二代测序高通量的技术优势,为临床应用及转化研究提供了一个应用范围广泛、通量使用灵活的便携式测序方案。应用领域包括感染性疾病研究、遗传病疾病研究、肿瘤领域及基础科研等提供科研合作服务及感染宏基因组测序、靶向多重病原体检测解决方案。迪谱诊断将继续秉承“智造、创新、协同、求实“的理念,努力成为全球领先的高端基因解析产品制造者,让准确、经济、快速、简单的基因检测技术惠及更多中国百姓,让医疗转变为科学的艺术,为实现中国“健康梦”贡献力量。
    留言咨询
  • 苏州工业园区鸿基洁净科技有限公司于2004年成立于中国净化之乡的苏州。公司从成立到现在一直在洁净领域从事咨询、研发、设计、生产、销售和服务。所生产的产品包括空气净化设备、悬浮颗粒监测仪器,洁净室设计及施工,拥有先进的技术和较强的研发实力。在电子、制药、精密机械、航空航天等领域得到广泛应用。在悬浮粒子监测领域目前拥有15项专利并已应用在各个项目中。 本公司拥有近数十名高级工程师、工程师、高级技师组成的专业技术人员和经验丰富的现场施工专业队伍,并配套了一整套先进的检测仪器和安装工具,加上公司引进国外优秀企业的先进管理模式,使我们有充足的信心向用户保证:   我们提供给用户的产品是高品质、性价比优越的。   鸿基公司始终坚持用户第一、技术先进、服务至上、探索不止的宗旨,竭诚为国内外企业服务。   您的光临指导,将是我们的荣幸!让我们携起手来,一起飞跃! 主要产品? 空气净化设备:洁净层流车,负压称量室,洁净工作台,洁净风淋室,传递窗,洁净层流罩,送风单元FFU,生物安全柜,洁净工作站,洁净新风送风机组等 ? 检测仪器:尘埃粒子计数器,悬浮粒子多点检测系统,浮游菌采样器等 ? 消静电空气净化设备:消静电洁净工作台、风淋室、洁净室等空气产品 ? 不锈钢制品:不锈钢工作台,不锈钢货架,不锈钢货柜,不锈钢小推车等不锈钢制品 ? 工程类:洁净室工程、洁净厂房空调工程、除尘通风系统工程、 新风换风类工程、无菌病房和洁净手术室工程等的设计、安装、调试、服务、技术咨询,同时可承接地面环氧自流地坪涂装和防静电地坪涂装。  无尘无菌洁净室设计,建设工程 ? 相关的专业技术咨询、人员培训和维护保养企业文化: 我们的使命: 永远向无菌超净的环境极限挑战 企业经营理念:诚信、共赢、创新、精良 企业经营方针:诚信为本,品质第一,服务至上 奋斗目标:通过自身努力,吸收一切可利用的先进文化、知识,探索不止,成为国内空气净化行业知名专业企业
    留言咨询

宏基因组分析相关的仪器

  • DNBSEQ-G99:全力释放你的测序速度DNBSEQ-G99是目前全球中小通量测序仪中速度最快的机型之一。基于华大智造核心的DNBSEQTM测序技术,G99对生化、流体、光学、温控等多个核心系统进行了优化和提升,同时内置计算模块,使得测序生信一体化,12小时可完成 PE150测序,适用于小样本量的肿瘤靶向测序、小型全基因组测序、低深度WGS测序、个体识别、16s宏基因组测序等多种应用,数据产出高效且优质。产品特点8 Gb~96 Gb per run满负荷PE150仅需12小时支持多种读长,包括PE50、SE100、PE150、PE300、SE400,测序精准度高,可连续读取12个以上单个重复碱基序列信息适用于小样本量的肿瘤靶向测序、小型全基因组测序、低深度WGS测序、个体识别、16s宏基因组测序等多种应用性能参数单次运行最大载片数流道最大reads数 /载片*支持读长***数据量Q30**测序时间 (DNB-FQ)2180 MSE100/PE508 Gb~16 Gb>90%5 hPE15024 Gb~48 Gb>85%12 hPE30048 Gb~96 Gb>85%30 hSE40032 Gb~64 Gb 75%20 h* 有效 reads 数值根据特定标准文库运行所得,实际应用文库受样本类型、建库方式会有所波动。** 高于 Q30 的碱基百分比及运行时间是特定标准文库通过整个运行平均所得,实际应用表现受样本类型、文库质量、插入片段长度等影响。*** 现有试剂盒支持SE50、PE100读长,同时仪器设有 SE50、PE100 测序模式。方法学应用推荐读长数据量样本数量/RUN1张载片2张载片靶向捕获/多重检测伴随诊断Onco panelPE100/ PE150小panel: ~1 Gb /样本2448遗传病诊断小panel(地贫、耳聋等)PE150地贫: ~0.2 M reads /样本耳聋: ~5 Gb /样本40048008ATOPlex panel(呼吸道、新冠等)PE100/ PE150呼吸道panel: 5 M reads /样本新冠panel: 5 M reads /样本1632WESPE15015 Gb /样本1~22~4甲基化Onco 靶向甲基化PE150~5 Gb /样本48小型基因组测序未知病原宏基因组SE50/ SE100Meta: 20 M reads /样本48细菌、病毒 WGS测序PE100/ PE150单菌: ~1 Gb /样本16~2432~4816S 测序PE300≥0.1 M reads /样本5761152低深度 WGS测序NIPTSE50~10 M reads /样本816PGSSE50转录组测序RNA-SeqSE50/ PE150定量: ~25 M reads /样本转录组: ~6 Gb /样本3468司法DNA特征识别SE400~0.8 M reads /样本96192* 数据量推荐及样本数量仅做预估参考,具体数据量及样本数量需根据实际情况调整。相关产品货号货号产品型号900-000561-00DNBSEQ-G99RS900-000560-00DNBSEQ-G99ARS940-000409-00DNBSEQ-G99RS 高通量测序试剂套装(G99 SM FCL SE100/PE50)940-000410-00DNBSEQ-G99RS 高通量测序试剂套装(G99 SM FCL PE150)940-000520-00DNBSEQ-G99RS 高通量测序试剂套装(G99 SM App-C FCL SE100)940-000413-00DNBSEQ-G99RS 高通量测序试剂套装(G99 SM App-C FCL PE150)940-000415-00DNBSEQ-G99RS 高通量测序试剂套装(G99 SM FCL PE300)940-000417-00DNBSEQ-G99RS 高通量测序试剂套装(G99 SM FCL SE400)940-000624-00DNBSEQ-G99RS 清洗试剂盒(G99 SM FCL)按需自选UPS
    留言咨询
  • 华大智造DNBSEQ-T7基因测序仪全面、灵活的中大型基因组测序仪活跃你的日处理能力DNBSEQ-T7日产出高质量数据1-6 T,广泛适用于全基因组测序、超深度外显子组测序、表观基因组测序、转录组测序和肿瘤Panel等大型测序项目。基于华大智造独有的DNBSEQ&trade 技术,DNBSEQ-T7全面升级生化、流体及光学系统,使测序更加高效多产。超级通量模式:1-6Tb生产级的DNBSEQ-T7通量惊人,单张载片最大有效reads数可达5000M,最大数据量达1.5Tb,四载片连载日产数据量高达6Tb,广泛适用于全基因组测序(60例/天)、超高深度外显子组测序(400例/天)、宏基因组测序(1000例/天)、肿瘤Panel测序(6000例/天)等大型测序项目。超级运行模式:1-4张载片独立运行DNBSEQ-T7拥有4联载片平台,灵活支持1-4张载片独立运行:每张载片在上机后可自动完成清洗和回收,能够在24小时内无缝衔接多轮测序。超级速度模式:SE50~5小时/PE100~20小时/PE150~24小时以新冠病毒基因测序为例,DNBSEQ-T7使用SE50进行新冠病毒测序,5~6个小时可完成一轮测序,如高通量宏基因组测序(100M reads/样本),每轮可检测~128例样本,每天可做4轮检测;再如多重测序筛查(5M reads/样本),每轮可检测~2300例样本,每天可做3轮检测,日检测通量近万。一站式整体解决方案:端到端围绕DNBSEQ-T7,华大智造提供全面的自动化解决方案。在上游的样本前处理方面,可适配华大智造自动化样本制备系统MGISP系列(MGISP-960/MGISP-100);在下游的计算存储方面,华大智造推出了集计算、存储和分析软硬件为一体的“T7伴侣”:ZTRON生信自动化服务平台。在整体的实验室管理方面,华大智造ZLIMS实验室信息管理系统提供端到端的解决方案。产品特点日产能高达6Tb,全天候提供高质量数据满负荷PE150≤24小时4联芯片平台,支持PE150和PE100不同读长并行测序性能参数DNBSEQ-T7性能参数产品型号DNBSEQ-T7芯片数/Run4Lane/芯片1有效reads数/芯片*5000M支持读长PE100PE150* 有效读取的最大数量基于内部标准文库的测序。 实际输出可能因样品类型和库制备方法而异。 DNBSEQ-T7性能表现读长数据产出数据质量Q30 *运行时间 **PE1001~4Tb85%~20hPE1501.5~6Tb80%~24h* Q30以上的基数百分比是整个运行中内部标准文库的平均值。 实际性能受样品类型,文库质量和插入片段长度等因素影响。**运行时间包括芯片上机,测序,生成Cal.文件等。Cal.是由华大智造测序仪basecall软件生成的二进制文件格式。
    留言咨询
  • 日立DS3000紧凑型基因分析仪 上世纪90年代初,三大科学计划之一的 “人类基因组计划”启动,并于2001年完成了人类基因组草图,而这一伟大工程,正是基于“Sanger法”的DNA测序技术。 随着科学技术的不断发展,一代测序受检测效率的限制,无法应对大量基因组测序的需要,因此二代测序、三代测序技术,甚至四代高通量测序技术不断涌现。但一代测序因其极高的准确率,直到今天仍然在科研、法医、疾控、食药及临床领域等广泛使用,也是高通量测序验证过程中的重要环节,因此,被称为基因检测的金标准。制药,食品,科研等研究机构均需要通过测序来进行基因分析,为了满足该需求,日立研发了紧凑型基因分析仪“DS3000”,现已全新上市。 日立DS3000秉承日立高新多年来研究开发的毛细管技术与激光辐射技术,作为小型CE测序仪不仅外形“紧凑”,还实现了“高性能”及“高速处理”,可轻松完成片段与测序分析。此外,本产品还采用了环境友好型设计,通过减少在产品使用时排出的CO2排放量,为客户提供可降低环境负荷的产品。DS3000采用4通道毛细管,一次性可处理32个样本,可同时进行6色荧光检测。支持短串联重复序列分析、微卫星不稳定性检测、突变分析和测序分析等用途。 产品特点:1. 操作简便-结构紧凑&触摸屏设计设备采用GUI的触摸屏显示设计,宽400 mm×长600 mm×高600 mm,结构紧凑,节省空间。触摸屏采用扁平化设计,界面布局直观,加强操作的便捷与实用性。 -卡槽式包装耗材耗材包装采用卡槽式设计,安装简便。-流程高效1. 简化的操作流程,安装方法和步骤说明清晰易懂,无论是初次使用仪器的新手,还是不定期使用仪器的用户,均可轻松完成操作。 2. 配备远程监控系统:DS3000配备远程监控系统,支持“远程设备访问”,可以在Web端监测设备状态,设置检测条件,显示分析结果及生成报告等。进一步提升了操作的便利性,实现高效的工作流程。3. 方便普适,用户可使用任何电脑:可使用用户端网络及电脑输出报告,进行二次解析等。 2. 系统智能-智能耗材管理耗材使用情况实时监控,根据参数,系统能够自动计算出耗材剩余使用次数,提高耗材管理效率。-检测结果智能判断校准检测通过波形及数值表现每道毛细管的信号强度,样本检测根据质量参数设置,自动判断检测结果合格与否,一目了然。 3. 性能优异-创新无泵注胶系统——无需清洗泵,无需排气泡DS3000 采用无泵注胶系统,并成功研发出可移动密封式注射型聚合物,经久耐用,在填充聚合物时无需排气泡,避免了不必要的浪费,同时免除了以往的清洗步骤,有助于缩短维护时间并降低成本。由此可降低用户维修频率,操作性能得到极大提升。 -创新设计光源——使用寿命更长DS3000采用全新设计的激光二极管光源 (LD光源),受模拟脉冲信号控制,DS3000仅在检测时打开光源,与以往光源相比,延长了实际亮灯时间。 日立DS3000基因分析仪作为一款小型的集成化台式DNA分析仪,“紧凑”而“高效”,可以帮助生命科学专家在各种规模实验室进行Sanger测序和DNA片段分析工作。 (此产品仅供科研使用)
    留言咨询

宏基因组分析相关的资讯

  • 【安捷伦】鉴定新型冠状病毒,宏基因组二代测序(mNGS)技术十分关键!
    自 2019 新型冠状病毒(2019-nCoV)肺炎疫情爆发以来,相关科研单位便紧锣密鼓地开展病毒研究工作,并取得了一系列重要的研究成果。2 月 3 日,Nature 在线发布了复旦大学张永振教授团队的一项重要研究成果,该团队对患者支气管肺泡灌洗液进行了宏基因组二代测序(mNGS),鉴定出了一种新型冠状病毒,并发现该病毒基因组与蝙蝠体内发现的 SARS 样冠状病毒基因组有 89.1% 的相似性[1]。张永振教授团队发表的文章截图 | 图源:Nature2 月 20 日,bioRxiv 预印本平台发布了华南农业大学沈永义教授、肖立华教授团队关于新冠病毒中间宿主的研究成果。通过对穿山甲样品进行宏基因组分析,该团队发现穿山甲为新型冠状病毒潜在中间宿主[2]。沈永义教授、肖立华教授团队发表的文章截图 | 图源:bioRxiv可以说,宏基因组测序在新病原体的诊断、监测、跟踪,以及溯源方面具有关键作用,更是新冠病毒研究的一大助力。宏基因组测序:病原体检测的新风口1998 年,威斯康辛大学的 Jo Handelsman 提出宏基因组学(Metagenomics)的概念,并将其定义为:一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系、以及与环境之间的关系为研究目的的新的微生物研究方法[3]。包括宏基因组学在内的各类组学研究(右)相较传统遗传学与生物化学方法(左)在全基因水平的研究上效率更高 | 图源:Science2014 年,新英格兰医学杂志发表宏基因组二代测序(mNGS)确诊钩体病的首例临床应用案例[4],打响了病原体 mNGS 的第一枪。新英格兰医学杂志发表宏基因组二代测序(mNGS)确诊钩体病的文章截图 | 图源:NEJM短短 5 年来,mNGS 在新发病原体鉴定、罕见重要病原体诊断和临床大数据研究等方面取得诸多进展。例如在 2018 年,Clinical and Research in Hepatology and Gastroenterology 发布了上海华山医院感染科张文宏教授团队使用 mNGS 协助临床诊断肝结核的案例,mNGS 的适时使用,准确快速地帮助临床明确了患者的发热病因,推动了临床的精准诊断[5]。张文宏教授团队发表文章截图 | 图源:ScienceDirect2019 年,中国临床专家也达成共识,认可了宏基因组分析和诊断技术在急危重症感染领域的临床应用[6]。临床专家共识文章截图 | 图源:万方宏基因组二代测序的流程及原理宏基因组二代测序的检测流程可以大致分为5个步骤:核酸提取、文库构建、上机测序、生物信息学分析与报告解读[7]。具体来看,对于不同的临床样本,核酸提取前需要进行不同的前处理,比如痰液液化、破壁、去宿主等以提高病原体检出率。RNA 病毒需要在文库构建前进行逆转录,生成 cDNA。文库构建的目的在于给未知序列的核酸片段两端加上已知序列信息的接头以便于测序,单样本文库构建完成后需要经历 PCR 扩增、再将多个文库样本混合后进行测序。测序完成后,数据会自动进入搭建好的病原体自动分析流程,该流程包括去除人源宿主序列和低质量序列、以及微生物数据库比对注释等步骤。最后,解读专家根据自动化系统产生的初步结果,再结合部分临床指标、样本类型、病原体种类等因素进行综合分析解读。宏基因组工作流程示意图 | 图源:Nature Biotechnology样本文库质量是宏基因组测序的关键由于环境中的微生物种类五花八门,相对复杂,构建一个高质量的宏基因组文库在整个检测流程中便显得十分重要。故而在取样时,我们要严格遵循取样规则,在取样中应尽量避免对样本的干扰,缩短保存和运输的时间,使样品尽可能代表自然状态下的微生物原貌。并且要采用合适的方法,既要尽可能地完全抽提出环境样品中的 DNA/RNA,又要保持较大的片段以获得完整的目的基因或基因簇。在构建 RNA 文库之前需要对 RNA 样本进行完整性评估[8],只有达标的样本才能进入下一阶段反转录及文库构建。宏基因组文库的质量直接关系到测序的数据量,在影响成本的同时也影响了测序时间,因此,为了提高测序准确性、减少测序过程中的风险,测序前需要测定文库样品的浓度和片段大小分布,确定合适的上机 pooling 方案和测序深度。可见样本的质量控制对于宏基因组测序的重要性。安捷伦自动化样本质控解决方案安捷伦在核酸蛋白质量控制领域拥有愈二十年的经验,针对不同来源样本,分析靶标和通量需求提供全套的自动化解决方案。安捷伦的 2100 生物分析仪是目前最为普遍使用的二代测序质控设备。安捷伦在 2100 生物分析仪上最早开发出了 RNA 完整性参数(RIN),它已成为全世界公认的 RNA 质控指标,它以 0-10 的数值直观反应 RNA 样本的完整性程度,为标准化的实验操作提供了样本质量评估的参考标准。在本次新冠病毒(RNA 病毒)的序列确定中,安捷伦 2100 生物分析仪发挥了重要作用。随着测序样本量的增加,特别是随着后续病毒变异监测以及病毒溯源工作的逐步展开,安捷伦中-高-超高通量自动化核酸质控平台(4200 tapestation 和 AATI FA)将发挥它们的优势。参考文献[1] Yong-Zhen Zhang , Edward C. Holmes,Lin Xu,et al. A new coronavirus associated with human respiratory disease in China[J].nature,2020.[2] Xiao K, Zhai J, Feng Y, et al. Isolation and Characterization of 2019-nCoV-like Coronavirus from Malayan Pangolins[J]. bioRxiv, 2020.[3] Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products[J]. Chemistry & biology, 1998, 5(10): R245-R249.[4] Wilson M R, Naccache S N, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing[J]. New England Journal of Medicine, 2014, 370(25): 2408-2417.[5] Jing-Wen A , Yang L , Qi C , et al. Diagnosis of local hepatic tuberculosis through next-generation sequencing: Smarter, faster and better[J]. Clinics and Research in Hepatology and Gastroenterology, 2018, 42(3):178-181.[6] 宏基因组分析和诊断技术在急危重症感染应用专家共识组. 宏基因组分析和诊断技术在急危重症感染应用的专家共识[J]. 中华急诊医学杂志, 2019, 28(2):151-155.[7] Quince C, Walker A W, Simpson J T, et al. Shotgun metagenomics, from sampling to analysis[J]. Nature biotechnology, 2017, 35(9): 833.[8] Fan W, Su Z, Bin Yu, et al. A new coronavirus associated with human respiratory disease in China[J]. Nature. 2020 Feb 3. [Epub ahead of print]推荐阅读:1. 抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手!https://www.instrument.com.cn/netshow/SH100320/news_521879.htm2. Agilent 2100 生物分析仪https://www.agilent.com/zh-cn/product/automated-electrophoresis/bioanalyzer-systems/bioanalyzer-instrument/2100-bioanalyzer-instrument-228250关注“安捷伦视界”公众号,获取更多资讯。
  • 回放视频集锦|基因测序仪新秀/单细胞和空间组学/临床分子诊断/宏基因组
    仪器信息网讯 2023年7月12日-14日,仪器信息网主办的“第六届基因测序网络大会”成功举办!会议共吸引近1400名来医院、高校、科研院所、海关系统、疾控系统、第三方测序服务商、工业领域等各界代表参会,盛夏酷暑,丝毫不减听众们的参会热情。本次会议发掘多家创新性企业分享最新技术和产品,并邀请到中国科学院微生物研究所、复旦大学等知名高校阜外医院等三甲医院、海关系统、第三方检验医学中心等多个单位的专家代表,内容覆盖临床分子诊断、单细胞空间组学、病原微生物宏基因组和靶向测序、海关检疫、分子育种等热门技术和应用会场。应广大用户要求,现将征得本人同意的报告视频整理如下。点击“回放”即可进入视频播放页面。2023/7/12 新仪器新技术RNA直接测序技术研究进展胡松年中国科学院微生物研究所 研究员回放单细胞时空组学测序杨朝勇厦门大学 教授回放Microbe-seq微生物单细胞基因组测序技术郑文山墨卓生物科技(浙江)有限公司 首席技术官/国产高通量基因测序仪孙雷深圳市真迈生物科技有限公司 CTO回放分层深度学习网络和异构计算进行高性能的NGS测序罗少波上海芯像生物科技有限公司高级系统总监/基于Bio-CMOS芯片的纳米孔测序技术的创新与突破涂浩波安序源生物科技(深圳)有限公司 产品总监回放2023/7/12 单细胞空间组学空间组学与新一代数字病理技术的开发与运用曹罡华中农业大学 教授回放单细胞诊疗生物芯片常凌乾北京航空航天大学 教授/IDH突变型影响肝内胆管癌异质性和免疫微环境IC)白凡北京大学生物医学前沿创新中心(BIOPIC) 教授/单细胞测序技术在肿瘤诊断中的应用及探索何牮上海交通大学医学院单细胞组学与疾病研究中心 单细胞测序平台主任/2023/7/13 临床分子诊断NGS液体活检在肺癌复发监测和预后预测中的应用于津浦天津医科大学肿瘤医院研究员/心血管疾病分子诊断周洲中国医学科学院阜外医院实验诊断中心主任/毛细管电泳技术临床新应用顾晓璐赛默飞世尔科技基因科学事业部资深技术专家回放靶向测序(tNGS)在感染病原诊断中的价值与探索鲁炳怀中日友好医院 主任医师回放mNGS应用于感染性疾病中的探索及报告解读陈宏斌北京大学人民医院 副研究员/基于液体活检的肿瘤早筛研究进展及临床应用沈依帆重庆医科大学附属第一医院 中级检验技师/2023/7/13 病原微生物宏基因组&靶向测序mNGS与急危重诊疗:现状与展望宋振举复旦大学附属中山医院/病原体宏基因组分析:罕见及新发感染诊疗一体化解决方案陈力复旦大学回放宏基因组测序(mNGS)与靶向测序(tNGS)在感染病原诊断中的各自价值优势及技术探索谢名洲予果生物科技(北京)有限公司回放tNGS的实践和应用茆晨雪金域医学回放病原体宏基因组高通量测序的临床应用孙桂芹浙江中医药大学回放2023/7/14 海关检疫基因测序技术概述及在口岸食品检疫中的应用与展望王艺凯中国海关科学技术研究中心回放 1个月基因测序技术在口岸卫生检疫工作中的应用汪海波珠海国际旅行卫生保健中心(拱北海关口岸门诊部)回放高通量测序技术在进出境动物检疫及物种鉴定方面的应用和前景展望唐泰山南京海关动植物与食品检测中心回放基因测序技术在口岸检验鉴定中的应用杜智欣南宁海关技术中心回放 1个月2023/7/14 遗传育种油菜杂种优势的基因组设计育种蒋立希浙江大学/高通量测序在作物参考基因组和微生物组学的应用刘贵明北京市农林科学院生物技术研究所/高通量自动化分子育种技术与装备自主创新及应用实践徐大彬成都瀚辰光翼科技有限责任公司回放多维组学驱动的棉花功能非编码RNA挖掘赵汀浙江大学/豇豆分子育种技术研究与应用潘磊江汉大学/
  • 新方法显著改善宏基因组测序
    在一项新的研究中,来自俄罗斯圣彼得堡国立大学的研究人员开发出一种方法极大地改善人们对实验室中不能培养的有机体---如生活在人胃肠道中的微生物,或者生活在海洋深处的细菌---的DNA进行测序的能力。相关研究结果于2016年2月1日在线发表在Nature Methods期刊上,论文标题为“TruSPAdes: barcode assembly of TruSeq synthetic long reads”。  这种被称作TruSPADES的方法通过计算机将来自Illumina公司的机器产生的长300个碱基对的短测序片段(short reads)组装成所谓的合成长测序片段(synthetic long reads),这些合成长测序片段是基因组中长大约10,000个碱基对的片段。  研究人员说,使用这些合成长测序片段而不是短测序片段组装基因组就好比是使用整个章节而不是单个句子来组装一本书。因此,人们有强烈的动机利用长测序片段改进测序。  论文作者Pavel Pevzner教授说,“这是下一代测序技术。它将对宏基因组测序的操作应用产生深刻影响。”  当前,作为长测序片段测序市场的佼佼者,Pacific Biosciences公司和Oxford Nanopore公司产生的长测序片段是不准确的,而且很难用于解决复杂的测序问题,如组装宏基因组(metagenome),其中宏基因组可以指的是从自然环境取样的全部微生物的基因组,也可以指的是从自然环境取样的全部微生物。相比之下,这种合成长测序片段的准确性提高了100倍,而且能够大规模地快速产生从而覆盖宏基因组中的大部分细菌。  为了开发这种新的方法,研究人员获取携带条形码的长100~300个碱基对的短测序片段。他们然后利用一种在短测序片段测序(short read sequencing)中经常使用的被称作德布鲁因图(de Brujin graph)的方法描绘这些短测序片段,将它们组装成合成长测序片段。这种德布鲁因图允许研究人员确定哪些短测序片段连接在一起,从而组装出更长更准确的合成长测序片段。  接下来就是应用这种方法研究包括从人微生物组到海洋微生物组在内的多种微生物群落。Pevzner和另一名论文作者Anton Bankevich正在与来自美国克雷格文特尔研究所(J. Craig Venter Institute)的研究员Christopher Dupont合作开展这方面的研究工作。  宏基因组学特别充满挑战,这是因为研究人员需要研究生活在一个微生物群落中的好几百种细菌,而不能研究其中的单个细菌菌种。当研究人员从这种微生物群落中提取样品并进行测序时,他们获得的是来自这个群落中所有细菌基因组的片段。这非常像是试图拼出好几百个拼图,但是并不知道哪些拼板属于哪个拼图。TruSPADES方法和合成长测序片段将有助研究人员拼出这些拼图。  Dupont 说,“这种方法以更小的成本产生更好的结果。我们如今正在组装我们之前甚至还不知道它们存在的有机体的基因组。”

宏基因组分析相关的方案

宏基因组分析相关的资料

宏基因组分析相关的论坛

  • 【转帖】我国科学家参与全球最大微生物基因组研究项目

    近日,深圳华大基因研究院宣布,我国科学家将参与全球最大微生物基因组研究项目,对来自全球的20万个样本进行环境DNA测序或宏基因组测序,从而建立一个全球性的基因图谱,并承担核心工作。该项目旨在全方位、系统性研究全球范围内微生物群落功能及进化多样性,以便更好地造福社会及人类。与以往的微生物研究有所不同,该项目的研究对象不仅集中于海洋和人体环境中微生物群落,还包括土壤、空气、淡水生态系统等整个地球表面的绝大多数的微生物群落。华大基因将负责亚洲地区所有样本的收集和鉴定,并对整个项目提供DNA提取、扩增、建库、宏基因组测序以及研发生物信息学分析流程所需的计算资源。这些信息学分析流程将为项目研究产生的海量数据提供一个分析框架。项目负责人、芝加哥大学和阿贡国家实验室的教授杰克·吉尔伯特博士表示:“华大基因在测序能力、测序技术和信息分析等方面已展现出卓越的能力。此项目是一个前所未有的最大的基因组测序项目,作为全球最大基因组学研究中心,华大基因的参与至关重要。”华大基因理事长杨焕明院士表示,微生物对地球上所有的生命具有至关重要的作用,而我们对微生物的复杂性和多样性认识不足,征服这个未知的领域非常有必要。华大基因拥有国际先进水平的测序平台和强大的生物信息学分析能力,可以为促进人类对微生物群落重要性的了解贡献力量。(来源:科技日报)

  • 英开发出简化的基因组测序新方法

    无需进行文库制备,所用DNA样本比标准方法更少2012年12月13日 来源: 中国科技网 作者: 陈丹 中国科技网讯 据物理学家组织网12月12日(北京时间)报道,英国研究人员简化了基因组测序的标准流程,首次无需进行文库制备便完成了DNA(脱氧核糖核酸)单分子测序,而且新方法只要很少量的DNA就能获得序列数据,用量可低至不到1纳克(10亿分之一克),仅为常规测序方法的500分之一到600分之一。 文库制备是指从测序前基因组样本中提取不同长度的DNA片段,这一过程不仅费力、费时,还会浪费DNA,而新技术能极大地减少DNA的损耗,并缩短测序时间。 该研究论文的第一作者、英国威康信托基金会桑格研究所的保罗·库普兰说:“我们用这种方法对病毒和细菌的基因组测序后发现,即使在相对较低的水平,我们也能够确定所检测的是何种有机物,不论样本中是否存在特定的基因或质粒(这对于确定抗生素耐药性很重要),或者其他信息,如对特定DNA碱基的修改等。”他表示,一旦技术得到优化,将在快速、高效地识别医院和其他医疗场所中的细菌和病毒方面具有很大的应用潜力。 研究小组利用第三代单分子测序系统PacBio RS演示了这种简化的直接测序方法。他们仅仅用800皮克(千分之一纳克)DNA来分析一个生物体的基因组,尽管测序仪只读取了基因组的70个序列片段,相对于常规测序方法获得的数据来说不过是很小的一部分,但这些信息足以让研究人员确定他们所检测的生物体的品种。 这项技术也使得科学家能够对此前无法识别的宏基因组(也称微生物环境基因组)样本中的生物体进行确认。“为微生物测序,首先需要能够在实验室中培养它们。”论文的主要作者、英国巴布拉汉研究所的塔米尔·钱德拉说,“这不仅耗费时间,而且有时候微生物不生长,为它们的基因组测序极其困难。”他表示,新方法可以直接对微生物测序,短时间内便可确定其“身份”。 论文的另一主要作者、威康信托基金会桑格研究所的哈罗德·斯维尔德洛说:“我们的技术可以在对所测序列没有任何先验知识、没有特定微生物试剂的条件下,在很短的时间内操作,这是一种很有前途的替代手段,可应用于控制感染等临床需要。”(记者陈丹) 总编辑圈点 长久以来,基因测序等围绕基因科学所展开的研究,都被人们贴上了从本源上解开人体生命奥秘、彻底解除遗传疾病威胁等殷切的标签。多国为提高社会健康水平,都开展了解码国民DNA的活动,有些甚至覆盖全基因组。然而,面对由30亿个碱基对构成的人类基因组,精确测序注定将是一场浩大而又漫长的工程。如何能快速、准确地将海量DNA数据转化为有帮助的实用信息,已经成为该领域科学家们面临的重大挑战之一。因而我们说,英国科学家此番取得的突破,不管是从整个学科研究的方法论层面,还是从临床应用的角度,都提高了基因研究服务于人类的速度。 《科技日报》(2012-12-13 一版)

  • 【原创大赛】短柄草全基因组密码子用法分析分析

    【原创大赛】短柄草全基因组密码子用法分析分析

    [align=center]短柄草全基因组密码子用法分析分析[/align]摘要:本研究运用CodonW程序分析了短柄草全基因组的密码子使用特性,并且通过对应分析探讨了若干重要因子对短柄草全基因组序列密码子用法的影响。结果表明短柄草基因组存在高[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量和低[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量的基因,它们在密码子使用上差异较大。Nc-plot曲线表明基因组的密码子组成受到碱基组成的影响;对应分析显示,在DNA水平上发生的核苷酸突变可能是造成短柄草基因组密码子使用偏好的主要因素;同时,基因长度和蛋白质疏水性对密码子的使用也存在一定偏性,但影响程度不大。确定了UUC等27个以G或C碱基结尾的密码子为“最优密码子”,研究结果可为短柄草基因的鉴定、表达、结构、功能等的深入研究提供参考。关键词:同义密码子偏好性,短柄草基因组,对应分析近年来,随着分子生物学的快速发展,许多小基因组的低等生物和高等模式生物的全基因组序列均被测定,为利用生物信息学方法挖掘海量基因组数据提供了便利。密码子是生物体内遗传信息传递的基本环节,是核酸携带信息和蛋白质携带信息间对应的基本规则。在长期进化过程中,任一物种的基因都会逐渐适应宿主的基因组环境,而形成特定的且符合宿主基因组的密码子用法,因此不同生物具有不同的密码子使用模式。以生物基因组数据为基础,研究其密码子使用模式,为深入研究基因的结构、功能和基因组进化,以及指导基因转化等具有重要意义。密码子具有简并性,生物在同义密码子的使用上并不是完全随机的,而是具有一定的偏向性,对有的密码子使用频率高,有的使用频率低,甚至避免使用,这种不均衡使用密码子的现象普遍存在于原核和真核生物中。早在20世纪70年代,人们在研究基因的异源表达时,就已经意识到密码子偏性的重要性[1],随着不同生物基因组数据的获得和各种数据库的构建,更多的研究者对密码子偏性的研究产生了浓厚的兴趣,尤其在分子进化,翻译调控等研究领域,通过对不同物种的密码子使用偏性的大量研究[2~4],发现不同物种的基因在密码子使用上存在着明显的偏性。 短柄草是一种广泛分布于温带地区的禾本科植物,与小麦,大麦和燕麦同属早熟禾亚科,原产于非洲北部,欧洲南部和亚洲中部,包含约10个亚种。该植物为一年生,自花授粉,植株高度15~20cm,生育期70~80d,柄草植株较小,适应性强,不象种植水稻那样需要严格的生长条件。生育期短,籽粒产量较高,一年可以繁殖4~5代,繁殖系数达140左右。未成熟胚和成熟胚愈伤组织诱导率高,农杆菌介导和基因枪介导的转化体系已经建立,胚性愈伤组织分化率90%以上,转化效率最高可达55%左右。基因组小,染色体少,DNA重复序列低,获得突变体容易,突变性状容易显现,具备了模式植物的所有基本特征。加之短柄草基因组序列与黑草麦,小麦,大麦等早熟禾亚科植物高度相似,很多重要农艺性状与温带禾草类植物相似,如株型,穗型,粒型,抗逆性,生长习性和病原菌等,其中麦类作物白粉病菌,条锈病菌和稻类作物瘟病菌都可侵染短柄草植株,引起相应症状[7]。其籽粒不含高分子量麦谷蛋白亚基,低分子量麦谷蛋白亚基也很少,并与小麦一样具有二倍体,四倍体和六倍体,因此短柄草是小麦等基因组庞大的重要农作物理想的模式植物,借此来获得目前小麦等早熟禾类植物中尚缺少的遗传信息和基因共线区,进而对小麦等重要植物进行基因定位,克隆,突变,测序和功能等方面的研究[8]。 目前,在短柄草的生物学、细胞学和遗传学特性方面开展了大量研究,并且其全基因组测序也基本完成[9],为深入研究其密码子用法提供了便利。因此本研究将以短柄草全基因组序列为基础,分析其基因的密码子用法特性和影响密码子使用的因素等,其研究结果将对指导转基因及对基因进行特定分子改造,提高其在短柄草中的表达效率和完善基因预测软件,提高基因预测和基因组注释准确性等均具有重要的参考价值,同时也为深入开展基因结构和功能,分子进化等研究提供理论基础。1.实验材料与方法1.1材料 短柄草全基因组DNA序列来源于短柄草官方数据库(http://www.brachypodium.org/node/8),根据基因组序列的注释信息,获得蛋白编码基因序列,为了减少长度较短的基因变异带来的样本误差,根据国际惯例,去除小于300bp的基因,去除中间不表达的密码子,终止密码子。编写程序提取剩下的蛋白编码基因的CDS(coding sequence)序列。1.2方法用codonw软件计算短柄草全基因组的密码子用法相关参数,主要包括有效密码子数(Effective Number of Codon,ENC)、基因的G+C含量([url=https://insevent.instrument.com.cn/t/Mp]gc[/url]%)、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]3s%、相对同义密码子使用度(relative synonymous codon usage,RSCU)、氨基酸组分指数(平均亲水性值(gravy))、基因长度即氨基酸数(L_aa)。其中,有效密码子数(Effective Number of Codon,ENC)描述密码子使用偏离随机选择的程度,能反映密码子家族中同义密码子的非均衡性的偏好;其取值范围在20到61之间,即如果每种氨基酸只使用一种密码子则有效密码子数为20,如果各种同义密码子的使用机会完全均等,则有效密码子数为61,数值越小偏性越强。此值是以描述密码子使用偏离随机选择的程度,能反映密码子家族中同义密码子的非均衡性的偏好。基因密码子偏爱程度越大,ENC值越小。RSCU是指对于某种特定的密码子在编码对应氨基酸的同义密码子间的相对频率;[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]3s%表示同义密码子第三位碱基的G+C的含量。为进一步了解该家族基因密码子使用特征和影响密码子使用的因素,对7个基因的相对同义密码子使用度进行了对应性分析(correspondence of analysis,COA)。2 结果与分析2.1 基因的碱基组成对密码子使用的影响图一 短柄草基因NC值散点图[img=,515,409]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311236371230_3093_3295053_3.png!w515x409.jpg[/img]2.2短柄草基因密码子使用特性的对应性分析[img=,690,535]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311237226440_1452_3295053_3.png!w690x535.jpg[/img][img=,690,534]https://ng1.17img.cn/bbsfiles/images/2019/10/201910311237233450_935_3295053_3.png!w690x534.jpg[/img]2.3 确定最优密码子Phe UUU 0.05 (323) 1.23 (19733) Ser UCU 0.22 (990) 1.60 (23834) UUC* 1.95 (13527) 0.77 (12294) UCC* 2.55 (11715) 0.64 (9499) Leu UUA 0.02 ( 93) 0.83 (11755) UCA 0.14 (629) 1.52 (22651) UUG 0.16 (1003) 1.37 (19558) UCG* 1.53 (7023) 0.35 (5159) CUU 0.14 (847) 1.55 (21987) Pro CCU 0.22 (1306) 1.57 (17584) CUC* 3.38 (20676) 0.61 (8661) CCC* 1.35 (7940) 0.47 (5299) CUA 0.07 (452) 0.70 (9983) CCA 0.20 (1184) 1.62 (18078) CUG* 2.23 (13637) 0.94 (13401) CCG* 2.22 (13058) 0.34 (3792) Ile AUU 0.12 (398) 1.41 (21216) Thr ACU 0.10 (401) 1.46 (16515) AUC* 2.76 (9124) 0.70 (10557) ACC* 1.75 (7291) 0.66 (7397) AUA 0.12 (380) 0.89 (13461) ACA 0.12 (509) 1.56 (17636) Met AUG 1.00 (8512) 1.00 (20892) ACG* 2.03 (8478) 0.32 (3563) Val GUU 0.10 (693) 1.67 (23852) Ala [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]U 0.14 (1914) 1.65 (26184) GUC* 1.71 (12491) 0.63 (9025) [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]C* 1.98 (27398) 0.58 (9131) GUA 0.05 (349) 0.75 (10713) [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]A 0.13 (1802) 1.48 (23459) GUG* 2.14 (15605) 0.95 (13562) [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]G* 1.75 (24170) 0.29 (4678) Tyr UAU 0.05 (229) 1.28 (14480) Cys UGU 0.06 (194) 1.10 (9360) UAC* 1.95 (8126) 0.72 (8075) U[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]* 1.94 (6645) 0.90 (7595) TER UAA 0.42 (172) 0.82 (335) TER UGA 1.63 (665) 1.30 (530) UAG 0.94 (384) 0.87 (356) Trp UGG 1.00 (4992) 1.00 (10053) His CAU 0.15 (598) 1.42 (16785) Arg CGU 0.16 (750) 0.85 (6945) CAC* 1.85 (7568) 0.58 (6825) C[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]* 2.75 (12565) 0.49 (4043) Gln CAA 0.15 (627) 1.05 (20215) CGA 0.11 (500) 0.64 (5273) CAG* 1.85 (7975) 0.95 (18259) CGG* 1.92 (8761) 0.55 (4527) Asn AAU 0.12 (465) 1.31 (26650) Ser AGU 0.05 (235) 1.13 (16754) AAC* 1.88 (7141) 0.69 (13985) A[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]* 1.52 (7002) 0.77 (11441) Lys AAA 0.11 (552) 0.98 (27077) Arg AGA 0.10 (445) 1.94 (15854) AAG* 1.89 (9406) 1.02 (28423) AGG 0.96 (4387) 1.53 (12516) Asp GAU 0.15 (1344) 1.44 (39136) Gly GGU 0.11 (882) 1.34 (18423) GAC* 1.85 (16539) 0.56 (15322) G[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]* 2.53 (20795) 0.71 (9826) Glu GAA 0.17 (1437) 1.13 (36292) GGA 0.19 (1522) 1.26 (17423) GAG* 1.83 (15812) 0.87 (27746) GGG* 1.18 (9700) 0.69 (9476) 注:Number of codons in high bias dataset 372333 Number of codons in low bias dataset 915109标注*的密码子是(p 0.01)3 讨论密码子使用偏好是突变偏好、自然选择和遗传漂变等共同作用的结果,与碱基组成、翻译选择压力、基因表达水平、基因长度、蛋白质氨基酸组成、碱基突变频率和模式、mRNA二级结构稳定性等很多因素有关[17]。张晓峰[18]等研究表明,单子叶植物基因组的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量在同义密码子使用偏性的产生过程中起着决定性的作用,同义密码子使用偏性强烈的基因往往偏爱使用C或G结尾的密码子,且第三位密码子突变往往是密码子偏好性发生变化的决定原因。短柄草基因密码子使用模式的调查表明其中有高含量的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],并且[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]3的含量高于[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]1和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]2。这表明相对于以A和T结尾的密码子而言,这些基因偏好于使用以G或C结尾的密码子。从原核生物到真核生物的基因中,密码子使用偏好是一个被广泛研究的重要进化现象。研究发现,许多因素,比如碱基组成,基因表达水平,蛋白质疏水性等影响着密码子的使用。为了解释密码子使用偏好的起因,也有许多假设被提了出来。其中被广为接受理论是“选择——突变——漂移”模型。该模型认为在对偏好密码子的选择和通过突变-漂移对非偏好密码子的保留之间,同义密码子的使用偏性存在一种平衡。本文的研究结果显示,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]3s值与ENC值密切相关,并且基因也位于第一轴线,揭示了碱基组成是影响短柄草基因组中的密码子使用偏好的主要因素。碱基组成是影响短柄草基因密码子使用的主要因素,基因长度和蛋白质的疏水性在短柄草基因密码子使用中也起到了一定的作用,相似的结果在水稻、小麦中被发现[15,19]。本研究发现,在基因长度和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]之间存在很强的负相关性。这表明,高[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量的基因越短,密码子偏好就越大。可能的原因是富含AT基因的翻译效率比富含[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]基因的翻译效率更高,这种效率的差异对长的基因更为重要。通常,全基因组的基因表达值在许多多细胞真核生物中并不能得到,特别是基因表达水平在不同的组织和不同发育阶段不一样时。因此,要定量相当困难。在短柄草基因组中,目前还缺少相当数量的基因表达的准确数据。另外,我们发现[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量特别是在第三个碱基位置的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]含量较大的影响着密码子的偏好时,暗示着碱基突变可能是重要因素,同时,碱基突变又受控于翻译选择。所以,尽管基因表达水平影响着密码子的使用,但这影响还是远远小于核苷酸组成对密码子使用的影响。因此,我们没有进一步分析基因表达的影响。通过优化密码子,提高外源基因在微生物、植物、动物中的表达已有不少成功报道,而确定最优密码子可为合理有效进行密码子改造提供可靠信息。本文确定了UUC等27个密码子为短柄草全基因组的最优密码子。分析结果可为指导转基因及对基因进行特定分子改造,提高其在短柄草中的表达效率和完善基因预测软件,提高基因预测和基因组注释准确性等提供重要的参考价值。参考文献[1] Stanley D,Farnden K J F, MacRae E A. Plant a-amylases:Func-tions and roles in carbohydrate metabolism[J]. Biologia,Bratislava,2005.60(suppl l6):65-71[2] Smith AM. Zeeman SC, Smith S M. Starch degradation[J]. Annu Rev Plant Biol,2005,56(25):73-98[3] Asatsuma S, Sawada C, Itoh K et al. Involvement of α-amylase I-1 in starch degradation in rice chloroplasts[J]. Plant Cell Physiol,2005,4:858-869[4] Kaplan F, Guy C L. β-amylase induction and the protective role of maltose during temperature shock[J]. Plant Physiol, 2004, 1:1674-1684 [5] Kaplan F,Guy C L. RNA interference of Arabidopsis beta-amylase 8 prevents maitose accumulation upon cold shock and increases sensitivity of PSII photochem-ical efficiency to freezing stress[J]. Plant J.2005,44(13):730-743[6] Joho Mundy, Anders Brandt. Messenger RNAs from the Scutellum and Aleurone of Germinating Barley Encode (lm3,14)--D-Glucanase, a-Amylase and Carboxypeptidase[J]. Plant Physiol, 1985,79(5):867-871 [7] 言普,李桂双.高压对水稻种子细胞膜透性和淀粉酶活性的影响[J]. 浙江大学学报(农业与生命科学版),2007,33(5):174-179[8] Monica M, Sanwo and Darleen A. DeMason. Characteristics of a-Amylase during Germination of Two High-Sugar Sweet Corn Cultivars of Zea mays L[J]. Plant Physiol, 1992,99(8):1184-1192[9] Goldman N , Yang Z. A codon based model of nucleotide substitution for protein coding DNA sequences[J]. Molecular Biology and Evolution,1994,11(9):725-736[10] Schmidt W. Phylogeny reconstruction for protein sequences based on amino acid properties[J]. Mol Evol,1995,41(8) :522-530[11] 时成波, 吕安国.改造稀有密码子提高SEA蛋白表达量[J]. 生物工程学报,2002,18(4):477-480[12] Ghosh T C , Gupta S K, Majumdar S. Studies on codon usage in Entamoeba histolytica[J]. Int J Parasitol,2000,30(6): 715-722[13] Musto H, Cruveiller S. Translational selection on codon usage in Xenopus laevis[J].Molecular Biology and Evolution,2001,18(9):1703-1707[14] 廖登群,张洪亮等. 水稻(Oryza sativa L.)a-淀粉酶基因的进化及组织表达模式[J]. 中国农业大学学报,2009,14(5):1-11[15]刘汉梅,何瑞. 玉米密码子用法分析[J]. 核农学报,2008,22(2):141-147[16] Jia M, Luo L. The relation between Mrna folding and protein structure[J]. Biophys Res Commum, 2006,343(4):177-182[17] 赵耀,刘汉梅. 玉米waxy基因密码子偏好性分析[J]. 玉米科学,2008,16(2):16-21 [18] Wang H C,Hickey D A. Rapid divergence of codon usage patterns within the rice genome[J].BMC Evol Biol,2007,15(8):347-356

宏基因组分析相关的耗材

  • HS 基因组 DNA 试剂盒,500
    在片段分析仪系统上使用基因组 DNA 试剂盒可以自动评估 gDNA 分子量和完整性。这些试剂盒适用于全基因组测序、宏基因组学和大结构变异分析使用的 gDNA 提取样品的质量控制。它们也适用于降解 DNA 的分析,如福尔马林固定石蜡包埋 (FFPE) 样品。使用基因组 DNA 试剂盒分离高浓度 (HS) 和低浓度的 gDNA 样品时,可通过消除稀释步骤简化样品前处理过程。分子量测定范围宽,研究人员可准确测定分子量高达 60 kb 的 gDNA 样品。较宽的浓度范围 — HS gDNA 50 kb 试剂盒的浓度范围为 0.3 至 12 ng/µL,而 gDNA 50 kb 试剂盒的浓度范围为 25 至 250 ng/µL高灵敏度试剂盒和标准灵敏度试剂盒 — 最大程度减少样品稀释,并根据您的需要选择正确起始浓度范围的试剂盒可靠的分子量测定 — 分子量测定范围从 75 bp 到 60 kb,确保 gDNA 样品准确精密的分子量测定 低样品量 — 仅需 1–2 µL 样品,可最大程度减少 QC 步骤的样品损失
  • HS 基因组 DNA 50 kb 试剂盒,500
    在片段分析仪系统上使用基因组 DNA 试剂盒可以自动评估 gDNA 分子量和完整性。这些试剂盒适用于全基因组测序、宏基因组学和大结构变异分析使用的 gDNA 提取样品的质量控制。它们也适用于降解 DNA 的分析,如福尔马林固定石蜡包埋 (FFPE) 样品。使用基因组 DNA 试剂盒分离高浓度 (HS) 和低浓度的 gDNA 样品时,可通过消除稀释步骤简化样品前处理过程。分子量测定范围宽,研究人员可准确测定分子量高达 60 kb 的 gDNA 样品。较宽的浓度范围 — HS gDNA 50 kb 试剂盒的浓度范围为 0.3 至 12 ng/µL,而 gDNA 50 kb 试剂盒的浓度范围为 25 至 250 ng/µL高灵敏度试剂盒和标准灵敏度试剂盒 — 最大程度减少样品稀释,并根据您的需要选择正确起始浓度范围的试剂盒可靠的分子量测定 — 分子量测定范围从 75 bp 到 60 kb,确保 gDNA 样品准确精密的分子量测定 低样品量 — 仅需 1–2 µL 样品,可最大程度减少 QC 步骤的样品损失
  • 基因组 DNA 50 kb 试剂盒,500
    在片段分析仪系统上使用基因组 DNA 试剂盒可以自动评估 gDNA 分子量和完整性。这些试剂盒适用于全基因组测序、宏基因组学和大结构变异分析使用的 gDNA 提取样品的质量控制。它们也适用于降解 DNA 的分析,如福尔马林固定石蜡包埋 (FFPE) 样品。使用基因组 DNA 试剂盒分离高浓度 (HS) 和低浓度的 gDNA 样品时,可通过消除稀释步骤简化样品前处理过程。分子量测定范围宽,研究人员可准确测定分子量高达 60 kb 的 gDNA 样品。较宽的浓度范围 — HS gDNA 50 kb 试剂盒的浓度范围为 0.3 至 12 ng/µL,而 gDNA 50 kb 试剂盒的浓度范围为 25 至 250 ng/µL高灵敏度试剂盒和标准灵敏度试剂盒 — 最大程度减少样品稀释,并根据您的需要选择正确起始浓度范围的试剂盒可靠的分子量测定 — 分子量测定范围从 75 bp 到 60 kb,确保 gDNA 样品准确精密的分子量测定 低样品量 — 仅需 1–2 µL 样品,可最大程度减少 QC 步骤的样品损失
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制