气体样品分析

仪器信息网气体样品分析专题为您提供2024年最新气体样品分析价格报价、厂家品牌的相关信息, 包括气体样品分析参数、型号等,不管是国产,还是进口品牌的气体样品分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气体样品分析相关的耗材配件、试剂标物,还有气体样品分析相关的最新资讯、资料,以及气体样品分析相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

气体样品分析相关的厂商

  • 济南隆安电子有限公司是个人安全防护用品(PPE)、电工仪表及气体检测报警仪的专业供应商。我们向客户提供种类繁多的产品,帮助他们的设施正常运作并降低客户的采购本。 我们一直注重于服务,自创立以来,我们的员工充分理解客户的需求并竭尽全力为之服务。可信赖的客户服务代表和专业销售人员,将为客户的采购工作提供全面解决方案。 公司将继续发扬“创新图强 严细求真 高效简明 尊诚重信”的企业精神,进一步加强与广大客户、供应商、合作伙伴及社会各界的合作,为共同开创更加美好的明天携手前进!我们同时提供以下进口的产品:
    留言咨询
  • 400-860-5168转3799
    济南德洋特种气体有限公司成立于1998年,成立至今一直从事气体专业的研究与生产,是集气体研发、生产、销售于一体的专业化气体公司。主要产品有标准气体、混合气体、超纯气体、高纯气体、电子气体、环保气体、医用气体、焊接气体、杀菌气体等产品。广泛应用于煤炭、电力、电子、光源、医疗、环保、采矿、钢铁、有色金属冶炼、热力工程、生化、环境监测、石油化工、仪器仪表、医学研究及诊断、食品保鲜等领域。其中医用气体已通过GMP认证,被上级部门认定为“高新技术企业”。公司用科学的管理模式和先进完善的检测设备,确保产品质量的稳定、可靠。公司还提供各种规格的气瓶、多规格焊接绝热气瓶、相关仪表、阀门、气体供应设备、压力容器与管道设备安装和技术咨询等服务。并具有工艺先进,技术领先的“气瓶检测站”。随时为您提供各种规格的无缝气瓶检验与特种钢瓶检验。拥有各种型号的运输车辆和大吨位的低温槽车为您提供瓶装气体、液态氧、液态氩、液态氮、液态二氧化碳的运输与供货。公司技术力量雄厚,可以根据您的要求和需要, 提供科研、分析方法验证、气体样品检测、仪器仪表调校、环境检测等方面的各种浓度的校对气体。 讲诚信、重信誉是公司的经营宗旨, 保质量、重服务是公司的经营作风, 我们的理念是“德洋特气, 一心为您”
    留言咨询
  • 济宁协力特种气体有限公司创建于2000年,是一家集生产、研发、经营各种工业气体、标准气体、液化气体和特种气体于一体的高新技术企业。现已经发展成为山东地区最大的气体生产厂家和供应商。企业是中国工业气体工业协会会员单位,全国化工标准物质委员会会员单位,中国特种气体协会会员单位。联系人:张恒:18653787708 公司坐落于孔孟之乡济宁市,地处327国道和105国道交汇处,日东高速和济徐高速交汇而过,东临京沪高铁,西靠济宁曲阜机场、京九铁路,南接京杭大运河,交通十分便利。企业产品覆盖鲁、豫、晋、冀、苏、皖、湘、鄂、赣、陕、甘、蒙等二十多个地区,成为气体行业一支生力军。 企业拥有齐全的气体净化纯化设备,引进国外先进的高纯气体和超纯气体检测分析设备,保证为客户提供优质的高纯氧气、高纯氮气、高纯氩气、高纯氢气、高纯二氧化碳等气体及其超高纯气体,将公司打造成全国最大的高纯气体供应基地。公司是中国化工标准物质委员会成员,拥有几十种国家二级标准物质生产许可证和制造计量器具许可证。公司有一支勇于创新探索的科研队伍,凭借科学的分析理念和先进的分析检测设备,根据市场需求和用户需要配制优质可靠的标准气体和混合气体,持续不断的满足客户需求。标准气体品种齐全,已广泛应用于科研,化工、煤矿、航天、电子、光纤、机械、石油、建材、电力、环保、食品、医疗、制药、冶金、照明及质检等各个行业,并为各种行业的客户提供着高质量高效率的气体及相关产品的完善服务。我公司实验室现正申报省级实验室,为客户提供准确而完善的气体分析数据和手段。 公司设有工程部,在气体配套设备和气体配套工程安装方面,可根据客户需要,提供设计、生产和安装低温液体储罐、气体管道、汽化器、低温液体泵及承接气体配套工程安装等一条龙服务。公司成功研发出全自动气瓶自动充装设备和全自动智能气瓶装卸车设备,可以对气瓶充装和装卸实现自动化,从根本上改变了气瓶充装和装卸方式,降低事故发生造成人员伤亡和财产损失,保证气瓶充装站工作人员的安全,减少气瓶类事故高发的严峻状况,做到更安全、更快捷、更经济。 公司气瓶定期检验站,保证各类气瓶处于国家压力容器监察规程所规范的安全与整洁状态。气瓶有效的做到定期检验,从源头上加强了气瓶管理,保证了气瓶的安全和气体质量的稳定。公司杜瓦瓶检验设备可以为广大液态气体使用客户提供优质的服务,保证液态气体使用的安全。 公司设立危险品运输机构—济宁协力危险品运输有限公司,足迹踏遍二十多个地区,较好的满足全国各地的客户运输的需要。联系人:张恒:18653787708 公司已通过ISO9001:2008质量管理体系认证,建立了一整套健全完善的质量管理保证体系。对生产、研发、销售、服务的全过程进行全方位监控,并对产品质量实行全过程跟踪服务,对客户的要求提供及时的解决方案。公司将凭借其先进的设备和优质的服务及独特的气体应用技术,向广大客户提供高质量的产品,确保充足、及时、稳定、可靠的气体供应。我们本着“安全是保障、质量是生命、服务是根本、创新才发展”的生产经营理念,真诚与广大客户及业内同仁精诚合作,共谋发展,共创辉煌!联系人:张恒:18653787708
    留言咨询

气体样品分析相关的仪器

  • 《逸出气体分析》分册着重阐述TGA-FTIR和TGA-MS两种联用技术。第一部分讲述这两种技术的基本原理,也包括一些实际内容和介绍图谱的解析。第二部分讨论用TGA-FTIR和TGA-MS做的15项不同的应用,以及两个相对较少使用的TMA和MS联用技术的应用。目录缩写和简称Abbreviations and Acronym.....................................1TGA-EGA概述Introduction to TGA-EGA......................................2TGA-MS..................................... .............................4TGA-FTIR..................................... ...........................12应用介绍Introduction to the Applications.................................23应用一览Application List..................................... ...........241乙酰水杨酸分解Decomposition of Acetylsalicylic Acid..................252BHET的热裂解Thermal Degradation of BHET..............................283加热速率对MS响应的影响Influence of the Heating Rate on MS Response&hellip 314工业月桂醇的分解Decomposition of Technical Lauryl Alcohol&hellip &hellip &hellip &hellip &hellip &hellip 345药物中残留溶剂的检定Detection of Residual Solvents in a Pharmaceutical Substance..................................... ............................376一水草酸钙(演示品)分解Decomposition of Calcium Oxalate Monohydrate(Tutorial) ..................................... ...............397样品量对MS灵敏度的影响Influence of Sample Weight on MS Sensitivity&hellip 428五水硫酸铜(演示品)分解Decomposition of Copper Sulfate Pentahydrate(Tutorial) ..................................... ..............449填充有机物沸石的解吸附Desorption of a Zeolite Filled with Organic Matter..4710PVC粉末的分解Pyrolysis of PVC Powder...................................5011氟化电缆线的研究Investigation of Fluorinated Cable Wires...............5312橡胶样品中水杨酸甲酯的检定Detection of Methyl Salicylate in a Sample of Rubber..................................... .................................5613硅聚合物的裂解Degradation of a Silicone Polymer........................5814一种胺基树脂的固化和分解Curing and Decomposition of an Amino Resin.....6115借助热转变和分解鉴别BR和NR橡胶Identification of BR and NR Rubbers by Using Thermal Transitions and Decomposition........................................6516印刷电路板的分层Delamination of Printed Circuit Boards.................6917用于包覆发泡剂的聚合物的膨胀和分解Expansion and Decomposition of the Polymer Used to Encapsulate a Blowing Agent..........................................71参考文献Suggested Literature.................................................73
    留言咨询
  • 冷原子吸收测汞仪液体固体样品或气体样品中汞含量监测冷原子吸收测汞仪液体固体样品或气体样品中汞含量监测品牌:青岛凌恒环境型号:F732-VJF732-VJ冷原子吸收测汞仪可对液体样品中的汞进行测定,也可对经过处理转化为液体的固体样品或气体样品中的汞进行测定,因此可广泛用于环境监测、医疗卫生、食品检验、地质勘探及化学研究等领域对微量汞的分析测定。 F732-VJ冷原子吸收测汞仪内置微机系统,测量与计算功能显著增强,仪器通过液晶屏显示当前状态、测定结果或其它参数,具备打印输出功能,还附有RS-232C串行接口。仪器使用方法简便,性能稳定、可靠。F732-VJ冷原子吸收测汞仪技术参数:产品名称冷原子吸收测汞仪产品型号F732-VJ测定范围0-10μg/L(高浓度样品可定量稀释后再进行测定)检测限≤0.05μg/L线性误差±10%重复性≤3%稳定性±2个字/3分钟(在A=0处)电源交流220V/50HZ功耗22W重量4.6Kg(净重)外形尺寸368×288×158
    留言咨询
  • WA-5A气体样品测汞仪2021-07-12仪器简介WA-5A采用双金汞齐–冷原子吸收(CVAAS)技术,设计用于测量环境空气或天然气、页岩气、LPG/LNG等气态基质中的总气态汞(TGM)。特点采用双金汞齐技术分析痕量汞小巧轻便,仅13公斤且占用面积小无需特殊载气,净化空气做载气低至1pg的检测限和高达1,000ng的线性范围WA-5A具有多种配置,可满足各类应用需求应用环境空气、工作环境空气、燃气、天然气、页岩气、液化石油气、其他气态基质样品标准ASTMD5954-98(2014)e1、ISO6978-2:2005、ISO20552、JLPGA-S-07、HJ910-2017、GB16781.2-2010-T还原法附件应用锅炉水、工艺用水、废水、河水、饮用水、海水及更多标准ISO12846、EN-12338、HJ597-2011、HJ543-2009可选具有多种配置,可满足各类应用需求还原法附件自动进样器MB-1标气盒采用汞收集管直接分析采用tedlar取样袋进样液化石油气钢瓶加热气化器通过新研发的光学系统对气体中汞进行高灵敏度分析WA-5A是气体汞分析仪,可连接到专用于汞收集管的自动进样器上(TC-WA)。在双汞齐化法的基础上,仪器设计进行了更新。WA-5A不仅配备了高性能可选配置,用于测量环境空气和各种气体(LPG/LNG、烟气等)中的不同价态的汞,还采用了新开发的光学系统作为标准配置,可防止气体样品损失。仪器能够自动设定测量范围,实现从低浓度到高浓度的测量。气体样品被收集到汞收集管中,收集管1放入WA-5A的加热炉中开始测量。由于高温加热而蒸发的汞净化和除湿后,汞作为金汞合金收集在收集管2中,再纯化。收集管2被重新加热,释放出原子汞,汞蒸气通过原子吸收检测器进行测量。此外,可以使用气密注射器直接注射样品。通过采用新研发的技术,仪器增加了新功能。专用于汞收集器管的30位的自动进样器使分析效率得到提高。通过使用新的光学系统,在仪器自动设置测量范围的同时,实现从低浓度到高浓度(高达1,000ng)的测量。检测限1pg。无需准备特殊气体或高压气瓶。室内环境空气经过净化,用作载气,确保经济、安全。可从Tedlar取样袋或高压气瓶直接测量样品。可选配置TC-WA取样管自动进样器(30位)WA-5A可与TC-WA30位取样管自动进样器配合使用。采样管放置在TC-WA中,全自动解吸汞蒸气,完成二级汞齐化,在WA-5A上测量。也可以通过气密注射器直接手动进样。应用大气、废气、天然气、页岩气、碳氢化合物气体、液化石油气/液化天然气、氢气等中的汞检测方法AAS:ASTM5954,ISO6978,ISO20552,JLPGA-S-07& etc,HJ910-2017,GBT16781.1-1997可选AFS:ASTM6350,ISO6978,JLPGA-S-07,ISO20552,USEPAIO-5& etc可选配置液化石油气钢瓶加热气化装置WA-5A独立使用时可以与Tedlar取样袋直接相连,自动抽取里边的气态样品,并且连接气体流量计用于测量取样体积。样品经过双级金汞齐收集,然后用WA-5A检测。也可以手动用气密注射器进样。WA-5A独立使用时可以连接LP-WA液化气气化装置,直接将钢瓶内压缩的气态样品收集到取样管内,用气体流量计测量所取样品体积。测量的样品依次在取样管和2级金汞齐管内解吸出来,然后用WA-5检测。也可以手动用气密注射器进样。应用天然气、页岩气、碳氢化合物气体、液化石油气/液化天然气、氢气等中的汞测试方法AAS:ASTM5954,ISO6978,JLPGA-S-07& etc.可选AFS:ASTM6350,ISO6978,JLPGA-S-07& etc.其他配置GilAirPlus可充电样品泵
    留言咨询

气体样品分析相关的资讯

  • 色谱分析时,会用到哪些气体?
    色谱分析是一种分离和识别混合物中不同成分的化学分析技术,通过将混合物中的化合物分离成单一成分,并根据它们在某种介质中的运移速度或亲和性进行定性和定量分析。这种方法广泛用于科学研究、工业生产和质量控制中,以识别和测量样品中的化合物,从而提供重要的信息和数据。色谱分析中会用到多种气体,其中一些主要用途包括作为载气、检测气体或驱动气体。以下是在色谱分析中常用的一些气体:1、载气(Carrier Gas):氮气(Nitrogen, N2):氮气是最常用的载气之一,用于气相色谱(Gas Chromatography,GC)分析中,帮助将样品中的化合物从进样口传送到分离柱。氢气(Hydrogen, H2):氢气通常用于快速GC分析,因为它具有较低的扩散速度,能够提供更短的分析时间。氦气(Helium, He):氦气也常用作载气,特别是在气相色谱中。尽管氦气价格较高,但它的扩散速度低,能够提供更好的分离效果。2、检测气体(Detector Gas):氢气(Hydrogen, H2):氢气通常用作一些检测器的气体,例如火焰离子化检测器(Flame Ionization Detector,FID)和电子捕获检测器(Electron Capture Detector,ECD)的气体。3、驱动气体(Purge Gas):空气(Air):在液相色谱(Liquid Chromatography,LC)中,空气通常用作驱动气体,帮助推动溶液通过柱子。4、样品制备和进样气体(Sample Preparation and Inlet Gas):氮气(Nitrogen, N2):氮气常用于进样前的样品制备步骤,如干燥、溶解和吹扫。氦气(Helium, He):氦气有时也用于样品进样,特别是在质谱分析中。这些气体的选择取决于分析仪器的类型、分析需求以及实验条件。不同的气体具有不同的性质,对于不同的分析技术和应用,需要选择合适的气体以确保准确和可重复的分析结果。
  • 气相色谱仪使用气体的纯度分析
    操作气相色谱仪如何选用不同气体纯度的气源做载气和辅助气体,虽然是一个老的技术问题,但是对于刚刚接触气相色谱仪的用户,目前很难找到有关这方面的综合资料,所以他们总是到处询问究竟选择什么样的气体纯度zui好的这类问题。根据每一家用户具体使用的那一类仪器,选择什么样纯度的气体,确实是一个比较复杂的问题。原则上讲,选择气体纯度时,主要取决于①分析对象;②色谱柱中填充物;③检测器。我们建议在满足分析要求的前提下,尽可能选用纯度较高的气体。这样不但会提高仪器的高灵敏度,而且会延长色谱柱,整台仪器的寿命。实践证明,作为中仪器,长期使用较低纯度的气体气源,一旦要求分析低浓度的样品时,要想恢复仪器的高灵敏度有时十分困难。对于低档仪器,作常量或半微量分析,选用高纯度的气体,不但增加了运行成本,有时还增加了气路的复杂性,更容易出现漏气或其他的问题而影响仪器的正常操作。另外,为了某些特殊的分析目的要求特意在载气中加入某些“不纯物”,如:分析极性化合物添加适量的水蒸气,操作火焰光度检测器时,为了提高分析硫化物的灵敏度,而添加微量硫。操作氦离子化检测器要氖的含量必须在5~25ppm,否则会在分析氢,氮和氩气时产生负峰或“W”形峰等。本文就不在此做详细讨论了。 气体纯度低的不良影响 根据分析对象,色谱柱的类型,操作仪器的挡次和具体检测器,若使用不合要求的低纯度气体,不良影响有以下几种可能: 1)样品失真或消失:如H2O气使氯硅样品水解; 2)毛细管色谱柱失效:H2O,CO2使分子筛柱失去活性,H2O气使聚脂类固定液分解,O2使PEG断链。 3)有时某些气体杂质和固定液相互作用而产生假峰; 4)对柱保留特性的影响:如:H2O对聚乙二醇等亲水性固定液的保留指数会有所增加,载气中氧含量过高时,无论是极性或是非极性固定液柱的保留特性,都会产生变化,使用时间越长影响越大 5)检测器: TCD:信噪比减小,无法调零,线性变窄,文献中的校正因子不能使用,氧含量过大,使元件在高温时加速老化,减少寿命。 FID:特别是在Dt≤1Ⅹ10ˉ⒒/秒下操做时,CH4等有机杂质,会使基流激增,噪声加大不能进行微量分析。 ECD:载气中的氧和水对检测器的正常工作影响zui大,在不同的供电工作方式中,脉冲供电比直流电压供电影响大,固定基流脉冲调制式供电比脉冲供电影响大。这就是为什么目前诸多在操作固定基流脉冲调制式ECD时,在载气纯度低时必须把载气纯度选择开关从“标准氮”拨到“一般氮”位置的原因。大家会发现在此情况下操作,不但灵敏度变低,而且线性亦变窄了。实践证明:在操作ECD时,载气中的水含量低于0.02ppm,氧低于1ppm时可达到较理想的性能。值得指出的是,我们多次发现由于仪器的调节气路系统被污染而造成的对载气的二次污染至使ECD基频大幅度增加使信燥比减小。FPD和NPD等常用检测器,由于他们属于选择性检测器,操做时要根据分析要求,特别注意被测敏感物质中杂质的去除。 6)在做程序升温操作时,载气中的某些杂质,在低温时保留在色谱柱中,当拄温升高时不但引起基线漂移还可能在谱图上出现比较宽的"假峰"。 7)仪器影响 a. 各类过滤器加速失效 b. 调节阀(稳压阀,稳流阀,针形阀)被污染,气阻堵塞,调节精度降低或失灵; c.气路系统被污染,若要恢复仪器在高灵敏度情况下操做,有时要吹洗很长时间(可能一周以上)污染严重时有时再也无法恢复。 d.检测器的寿命,实践表明,对ECD和TCD的寿命影响zui明显,应引起用户特别注意。------ 责任编辑:瑞利祥合--色谱仪采购顾问版权所有(瑞利祥合)转载请注明出处
  • UoW FTIR 多要素温室气体分析仪引导温室气体在线测量技术最前沿
    温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。 UoW FTIR 多要素温室气体气体分析仪由澳大利亚Wollongong 大学研发,由ECOTECH 合作生产,并提供全球范围内的分销及符合ISO9001 标准的售后服务。UoW FTIR 多要素温室气体气体分析仪应用多光程&mdash &mdash 傅里叶红外变换(FTIR)光谱测量解析技术和高性能红外检测元器件,结合了完善的控制软件系统,能够全自动地运行,在线精确连续测量环境大气(或其他种类的混合气体)中多种温室气体成分的浓度及其同位素丰度,运行成本低,适于长期连续观测。也可以根据用户需求,改变地相应的配置,测量其他种类的痕量气体。 自第一台Uow FTIR 多要素温室气体气体分析仪投入现场观测应用以来,10 余年间,在全球已有多个用户将本仪器用于环境大气和本底地区大气的温室气体观测,并开发了温室气体以外的测量功能。这些用户包括:澳大利亚的Wollongong 大学、Melbourne 大学、公共财富科学与工业研究组织(CSIRO)、科学与技术组织(ANSTO),新西兰的国家水和大气研究所(NIWA),德国的Heidelberg大学、Bremen 大学、Max Planck 研究所,韩国的国家标准研究所、中国气象局(CMA)等。 下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 仪器特点@ 同时在线测量多种温室气体的浓度和同位素丰度,应用方式广泛、多样 1 同时测定CO2、CO、CH4、N2O 的大气浓度,以及CO2 中&delta 13C、水汽中&delta D 和&delta 18O 的丰度。2 可以一路或多路连续进样,测量多种温室气体浓度及同位素丰度;3 可在测量塔不同高度采集样品,进行温室气体(包括水汽和CO2 的同位素)的垂直廓线测量;4 可车载连续监测;5􀁺 连接静态箱进行土壤中温室气体的通量测量;6􀁺 在实验室中批量测量采样瓶或采样袋中的空气样品;7􀁺 标准传递测量:在实验室中,通过测量将高等级标准气的量值关系传递给较低等级的标准气体。8 其他气体成分的测量9􀁺 在中红外谱段有已知吸收光谱的任何气体都可以用本仪器定量测量,如:NH3、碳氟化合物、HF 和SiF4 等。10 根据气体物种不同,最低检测限为1-20ppbv。@ 全自动运行,可遥控,维护成本低、消耗量少1 五合一测量(一台仪器同时测量5 个物种/要素),综合运行成本低2􀁺 日常观测只需要参照气(洁净空气)每天一次检测,无需高等级标准气;3􀁺 无需液氮或深冷除湿;4􀁺 随机携带采样气体干燥器和多进样口5􀁺 全自动运行,并可通过网络遥控运行UoW FTIR 多要素温室气体气体分析仪 中文样本下载链接:http://www.instrument.com.cn/netshow/SH101597/C131047.htm http://www.instrument.com.cn/netshow/SH101597/C131047.htm UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪 UoW FTIR 多要素温室气体气体分析仪温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。 温室气体观测技术温室气体是大气中一些具有红外辐射活性的微量气体,包括二氧化碳、甲烷、氧化亚氮、氟利昂、水汽等30 余种(类)。温室气体对太阳短波辐射透明,却对太阳和地球表面的长波(红外)辐射有明显的吸收作用,因而,温室气体对地球大气的增温作用十分明显。如果没有温室气体,全球大气平均温度会从目前的15℃降至零下19℃。由于人类活动向大气排放了大量温室气体,到2005年,全球大气中二氧化碳、甲烷、氧化亚氮浓度已经分别由工业革命初期的280 ppm、715 ppb、270ppb 上升到379 ppm、1774 ppb 和319 ppb,其后果是全球平均气温上升了0.74℃。如果温室气体保持目前的增长速度,本世纪末全球平均气温将升高1.1-6.4℃。全球气候变化将给人类的生存环境带来严重影响:气候异常、海平面升高、冰川退缩、冻土融化、生物多样性及分布发生巨变,等等。为了人类免受气候变暖的威胁,防止人类生存环境进一步恶化,需要对大气中主要温室气体的浓度及其变化进行系统的长期监测、研究,以利于全人类采取共同行动减少温室气体的排放。温室气体观测技术处于不断发展过程中,较为早期的观测技术以非色散红外技术和色谱分析技术为主。近年来,FTIR 测量技术和光腔衰荡测量技术则成为温室气体在线测量的技术前沿,两种测量技术各有优势。前者选择中红外波段,是温室气体的强吸收区,并通过测量较宽谱段内的完整光谱进行富里叶变换解析,有利于提高测量精度和稳定性,但是其使用的热红外光源强度不如后者的激光光源。后者的测量光谱范围为近红外波段,温室气体的吸收较弱,且光谱测量范围较窄,但是后者采用的较强激光光源,对测量精度有一定程度的弥补。下图为UoW FTIR 温室气体在线分析仪内部的红外光源和测量腔。

气体样品分析相关的方案

气体样品分析相关的资料

气体样品分析相关的论坛

  • 空分气体分析仪新手上路之2——样品的制取

    前言:随着空分行业的的不断发展,气体分析仪(以下简称分析仪)由于其实时监测、快速准确,已逐步取代了手工分析在空分行业中的应用,从而变得越加普及。对于空分制氧机面言,所分析的样品绝大多数为气体,其测量的组分无非是氧、氮、氩、二氧化碳、水份、碳氢化合物、氮氧化合物、油脂等。即环境空气中所含有的常量或微量的元素及设备运行过程中所添加的物质。无论是何种样品,对于分析仪而言都是从工艺管道或容器中用取样器制取出样品后经管道输送到分析仪进行检测。分析仪作为一种产品质量检测及过程控制的仪器,即有同于一般热工仪表的特点,又有其自身的独特性。且无论何种分析仪,就其单独性而言就是一个完整的检测体系,有些甚至还配有一此复杂的样品预处理系统,这些都为分析仪的精确性提供了强有力的保证。但是如果所分析到的样品不能够及时的、有效的、具有代表性的反应实际工况的情况与变化;就算分析仪精度再高、准确性再强,也不能发挥其应有的作用,甚至会产生误导的作用。而这些往往也是检测人员及仪器维护人员经常所忽视的一个问题。本文就这个问题提出一点看法与同行们进行探讨。一、样品分析的及时性问题。样品分析的及时性是指所分析的样品能够以最快的速度进行分析。而影响样品分析的及时性主要是滞后,滞后一般而言由两种原因所引起,一是样品传送滞后时间,二是分析仪的响应滞后时间。对于现代分析仪而言,响应时间都比较迅速;一般都保持在T90<15S,因此相对较小。而气体分析仪一般都集中在分析小屋内以便维护与管理,距离工艺管道或容器的位置相对较远,被分析的气体传送至分析仪进行检测所花费的时间较长,由此产生的滞后时间占主导因素。滞后时间的运算一般有两种方式。一是体积流速计算法、二是压差流速计算法,而一般采用体积流速计算法较为便利。体积流速计算法如下式所示: Tt:总的样品传送时间,min; d:样品传送管线内径,m; L:样品管线传送长度,mVi:样品部件处理容积,m3; F:样品流速m3/min由上式我们可以得知,当管线越短,管径越小,处理部件越少,样品流速越大时,传送的时间则越少。但管径不能过小,否则样品的流速无法提高,甚至堵塞,造成样品无法分析。因此一般情况下样气分析管宜采用直径为6mm的管道即可。对于样品处理部件在能满足样气处理的前提下,越少越好。且处理部件不能有死体积。对于深冷法空分而言,气体相对较洁净,只须要在样气进分析仪之前加一直通型筛网除尘过滤器即可,筛网要多层,孔径要适中,过滤器的容积要小。对于样品流速,一般希望越大越好,而大部份分析仪对样气的要求都有一个明确的规定。不可过大或过小。因此要想加大样气流速就必须设置旁通流路及旁通阀。旁通阀应尽可能设置在靠近分析仪的位置。在能满足分析仪测量需求的前提下,一般旁通流量应越大越好,但也有些特殊情况除外(例如液态气体样品的取样)。二、样品分析的有效性问题样品的有效性又称准确性,是指样气中的各个组分和含量在从工艺管道或容器内传送到分析仪时未发生任何的改变,从而能够有效的、准确的提供给分析仪进行测量,对于样气的准确性影响有多种方面。1、管道材质对样气的吸附与解吸作用,此点对于常量分析影响较小,但对于微量分析则影响较大(例如气体中的微量氮、氧、水份、碳氢化合物、二氧化碳等检测)。2、死体积置换问题,如果在传输或样品预处理过程当中存在有较大的死体积,当样品组分变化时,由于死体积的作用,使变化的组分与死体积之间发生混匀作用,死体积越大,混匀时间就越长,样品失真的过程也就越长。此点无论是常量还是微量组分分析均有影响,特别是微量分析,可能造成长期的失真,甚至根本无法测量准确。3、管道的泄漏与渗透问题,1)当取样管道安装不到位或材质有缺陷时,样气则极易发生泄漏。虽然从表面上来看,由于取样管内样气压力一般均会高于环境气压,样气发生泄漏时,气体会从管道内向外流动,只会消耗掉部分样气,而样气中的各组成成分并不受影响。其实不然,由于环境空气中存在有大量的氧、氮、水分等气体;当发生泄漏时,由于外部气体的分压与样气管道内的气体组分的分压相差可能会有数万倍,环境空气中的氧、氮等气体分子将会沿着泄漏的部位逆着压力梯度渗透进入样气管道,从而改变了样气中的组分含量。2)当管道材质气密闭和抗渗透性不强时,环境大气中的一些气体分子将可能直接通过管道参透到样气当中。特别是水分,其渗透性较强,特别是当采用一些四氟乙烯管、乳胶管、白胶管之类管材时,水分极易发生渗透现象。当水分渗透时,不仅会改变样气中的水分含量,而且由于水分对氧分子具有溶解与解析作用,将会破坏了样气中氧气的成分,从而造成更深远的影响。由于一般情况下样气管道较长且绝大部分都是暴露在环境大气当中。因此,该类影响将非常严重。特别是对微量分析,将造成较大的偏差。4、鉴于以上几点可知,为了保证样气的有效性,应注意以下几点问题:1)在取样管道材质上应首选不锈钢管(304、316无缝不锈钢管)或盘式铜管,以防止吸附与渗透问题。2)布管时最好采用盘管(即一卷整管),从现场取样点到分析仪组柜接口处无接头连接。即使要使用接头,也必须是使用双卡套接头进行压接(密闭性好,死体积较小),且管件材质、规格应与管子相匹配,不可使用大管套小管的焊接方式连接(死体积大)。3)管道应预先进行退火处理,以便于弯曲施工及连接。但弯曲的角度不宜过大(弯曲夹角不应小于90度),管径要适中,一般选用管径为6mm,壁厚在1mm的管道。4、管道内壁应预先进行过抛光处理(对微量组分分析影响较大),且内、外壁均应洁净、干燥、无油脂类物质,否则必须进行清洗、脱脂。三、样品分析的代表性问题样品的代表性是指从工艺管道或容器当中所取出的样品应能实际反应工艺流体的性质、组成及含量。要想做到此点,取样的位置至关重要,应满足以下几点:1、取样点应位于能反映工艺介质性质和组成变化的灵敏点上。2、取样点应位于对过程控制最适宜的位置,以避免不必要的工艺滞后。3、取样点最好能位于工艺压差构成快速循环回路的位置上。4、取样点应选择在不影响样品组成、性质、含量的情况下,样品的温度、压力、清洁度及干燥度和其他条件尽可能满足分析仪要求的位置,以便使样品的预处理部件降至最少。一般认为,在大多数气体或液体管线当中,只有当介质产生湍流时才能够完全混合。因此取样点最好布置在被测介质产生湍流的位置,才能保证样品具有真正的代表性。取样点可布置在一个或多个90°的弯头之后,紧接最后一个弯头的顺流位置上,或选在节流元件下游一个相对平静的位置上(不要紧靠节流元件)。应尽可能避免在一个相当长而直的管道下游取样,因为这个位置流体的流动往往处于层流状态,管道的横截面上易产生一个浓度梯度。而且不要在管壁或容器壁上直接钻孔取样,因为在这个位置上的样品,长期处于层流状态,样品得不到混合。即使处于湍流状态。由于管道或容器内壁对样品的吸附与解吸作用,使样品容易发生异常的变化,与实际工况不符(特别是微量分析影响较大)。应采用专用的取样探头组件进行取样。一般样品取样可采用剖口呈45°的杆式取样探头,插入管道或容器内30mm左右(或管内径的三分之一)。当管道为水平时,如是气体取样探头应从管顶部插入,以避开可能的凝液或液滴;如是液态气体取样应从管道侧壁插入,以避开管道上部可能存在的蒸气和气泡,以及管道底部可能存在的残渣和沉淀物。如若是垂直管道,从管道侧壁插入,且应从下至上流动的管段中取出,以避免下流液体流动不正常时的气体混入。5、低温液态气体的取样问题在空分制氧机的运行当中,经常需要对低温液态气体中的组分及含量进行分析,例如下塔富氧液空中的氧含量、下塔液氮、污液氮的纯度及主冷液氧中碳氢化合物。这些组分在工艺流程当中都是以低温液态的形式存在。而分析仪所分析的样品必须是常温气态形式。因此这些低温液态气体必须转换成常温气态形式后经管道输送至分析仪进行分析,这就导致样品在取样的过程中发生了相变。由于样品中各组成成分的沸点不同,当样品发生相变时,单位体积中各组分蒸发的程度各不相同,因此当样品从液态转变成气态时单位体积中的各组分含量就容易发生改变。现以下塔富氧液空为例,进行简单的一个分析与同行们进行探讨。下塔的富氧液空,在正常工况时其温度一般均在-170~-195℃之间(受下塔压力及其自身组份的变化影响),而其含氧量因受进塔空气的氧浓度(20.9%O2)的限制总要比它的平衡浓度低一些(例:下塔压力为0.55Mpa与氧含量20.9%的蒸汽相平衡的液体中氧浓度为40.8%,而实际液空中氧含量应更低)。液空的取样一般是直接从下塔底部或是在下塔去上塔的液空管道中取出,以5%的斜度向上倾斜,并在靠近冷箱约800mm处做一向上的弯管,高度为6—10的管道直径,有的在引管的向上捌点处加还设一个加热器,以避免液体在5%的倾斜处存在气、液两相的现象,从而能使液体完全气化,此种设计在液位计正相管是完全适用的,因液位计在正常使用时,其引压管内部的气体是股“死气”,它只是作为压力传送的媒介而已,并不存在流通性,而气体成份分析则不同,低温液态气体气化后生成的气体在源源不断的流出,始终保持流通性,且为了防止分析结果的滞后,往往将取样管路的旁通阀调至较大,这样就加速了气体的流通,管道内就很可能存在气液夹带的现象,下表1是笔者在保证液空进样流量不变,改变旁通流量时,进行的一个重复性试验所得的一组数据。(在工况相对稳定,使用仕富梅4100系列氧分析仪进行测量)表1进样流量(L/h) 1.2 1.2 1.2 1.2 1.2 1.2旁通流量(L/h) 0

  • 【求助】如何用气相色谱仪准备和分析气体样品

    唉,从来没有使用过[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分析过气体样品,所以全无头绪阿想测量气体中的氢气,二氧化碳的含量,该如何准备样品,进样,分析那?非常非常地感谢哦

气体样品分析相关的耗材

  • 无显示器的 875 KF 气体分析仪 2.875.9050
    无显示器的 875 KF 气体分析仪订货号: 2.875.9050875 KF Gas Analyzer 是一套配置完毕的分析系统。该设备包括一台安装有滴定软件 tiamo full 的计算机和一台 851 Titrando,可自动进行电量法水分测定。通过预先定义的用于在液化气体和永久气体中进行水分测定的方法可简化 875 KF Gas Analyzer 的工作。除了测定气体中的水分含量之外,该系统还可测定液体和固体样品中的水分含量。操控系统时还需要一台显示器和键盘及鼠标。
  • 气体分析坩埚
    气体分析坩埚(货号073) 本公司生产国内外、各型号气体分析仪器所用的石墨坩埚、纳克坩埚、力可坩埚、屈场坩堝。
  • 气体样品池配件
    气体样品池配件长度为10cm,孔径为25mm,体积容量为50ml,可拆卸,非常适合低量气体的近红外光谱分析。低气量红外气体样品池配件(气体盒)由 不锈钢阀门, 黑色氧化铝螺纹端盖,O型氟橡胶环和聚四氟乙烯垫片组成。另外,红外气体池还在外部配备了滑杠用于气体池的准直和安装固定。气体样品池,红外气体池需要38x6mm的窗口用于安装。气体样品池配件可选的透射材料有:NaCl,溴化钾,氟化钙,氟化钡,KRS-5, ZnSe等,还有其他材料供选择。气体样品池体积容量为50ml,非常适合低量气体的近红外光谱分析的红外气体池.孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有牛奶分析仪,食品分析仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。更多关于电牛奶检测仪价格,牛奶检测仪品牌等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制